Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 217
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Int J Mol Sci ; 25(14)2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39062784

ABSTRACT

Ovarian cancer ranks among the most severe forms of cancer affecting the female reproductive organs, posing a significant clinical challenge primarily due to the development of resistance to conventional therapies. This study investigated the effects of the chalcone derivative 1C on sensitive (A2780) and cisplatin-resistant (A2780cis) ovarian cancer cell lines. Our findings revealed that 1C suppressed cell viability, induced cell cycle arrest at the G2/M phase, and triggered apoptosis in both cell lines. These effects are closely associated with generating reactive oxygen species (ROS). Mechanistically, 1C induced DNA damage, modulated the activity of p21, PCNA, and phosphorylation of Rb and Bad proteins, as well as cleaved PARP. Moreover, it modulated Akt, Erk1/2, and NF-κB signaling pathways. Interestingly, we observed differential effects of 1C on Nrf2 levels between sensitive and resistant cells. While 1C increased Nrf2 levels in sensitive cells after 12 h and decreased them after 48 h, the opposite effect was observed in resistant cells. Notably, most of these effects were suppressed by the potent antioxidant N-acetylcysteine (NAC), underscoring the crucial role of ROS in 1C-induced antiproliferative activity. Moreover, we suggest that modulation of Nrf2 levels can, at least partially, contribute to the antiproliferative effect of chalcone 1C.


Subject(s)
Apoptosis , Chalcones , Drug Resistance, Neoplasm , G2 Phase Cell Cycle Checkpoints , Ovarian Neoplasms , Reactive Oxygen Species , Humans , Reactive Oxygen Species/metabolism , Female , Apoptosis/drug effects , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Ovarian Neoplasms/drug therapy , Drug Resistance, Neoplasm/drug effects , G2 Phase Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Chalcones/pharmacology , Antineoplastic Agents/pharmacology , Chalcone/pharmacology , Chalcone/analogs & derivatives , Cell Proliferation/drug effects , Cell Survival/drug effects , Signal Transduction/drug effects , DNA Damage/drug effects
2.
Kidney Int ; 103(3): 544-564, 2023 03.
Article in English | MEDLINE | ID: mdl-36581018

ABSTRACT

The aberrant expression of ubiquitin-specific protease 11 (USP11) is believed to be related to tumor progression. However, few studies have reported the biological function and clinical importance of USP11 in kidney fibrosis. Here, we demonstrated USP11 was highly upregulated in the kidneys from patients with chronic kidney disease and correlated positively with fibrotic lesion but negatively with kidney function. Conditional USP11 deletion or pharmacologic inhibition with Mitoxantrone attenuated pathological lesions and improved kidney function in both hyperuricemic nephropathy (HN)- and folic acid (FA)-induced mouse models of kidney fibrosis. Mechanistically, by RNA sequencing, USP11 was found to be involved in nuclear gene transcription of the epidermal growth factor receptor (EGFR). USP11 co-immunoprecipitated and co-stained with extra-nuclear EGFR and deubiquitinated and protected EGFR from proteasome-dependent degradation. Genetic or pharmacological depletion of USP11 facilitated EGFR degradation and abated augmentation of TGF-ß1 and downstream signaling. This consequently alleviated the partial epithelial-mesenchymal transition, G2/M arrest and aberrant secretome of profibrogenic and proinflammatory factors in uric acid-stimulated tubular epithelial cells. Moreover, USP11 deletion had anti-fibrotic and anti-inflammatory kidney effects in the murine HN and FA models. Thus, our study provides evidence supporting USP11 as a promising target for minimizing kidney fibrosis and that inhibition of USP11 has potential to be an effective strategy for patients with chronic kidney disease.


