Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Eur J Neurol ; 27(12): 2604-2615, 2020 12.
Article in English | MEDLINE | ID: mdl-32697863

ABSTRACT

BACKGROUND AND PURPOSE: The aim was to define the radiological picture of facioscapulohumeral muscular dystrophy 2 (FSHD2) in comparison with FSHD1 and to explore correlations between imaging and clinical/molecular data. METHODS: Upper girdle and/or lower limb muscle magnetic resonance imaging scans of 34 molecularly confirmed FSHD2 patients from nine European neuromuscular centres were analysed. T1-weighted and short-tau inversion recovery (STIR) sequences were used to evaluate the global pattern and to assess the extent of fatty replacement and muscle oedema. RESULTS: The most frequently affected muscles were obliquus and transversus abdominis, semimembranosus, soleus and gluteus minimus in the lower limbs; trapezius, serratus anterior, latissimus dorsi and pectoralis major in the upper girdle. Iliopsoas, popliteus, obturator internus and tibialis posterior in the lower limbs and subscapularis, spinati, sternocleidomastoid and levator scapulae in the upper girdle were the most spared. Asymmetry and STIR hyperintensities were consistent features. The pattern of muscle involvement was similar to that of FSHD1, and the combined involvement of trapezius, abdominal and hamstring muscles, together with complete sparing of iliopsoas and subscapularis, was detected in 91% of patients. Peculiar differences were identified in a rostro-caudal gradient, a predominant involvement of lower limb muscles compared to the upper girdle, and in the higher percentage of STIR hyperintensities in FSHD2. CONCLUSION: This multicentre study defines the pattern of muscle involvement in FSHD2, providing useful information for diagnostics and clinical trial design. Both similarities and differences between FSHD1 and FSHD2 were detected, which is also relevant to better understand the pathogenic mechanisms underlying the FSHD-related disease spectrum.


Subject(s)
Muscular Dystrophy, Facioscapulohumeral , Humans , Lower Extremity , Magnetic Resonance Imaging , Muscle, Skeletal/diagnostic imaging , Muscular Dystrophy, Facioscapulohumeral/diagnostic imaging , Muscular Dystrophy, Facioscapulohumeral/genetics
2.
Hum Mutat ; 35(8): 998-1010, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24838473

ABSTRACT

Facioscapulohumeral dystrophy (FSHD) is one of the most prevalent muscular dystrophies. The majority of FSHD cases are linked to a decreased copy number of D4Z4 macrosatellite repeats on chromosome 4q (FSHD1). Less than 5% of FSHD cases have no repeat contraction (FSHD2), most of which are associated with mutations of SMCHD1. FSHD is associated with the transcriptional derepression of DUX4 encoded within the D4Z4 repeat, and SMCHD1 contributes to its regulation. We previously found that the loss of heterochromatin mark (i.e., histone H3 lysine 9 tri-methylation (H3K9me3)) at D4Z4 is a hallmark of both FSHD1 and FSHD2. However, whether this loss contributes to DUX4 expression was unknown. Furthermore, additional D4Z4 homologs exist on multiple chromosomes, but they are largely uncharacterized and their relationship to 4q/10q D4Z4 was undetermined. We found that the suppression of H3K9me3 results in displacement of SMCHD1 at D4Z4 and increases DUX4 expression in myoblasts. The DUX4 open reading frame (ORF) is disrupted in D4Z4 homologs and their heterochromatin is unchanged in FSHD. The results indicate the significance of D4Z4 heterochromatin in DUX4 gene regulation and reveal the genetic and epigenetic distinction between 4q/10q D4Z4 and the non-4q/10q homologs, highlighting the special role of the 4q/10q D4Z4 chromatin and the DUX4 ORF in FSHD.


Subject(s)
DNA, Satellite , Epigenesis, Genetic , Heterochromatin/metabolism , Homeodomain Proteins/genetics , Muscular Dystrophy, Facioscapulohumeral/genetics , Mutation , Animals , Base Sequence , Cell Line , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Chromosomes, Human, Pair 10 , Chromosomes, Human, Pair 4 , Cricetinae , Gene Expression , Histones/genetics , Histones/metabolism , Homeodomain Proteins/metabolism , Humans , Mice , Molecular Sequence Data , Muscular Dystrophy, Facioscapulohumeral/metabolism , Muscular Dystrophy, Facioscapulohumeral/pathology , Myoblasts/metabolism , Myoblasts/pathology , Open Reading Frames , Primary Cell Culture , Sequence Homology, Nucleic Acid
3.
Muscle Nerve ; 50(5): 739-43, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24639337