Subject(s)
Epithelial-Mesenchymal Transition , Renal Insufficiency, Chronic , Animals , Mice , Apoptosis , Cell Line, Tumor , ErbB Receptors , Fibrosis , G2 Phase Cell Cycle Checkpoints , Kidney/metabolism , Transforming Growth Factor beta1/metabolism , Ubiquitin-Specific Proteases/pharmacology
3.
Biochem Biophys Res Commun ; 681: 249-270, 2023 11 12.
Article in English | MEDLINE | ID: mdl-37793311

ABSTRACT

Chalcones have a long history of being used for many medical purposes. These are the most prestigious scaffolds in medicine. The potential of Millepachine and its derivatives to treat various malignancies has been demonstrated in this review. The anticancer effects of Millepachine and its derivatives on ovarian cancer, hepatocellular carcinoma, breast, liver, colon, cervical, prostate, stomach, and gliomas are highlighted in the current review. Several genes that are crucial in reducing the severity of the disease have been altered by these substances. They mainly work by preventing tubulin polymerizing. They also exhibit apoptosis and cell cycle arrest at the G2/M phase. Additionally, these compounds inhibit invasion and migration and have antiproliferative effects. Preclinical studies have shown that Millepachine and its derivatives offer exceptional potential for treating a number of cancers. These results need to be confirmed in clinical research in order to develop viable cancer therapies.


Subject(s)
Antineoplastic Agents , Carcinoma, Hepatocellular , Chalcones , Liver Neoplasms , Male , Humans , Chalcones/pharmacology , Chalcones/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Tubulin/metabolism , Cell Proliferation , Cell Line, Tumor , Structure-Activity Relationship , Tubulin Modulators/pharmacology , Drug Screening Assays, Antitumor
4.
Development ; 147(13)2020 07 03.
Article in English | MEDLINE | ID: mdl-32620578

ABSTRACT

In mammalian growing follicles, oocytes are arrested at the diplotene stage (which resembles the G2/M boundary in mitosis), while the granulosa cells (GCs) continue to proliferate during follicular development, reflecting a cell cycle asynchrony between oocytes and GCs. Hypoxanthine (Hx), a purine present in the follicular fluid, has been shown to induce oocytes meiotic arrest, although its role in GC proliferation remains ill-defined. Here, we demonstrate that Hx indiscriminately prevents G2-to-M phase transition in porcine GCs. However, oocyte-derived paracrine factors (ODPFs), particularly GDF9 and BMP15, maintain the proliferation of GCs, partly by activating the ERK1/2 signaling and enabling the G2/M transition that is suppressed by Hx. Interestingly, GCs with lower expression of GDF9/BMP15 receptors appear to be more sensitive to Hx-induced G2/M arrest and become easily detached from the follicular wall. Importantly, Hx-mediated inhibition of G2/M progression instigates GC apoptosis, which is ameliorated in the presence of GDF9 and/or BMP15. Therefore, our data indicate that the counterbalance of intrafollicular factors, particularly Hx and oocyte-derived GDF9/BMP15, fine-tunes the development of porcine follicles by regulating the cell cycle progression of GCs.


Subject(s)
Granulosa Cells/metabolism , Hypoxanthine/metabolism , Oocytes/metabolism , Animals , Apoptosis/genetics , Apoptosis/physiology , Bone Morphogenetic Protein 15/genetics , Bone Morphogenetic Protein 15/metabolism , Cell Proliferation/genetics , Cell Proliferation/physiology , Female , G2 Phase Cell Cycle Checkpoints/genetics , G2 Phase Cell Cycle Checkpoints/physiology , Growth Differentiation Factor 9/genetics , Growth Differentiation Factor 9/metabolism , Swine
5.
Yeast ; 40(12): 640-650, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37997429

ABSTRACT

Yeasts have been widely used as a model to better understand cell cycle mechanisms and how nutritional and genetic factors can impact cell cycle progression. While nitrogen scarcity is well known to modulate cell cycle progression, the relevance of nitrogen excess for microorganisms has been overlooked. In our previous work, we observed an absence of proper entry into the quiescent state in Hanseniaspora vineae and identified a potential link between this behavior and nitrogen availability. Furthermore, the Hanseniaspora genus has gained attention due to a significant loss of genes associated with DNA repair and cell cycle. Thus, the aim of our study was to investigate the effects of varying nitrogen concentrations on H. vineae's cell cycle progression. Our findings demonstrated that nitrogen excess, regardless of the source, disrupts cell cycle progression and induces G2/M arrest in H. vineae after reaching the stationary phase. Additionally, we observed a viability decline in H. vineae cells in an ammonium-dependent manner, accompanied by increased production of reactive oxygen species, mitochondrial hyperpolarization, intracellular acidification, and DNA fragmentation. Overall, our study highlights the events of the cell cycle arrest in H. vineae induced by nitrogen excess and attempts to elucidate the possible mechanism triggering this absence of proper entry into the quiescent state.


Subject(s)
Hanseniaspora , Hanseniaspora/metabolism , Apoptosis , G2 Phase Cell Cycle Checkpoints , Cell Line, Tumor , Nitrogen/metabolism
6.
Exp Dermatol ; 32(10): 1823-1833, 2023 10.
Article in English | MEDLINE | ID: mdl-37578092

ABSTRACT

T-LAK cell-oriented protein kinase (TOPK) potently promotes malignant proliferation of tumour cells and is considered as a maker of tumour progression. Psoriasis is a common inflammatory skin disease characterized by abnormal proliferation of keratinocytes. However, the role of TOPK in psoriasis has not been well elucidated. This study aims to investigate the expression and role of TOPK in psoriasis, and the role of TOPK inhibitor in psoriasis attenuation. Gene Expression Omnibus datasets derived from psoriasis patients and psoriatic model mice were screened for analysis. Skin specimens from psoriasis patients were collected for TOPK immunohistochemical staining to investigate the expression and localization of TOPK. Next, psoriatic mice model was established to further confirm TOPK expression pattern. Then, TOPK inhibitor was applied to investigate the role of TOPK in psoriasis progression. Finally, cell proliferation assay, apoptosis assay and cell cycle analysis were performed to investigate the potential mechanism involved. Our study showed that TOPK was upregulated in the lesions of both psoriasis patients and psoriatic model mice, and TOPK levels were positively associated with psoriasis progression. TOPK was upregulated in psoriatic lesions and expressed predominantly by epidermal keratinocytes. In addition, TOPK levels in epidermal keratinocytes were positively correlated with epidermal hyperplasia. Furthermore, topical application of TOPK inhibitor OTS514 obviously alleviated disease severity and epidermal hyperplasia. Mechanismly, inhibiting TOPK induces G2/M phase arrest and apoptosis of keratinocytes, thereby attenuating epidermal hyperplasia and disease progression. Collectively, this study identifies that upregulation of TOPK in keratinocytes promotes psoriatic progression, and inhibiting TOPK attenuates epidermal hyperplasia and psoriatic progression.


Subject(s)
Neoplasms , Psoriasis , Humans , Animals , Mice , Protein Kinase Inhibitors , Hyperplasia/pathology , Killer Cells, Lymphokine-Activated/metabolism , Killer Cells, Lymphokine-Activated/pathology , T-Lymphocytes/metabolism , Keratinocytes/metabolism , Psoriasis/metabolism , Cell Cycle Checkpoints , Apoptosis/genetics , Neoplasms/metabolism , Cell Proliferation/genetics
7.
Bioorg Med Chem ; 95: 117489, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37816266