ABSTRACT

INTRODUCTION: Few studies have evaluated the frequency or predisposing factors for respiratory involvement in facioscapulohumeral muscular dystrophy type 1 (FSHD1) and type 2 (FSHD2). METHODS: We performed a prospective cross-sectional observational study of 61 genetically confirmed FSHD participants (53 FSHD1 and 8 FSHD2). Participants underwent bedside pulmonary function testing in sitting and supine positions, a standard clinical history and physical assessment, and manual muscle testing. RESULTS: Restrictive respiratory involvement was suggested in 9.8% (95% confidence interval 2.4-17.3): 7.5% FSHD1 and 25.0% FSHD2 (P = 0.17). Participants with testing suggestive of restrictive lung involvement (n = 6) were more severely affected (P = 0.005), had weaker hip flexion (P = 0.0007), and were more likely to use a wheelchair (P = 0.01). CONCLUSIONS: Restrictive respiratory involvement should be considered in all moderate to severely affected FSHD patients with proximal lower extremity weakness. The higher frequency of restrictive lung disease in FSHD2 seen here requires confirmation in a larger cohort of FSHD2 patients.


Subject(s)
Lung Diseases/etiology , Muscular Dystrophy, Facioscapulohumeral/complications , Adult , Aged , Cross-Sectional Studies , Female , Humans , Lung Diseases/diagnosis , Male , Middle Aged , Muscle Strength/physiology , Muscular Dystrophy, Facioscapulohumeral/classification , Muscular Dystrophy, Facioscapulohumeral/genetics , Prospective Studies , Severity of Illness Index , Vital Capacity/physiology
4.
Genes (Basel) ; 14(12)2023 11 30.
Article in English | MEDLINE | ID: mdl-38136988

ABSTRACT

Facioscapulohumeral muscular dystrophy (FSHD) is the third most common hereditary muscular dystrophy, caused by the contraction of the D4Z4 repeats on the permissive 4qA haplotype on chromosome 4, resulting in the faulty expression of the DUX4 gene. Traditional diagnostics are based on Southern blotting, a time- and effort-intensive method that can be affected by single nucleotide variants (SNV) and copy number variants (CNV), as well as by the similarity of the D4Z4 repeats located on chromosome 10. We aimed to evaluate optical genome mapping (OGM) as an alternative molecular diagnostic method for the detection of FSHD. We first performed optical genome mapping with EnFocus™ FSHD analysis using DLE-1 labeling and the Saphyr instrument in patients with inconclusive diagnostic Southern blot results, negative FSHD2 results, and clinically evident FSHD. Second, we performed OGM in parallel with the classical Southern blot analysis for our prospectively collected new FSHD cases. Finally, panel exome sequencing was performed to confirm the presence of FSHD2. In two patients with diagnostically inconclusive Southern blot results, OGM was able to identify shortened D4Z4 repeats on the permissive 4qA alleles, consistent with the clinical presentation. The results of the prospectively collected patients tested in parallel using Southern blotting and OGM showed full concordance, indicating that OGM is a useful alternative to the classical Southern blotting method for detecting FSHD1. In a patient showing clinical FSHD but no shortened D4Z4 repeats in the 4qA allele using OGM or Southern blotting, a likely pathogenic variant in SMCHD1 was detected using exome sequencing, confirming FSHD2. OGM and panel exome sequencing can be used consecutively to detect FSHD2.


Subject(s)
Muscular Dystrophy, Facioscapulohumeral , Humans , Muscular Dystrophy, Facioscapulohumeral/diagnosis , Muscular Dystrophy, Facioscapulohumeral/genetics , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Genetic Testing , Chromosome Mapping , Chromosomal Proteins, Non-Histone/genetics
5.
Genes (Basel) ; 11(3)2020 02 28.
Article in English | MEDLINE | ID: mdl-32121044

ABSTRACT

Facioscapulohumeral muscular dystrophy (FSHD) has been associated with the genetic and epigenetic molecular features of the CpG-rich D4Z4 repeat tandem array at 4q35. Reduced DNA methylation of D4Z4 repeats is considered part of the FSHD mechanism and has been proposed as a reliable marker in the FSHD diagnostic procedure. We considered the assessment of D4Z4 DNA methylation status conducted on distinct cohorts using different methodologies. On the basis of the reported results we conclude that the percentage of DNA methylation detected at D4Z4 does not correlate with the disease status. Overall, data suggest that in the case of FSHD1, D4Z4 hypomethylation is a consequence of the chromatin structure present in the contracted allele, rather than a proxy of its function. Besides, CpG methylation at D4Z4 DNA is reduced in patients presenting diseases unrelated to muscle progressive wasting, like Bosma Arhinia and Microphthalmia syndrome, a developmental disorder, as well as ICF syndrome. Consistent with these observations, the analysis of epigenetic reprogramming at the D4Z4 locus in human embryonic and induced pluripotent stem cells indicate that other mechanisms, independent from the repeat number, are involved in the control of the epigenetic structure at D4Z4.


Subject(s)
DNA Methylation/genetics , Epigenesis, Genetic/genetics , Muscular Dystrophy, Facioscapulohumeral/genetics , Protein Processing, Post-Translational/genetics , Choanal Atresia/genetics , Choanal Atresia/pathology , CpG Islands/genetics , Face/abnormalities , Face/pathology , Homeodomain Proteins/genetics , Humans , Microphthalmos/genetics , Microphthalmos/pathology , Muscle Weakness/genetics , Muscle Weakness/pathology , Muscular Dystrophy, Facioscapulohumeral/pathology , Nose/abnormalities , Nose/pathology , Primary Immunodeficiency Diseases/genetics , Primary Immunodeficiency Diseases/pathology , Tandem Repeat Sequences
6.
J Clin Neurosci ; 58: 215-217, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30327220

ABSTRACT

Facioscapulohumeral muscular dystrophy (FSHD) 2 is caused by a combination of heterozygous structural maintenance of chromosomes flexible hinge domain containing 1 (SMCHD1) mutation plus DNA hypomethylation on D4Z4. Here we report two Japanese FSHD2 siblings (brother and sister) with a new SMCHD1 nonsense mutation (a heterogeneous c. 1654C > T substitution, leading to a stop codon Arg552∗). They showed the typical phenotype of FSHD2 such as asymmetric muscle weakness and atrophy in bilateral facial, scapular and humeral muscles, but different clinicopathological features between them. The brother and asymptomatic mother showed normal D4Z4 methylation plus the same SMCHD1 mutation, but the sister showed the SMCHD1 mutation plus D4Z4 hypomethylation, suggesting an interesting correlation of the new SMCHD1 nonsense mutation and D4Z4 hypomethylation.


Subject(s)
Chromosomal Proteins, Non-Histone/genetics , Muscular Dystrophy, Facioscapulohumeral/genetics , Muscular Dystrophy, Facioscapulohumeral/pathology , Adolescent , Adult , Codon, Nonsense , DNA Methylation/genetics , Female , Heterozygote , Humans , Male , Siblings , Young Adult
7.
Orphanet J Rare Dis ; 13(1): 218, 2018 12 04.
Article in English | MEDLINE | ID: mdl-30514324

ABSTRACT

BACKGROUND: Facioscapulohumeral muscular dystrophy is a rare inherited neuromuscular disease with an estimated prevalence of 1/20,000 and France therefore harbors about 3000 FSHD patients. With research progress and the development of targeted therapies, patients' identification through registries can facilitate and improve recruitment in clinical trials and studies. RESULTS: The French National Registry of FSHD patients was designed as a mixed model registry involving both patients and physicians, through self-report and clinical evaluation questionnaires respectively, to collect molecular and clinical data. Because of the limited number of patients, data quality is a major goal of the registry and various automatic data control features have been implemented in the bioinformatics system. In parallel, data are manually validated by molecular and clinical curators. Since its creation in 2013, data from 638 FSHD patients have been collected, representing about 21% of the French FSHD population. The mixed model strategy allowed to collect 59.1% of data from both patients and clinicians; 26 and 14.9% from respectively patients and clinicians only. With the identification of the FSHD1 and FSHD2 forms, specific questionnaires have been designed. Though FSHD2 patients are progressively included, FSHD1 patients still account for the majority (94.9%). The registry is compatible with the FAIR principles as data are Findable, Accessible and Interoperable. We thus used molecular standards and standardized clinical terms used by the FILNEMUS French network of reference centers for the diagnosis and follow-up of patients suffering from a rare neuromuscular disease. The implemented clinical terms mostly map to dictionaries and terminology systems such as SNOMED-CT (75% of terms), CTV3 (61.7%) and NCIt (53.3%). Because of the sensitive nature of data, they are not directly reusable and can only be accessed as aggregated data after evaluation and approval by the registry oversight committee. CONCLUSIONS: The French National Registry of FSHD patients belongs to a national effort to develop databases, which should now interact with other initiatives to build a European and/or an international FSHD virtual registry for the benefits of patients. It is accessible at www.fshd.fr and various useful information, links, and documents, including a video, are available for patients and professionals.