ABSTRACT

In this study of creating new molecules from clinical trial agents, an approach of Combretastatin structural modulation with the installation of NP-privileged motifs was considered, and a series of trimethoxyphenyl-2-aminoimidazole with functionalized quinolines and isoquinolines was investigated. An exciting method of quinoline C3-H iodination coupled with imidazopyridine-C3-H arylation and hydrazine-mediated fused-ring cleavage enabled synthesizing a class of compounds with two specific unsymmetric aryl substitutions. Interestingly, three compounds (6, 11, and 13) strongly inhibited HeLa cell proliferation with a half-maximal inhibitory concentration (10-46 nM). Among the compounds, compound 6 (QTMP) showed stronger antiproliferative ability than CA-4 (a clinical trial agent) in various cancer cell lines, including cervical, lung, breast, highly metastatic breast, and melanoma cells. QTMP inhibited the assembly of purified tubulin, depolymerized microtubules of A549 lung carcinoma cells, produced defective spindles, and arrested the cells in the G2/M phase. Further, QTMP binds to the colchicine site in tubulin with a dissociation constant of 5.0 ± 0.6 µM. QTMP displayed higher aqueous stability than CA-4 at 37 °C. Further, in silico analysis of QTMP indicated excellent drug-like properties, including good aqueous solubility, balanced hydrophilicity-lipophilicity, and high GI-absorption ability. The results together suggest that QTMP has anticancer potential.


Subject(s)
Antineoplastic Agents , Tubulin , Humans , Tubulin/metabolism , Molecular Structure , Structure-Activity Relationship , Tubulin Modulators/pharmacology , HeLa Cells , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Proliferation , Drug Screening Assays, Antitumor
8.
Bioorg Chem ; 131: 106334, 2023 02.
Article in English | MEDLINE | ID: mdl-36592487

ABSTRACT

Microtubule dynamic is exceptionally sensitive to modulation by small-molecule ligands. Our previous work presented the preparation of microtubule-targeting estradiol dimer (ED) with anticancer activity. In the present study, we explore the effect of selected linkers on the biological activity of the dimer. The linkers were designed as five-atom chains with carbon, nitrogen or oxygen in their centre. In addition, the central nitrogen was modified by a benzyl group with hydroxy or methoxy substituents and one derivative possessed an extended linker length. Thirteen new dimers were subjected to cytotoxicity assay and cell cycle profiling. Dimers containing linker with benzyl moiety substituted with one or more methoxy groups and longer branched ones were found inactive, whereas other structures had comparable efficacy as the original ED (e.g. D1 with IC50 = 1.53 µM). Cell cycle analysis and immunofluorescence proved the interference of dimers with microtubule assembly and mitosis. The proposed in silico model and calculated binding free energy by the MM-PBSA method were closely correlated with in vitro tubulin assembly assay.


Subject(s)
Antineoplastic Agents , Ethinyl Estradiol , Triazoles , Tubulin Modulators , Tubulin , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis , Cell Line, Tumor , Ethinyl Estradiol/chemistry , Ethinyl Estradiol/pharmacology , G2 Phase Cell Cycle Checkpoints/drug effects , Microtubules , Triazoles/chemistry , Triazoles/pharmacology , Tubulin/metabolism , Tubulin Modulators/chemistry , Tubulin Modulators/pharmacology
9.
Int J Mol Sci ; 24(13)2023 Jun 24.
Article in English | MEDLINE | ID: mdl-37445759

ABSTRACT

The present study aimed to characterize the antiproliferative and antimetastatic properties of two recently synthesized monoterpene-aminopyrimidine hybrids (1 and 2) on A2780 ovary cancer cells. Both agents exerted a more pronounced cell growth inhibitory action than the reference agent cisplatin, as determined by the MTT assay. Tumor selectivity was assessed using non-cancerous fibroblast cells. Hybrids 1 and 2 induced changes in cell morphology and membrane integrity in A2780 cells, as evidenced by Hoechst 33258-propidium iodide fluorescent staining. Cell cycle analysis by flow cytometry revealed substantial changes in the distribution of A2780 ovarian cancer cells, with an increased rate in the subG1 and G2/M phases, at the expense of the G1 cell population. Moreover, the tested molecules accelerated tubulin polymerization in a cell-free in vitro system. The antimetastatic properties of both tested compounds were investigated by wound healing and Boyden chamber assays after 24 and 48 h of incubation. Treatment with 1 and 2 resulted in time- and concentration-dependent inhibition of migration and invasion of A2780 cancer cells. These results support that the tested agents may be worth of further investigation as promising anticancer drug candidates.


Subject(s)
Antineoplastic Agents , Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Cell Line, Tumor , Apoptosis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Proliferation
10.
Int J Mol Sci ; 24(18)2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37762548

ABSTRACT

Colorectal cancer (CRC) is one of the most common malignancies worldwide. Isolinderalactone (ILL), a sesquiterpene isolated from the root extract of Lindera aggregata, has been reported to exhibit anti-proliferative and anti-metastatic activities in various cancer cell lines. However, the mechanisms associated with its antitumor effects on CRC cells remain unclear. ILL treatment significantly suppressed proliferation and induced cell cycle G2/M arrest in CRC cells by inhibiting the expression of cyclin B, p-cdc2, and p-cdc25c and up-regulating the expression of p21. In addition, ILL induced mitochondria-associated apoptosis through the up-regulation of cleaved -caspase-9 and -3 expression. ILL induced autophagy by increasing the levels of LC3B in CRC cells, which was partially rescued by treatment with an autophagy inhibitor (chloroquine). Furthermore, ILL increases the accumulation of reactive oxygen species (ROS) and activates the MAPK pathway. Application of the ROS scavenger, N-acetyl cysteine (NAC), effectively inhibited ILL toxicity and reversed ILL-induced apoptosis, cell cycle arrest, autophagy, and ERK activation. Taken together, these results suggest that ILL induces G2/M phase arrest, apoptosis, and autophagy and activates the MAPK pathway via ROS-mediated signaling in human CRC cells.


Subject(s)
Colorectal Neoplasms , Sesquiterpenes , Humans , Apoptosis , Reactive Oxygen Species/metabolism , Cell Line, Tumor , G2 Phase Cell Cycle Checkpoints , Cell Cycle Checkpoints , Sesquiterpenes/pharmacology , Autophagy , Colorectal Neoplasms/drug therapy , Cell Proliferation
11.
J Cell Mol Med ; 26(9): 2579-2593, 2022 05.
Article in English | MEDLINE | ID: mdl-35332658

ABSTRACT

Melanoma is a fatal cancer with a significant feature of resistance to traditional chemotherapeutic drugs and radiotherapy. A mutation in the kinase BRAF is observed in more than 66% of metastatic melanoma cases. Therefore, there is an urgent need to develop new BRAF-mutant melanoma inhibitors. High-dose chloroquine has been reported to have antitumour effects, but it often induces dose-limiting toxicity. In this study, a series of chloroquine derivatives were synthesized, and lj-2-66 had the best activity and was selected for further investigation. Furthermore, the anti-BRAF-mutant melanoma effect and mechanism of this compound were explored. CCK-8 and colony formation assays indicated that lj-2-66 significantly inhibited the proliferation of BRAF-mutant melanoma cells. Flow cytometry revealed that lj-2-66 induced G2/M arrest in melanoma cells and promoted apoptosis. Furthermore, lj-2-66 increased the level of ROS in melanoma cells and induced DNA damage. Interestingly, lj-2-66 also played a similar role in BRAF inhibitor-resistant melanoma cells. In summary, we found a novel chloroquine derivative, lj-2-66, that increased the level of ROS in melanoma cells and induced DNA damage, thus leading to G2/M arrest and apoptosis. These findings indicated that lj-2-66 may become a potential therapeutic drug for melanoma harbouring BRAF mutations.