Subject(s)
Muscular Dystrophy, Facioscapulohumeral/diagnosis , Muscular Dystrophy, Facioscapulohumeral/epidemiology , Registries , Databases, Factual , France , Humans , Rare Diseases , Surveys and Questionnaires
8.
Neuromuscul Disord ; 26(12): 844-852, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27816329

ABSTRACT

Facioscapulohumeral muscular dystrophy (FSHD), a prevalent inherited human myopathy, develops following a complex interplay of genetic and epigenetic events. FSHD1, the more frequent genetic form, is associated with: (1) deletion of an integral number of 3.3 Kb (D4Z4) repeated elements at the chromosomal region 4q35, (2) a specific 4q35 subtelomeric haplotype denominated 4qA, and (3) decreased methylation of cytosines at the 4q35-linked D4Z4 units. FSHD2 is most often caused by mutations at the SMCHD1 (Structural Maintenance of Chromosomes Hinge Domain 1) gene, on chromosome 18p11.32. FSHD2 individuals also carry the 4qA haplotype and decreased methylation of D4Z4 cytosines. Each D4Z4 unit contains a copy of the retrotransposed gene DUX4 (double homeobox containing protein 4). DUX4 gene functionality was questioned in the past because of its pseudogene-like structure, its location on repetitive telomeric DNA sequences (i.e. junk DNA), and the elusive nature of both the DUX4 transcript and the encoded protein, DUX4. It is now known that DUX4 is a nuclear-located transcription factor, which is normally expressed in germinal tissues. Aberrant DUX4 expression triggers a deregulation cascade inhibiting muscle differentiation, sensitizing cells to oxidative stress, and inducing muscle atrophy. A unifying pathogenic model for FSHD emerged with the recognition that the FSHD-permissive 4qA haplotype corresponds to a polyadenylation signal that stabilizes the DUX4 mRNA, allowing the toxic protein DUX4 to be expressed. This working hypothesis for FSHD pathogenesis highlights the intrinsic epigenetic nature of the molecular mechanism underlying FSHD as well as the pathogenic pathway connecting FSHD1 and FSHD2. Pharmacological control of either DUX4 gene expression or the activity of the DUX4 protein constitutes current potential rational therapeutic approaches to treat FSHD.


Subject(s)
Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Muscular Dystrophy, Facioscapulohumeral/genetics , Muscular Dystrophy, Facioscapulohumeral/metabolism , Animals , Epigenesis, Genetic , Gene Expression/genetics , Gene Expression/physiology , Humans
9.
Clin Epigenetics ; 6(1): 23, 2014.
Article in English | MEDLINE | ID: mdl-25400706

ABSTRACT

BACKGROUND: Facioscapulohumeral muscular dystrophy (FSHD) is linked to chromatin relaxation due to epigenetic changes at the 4q35 D4Z4 macrosatellite array. Molecular diagnostic criteria for FSHD are complex and involve analysis of high molecular weight (HMW) genomic DNA isolated from lymphocytes, followed by multiple restriction digestions, pulse-field gel electrophoresis (PFGE), and Southern blotting. A subject is genetically diagnosed as FSHD1 if one of the 4q alleles shows a contraction in the D4Z4 array to below 11 repeats, while maintaining at least 1 repeat, and the contraction is in cis with a disease-permissive A-type subtelomere. FSHD2 is contraction-independent and cannot be diagnosed or excluded by this common genetic diagnostic procedure. However, FSHD1 and FSHD2 are linked by epigenetic deregulation, assayed as DNA hypomethylation, of the D4Z4 array on FSHD-permissive alleles. We have developed a PCR-based assay that identifies the epigenetic signature for both types of FSHD, distinguishing FSHD1 from FSHD2, and can be performed on genomic DNA isolated from blood, saliva, or cultured cells. RESULTS: Samples were obtained from healthy controls or patients clinically diagnosed with FSHD, and include both FSHD1 and FSHD2. The genomic DNAs were subjected to bisulfite sequencing analysis for the distal 4q D4Z4 repeat with an A-type subtelomere and the DUX4 5' promoter region. We compared genomic DNA isolated from saliva and blood from the same individuals and found similar epigenetic signatures. DNA hypomethylation was restricted to the contracted 4qA chromosome in FSHD1 patients while healthy control subjects were hypermethylated. Candidates for FSHD2 showed extreme DNA hypomethylation on the 4qA DUX4 gene body as well as all analyzed DUX4 5' sequences. Importantly, our assay does not amplify the D4Z4 arrays with non-permissive B-type subtelomeres and accurately excludes the arrays with non-permissive A-type subtelomeres. CONCLUSIONS: We have developed an assay to identify changes in DNA methylation on the pathogenic distal 4q D4Z4 repeat. We show that the DNA methylation profile of saliva reflects FSHD status. This assay can distinguish FSHD from healthy controls, differentiate FSHD1 from FSHD2, does not require HMW genomic DNA or PFGE, and can be performed on either cultured cells, tissue, blood, or saliva samples.

SELECTION OF CITATIONS
SEARCH DETAIL