Subject(s)
Melanoma , Proto-Oncogene Proteins B-raf , Apoptosis , Cell Line, Tumor , Cell Proliferation , Chloroquine/pharmacology , DNA Damage , Drug Resistance, Neoplasm , G2 Phase Cell Cycle Checkpoints , Humans , Melanoma/drug therapy , Melanoma/genetics , Melanoma/pathology , Mutation , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/genetics , Reactive Oxygen Species
12.
Biochem Biophys Res Commun ; 619: 62-67, 2022 09 03.
Article in English | MEDLINE | ID: mdl-35738066

ABSTRACT

Hepatic iron overload is a universal phenomenon in patients with myelodysplastic syndromes (MDS) who undergo bone marrow transplantation and may experience the toxicity of peri- and post-bone marrow transplantation. To clarify the mechanisms of iron overload-triggered liver injury, we determined the effects of iron overload on changes in protein phosphorylation in human hepatocyte cell line HH4 in vitro by using a phosphoproteomics approach. The hepatocytes were exposed to high concentrations of ferric ammonium citrate (FAC) to build up an iron overload model in vitro. Changes in protein phosphorylation initiated by iron overloading were studied by 2D-LC/MS. We identified 335 differentially expressed phosphorylated proteins under the condition of excess hepatocyte iron, 11% of which were related to cell cycle progression. The results of phosphoproteomics showed that iron overload induced 10.9 times increase in Thr 14/Tyr 15-phosphorylated Cdk1 in HH4 cells. Flow cytometry analysis revealed that FAC-treated HH4 cells showed significant G2/M phase arrest. Our subsequent RT-PCR and Western blot experiments indicated that FAC-induced G2/M phase arrest was related to the activation of p53-p21-Cdk1, p53-14-3-3 sigma-Cdk1, and 14-3-3 gamma pathway. Our findings demonstrate the first evidence that iron overload causes G2/M arrest in HH4 hepatocytes.


Subject(s)
Apoptosis , Iron Overload , Cell Division , Cell Line, Tumor , Ferric Compounds , G2 Phase Cell Cycle Checkpoints , Hepatocytes/metabolism , Humans , Iron/metabolism , Iron Overload/metabolism , Liver/metabolism , Proteomics , Quaternary Ammonium Compounds , Tumor Suppressor Protein p53/metabolism
13.
Toxicol Appl Pharmacol ; 436: 115883, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35031325

ABSTRACT

The occurrence of multidrug resistance (MDR) is one of the impediments in the clinical treatment of breast cancer, and MDR breast cancer has abnormally high breast cancer resistance protein (BCRP/ABCG2) expression. However, there are currently no clinical drugs that inhibit this target. Our previous study found that 2-Methoxy-5((3,4,5-trimethosyphenyl)seleninyl) phenol (SQ0814061/SQ), a small molecule drug with low toxicity to normal tissues, could target microtubules, inhibit the proliferation of breast cancer, and reduce its migration and invasion abilities. However, the effect and the underlying mechanism of SQ on MDR breast cancers are still unknown. Therefore, in this study, we investigated the effect of SQ on adriamycin-resistant MCF-7 (MCF-7/ADR) cells and explored the underlying mechanism. The MTT assay showed that SQ had potent cytotoxicity to MCF-7/ADR cells. In particular, the results of western blot and flow cytometry proved that SQ could effectively inhibit the expression of BCRP in MCF-7/ADR cells to decrease its drug delivery activity. In addition, SQ could block the cell cycle at G2/M phase in parental and MCF-7/ADR cells, thereby mediating cell apoptosis, which was related with the inhibition of PI3K-Akt-MDM2 pathway. Taken together, our findings indicate that SQ overcomes multidrug resistance in MCF-7/ADR cells by inhibiting BCRP function and mediating apoptosis through PI3K-Akt-MDM2 pathway inhibition.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2/antagonists & inhibitors , Apoptosis/drug effects , Drug Resistance, Multiple/drug effects , Drug Resistance, Neoplasm/drug effects , Microtubules/drug effects , Neoplasm Proteins/antagonists & inhibitors , Organoselenium Compounds/pharmacology , Tubulin Modulators/antagonists & inhibitors , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , MCF-7 Cells , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects
14.
Cancer Cell Int ; 22(1): 299, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36182900

ABSTRACT

BACKGROUND: Clear cell renal carcinoma is commonly known for its metastasis propensity to outspread to other organs and is asymptomatic in the early stage. Recent studies have shown that deficiencies in CYP11A1 expression can lead to fatal adrenal failure if left untreated and are associated with downstream regulation in various cancer types. However, the molecular mechanisms of CYP11A1 and kidney cancer proliferation remain unclear. METHODS: Normal and renal carcinoma cell lines (HEK293 and Caki-1) were transfected with plasmid encoding CYP11A1 to overexpress the P450scc protein. Cell cycle distribution was investigated using flow cytometry. The expression of proteins related to C-Raf/ERK/JNK/p38 signaling pathways was examined using western blot. RESULTS: We observed that CYP11A1 overexpression suppressed the cyclin B1 and cell-division cycle 2 expression while cyclin-dependent kinases 2 and 4 were unaffected. Cancer cell migration and invasion were suppressed along with epithelial-intermediate metastatic markers Snail and Vimentin. In addition, in CYP11A1-overexpressing Caki-1 cells, cdc2/cyclinB1 was downregulated while the phosphorylation of cdc25c, a G2/M arrest-related upstream signal, was increased. The intrinsic-mitochondrial apoptosis markers were not significantly altered. We also identified that the C-Raf/ERK/JNK/p38 pathway is an important pro-apoptotic mechanism in CYP11A1-overexpressing cell-based models. Our results suggest that CYP11A1 overexpression recovered the disturbed cell cycle arrest distribution in renal carcinoma cell line Caki-1 through G2/M arrest and C-Raf/ERK/JNK pathway. CONCLUSIONS: Our findings may suggest promising new therapeutic targets to suppress kidney cancer proliferation without affecting normal cells, eventually improving the survival of patients with cancer.

15.
Acta Biochim Biophys Sin (Shanghai) ; 54(7): 893-903, 2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35713317

ABSTRACT

The presence of senescent cells is associated with renal fibrosis. This study aims to investigate the effect of albumin-induced premature senescence on tubulointerstitial fibrosis and its possible mechanism in vitro. Different concentrations of bovine serum albumim (BSA) with or without si-p21 are used to stimulate HK-2 cells for 72 h, and SA-ß-gal activity, senescence-associated secretory phenotypes (SASPs), LaminB1 are used as markers of senescence. Immunofluorescence staining is performed to characterize the G2/M phase arrest between the control and BSA groups. Alterations in the DNA damage marker γ-H2AX, fibrogenesis, and associated proteins at the G2/M phase, such as p21, p-CDC25C and p-CDK1, are evaluated. Compared with those in the control group, the SA-ß-gal activity, SASP, and γ-H2AX levels are increased in the BSA group, while the level of LaminB1 is decreased. Meanwhile, HK-2 cells blocked at the G2/M phase are significantly increased under the stimulation of BSA, and the levels of p21, p-CDC25C and p-CDK1, as well as fibrogenesis are also increased. When p21 expression is inhibited, the levels of p-CDC25C and p-CDK1 are decreased and the G2/M phase arrest is improved, which decreases the production of fibrogenesis. In conclusion, BSA induces renal tubular epithelial cell premature senescence, which regulates the G2/M phase through the CDC25C/CDK1 pathway, leading to tubulointerstitial fibrosis.


Subject(s)
Cellular Senescence , Kidney Diseases , Albumins/pharmacology , Epithelial Cells/metabolism , Fibrosis , Humans , Kidney/metabolism , Kidney Diseases/metabolism
16.
Rep Pract Oncol Radiother ; 27(3): 509-518, 2022.
Article in English | MEDLINE | ID: mdl-36186704

ABSTRACT

Background: The objective was to to determine the radiosensitizing properties of eribulin and the potential mechanisms of radiosensitization in cervical (HeLa) and pharyngeal (FaDu) cancer cell lines. Materials and methods: Cytotoxicity was evaluated by the crystal violet method. The 10% and 50% inhibitory concentration (IC10, IC50) for 24-hour drug exposure were determined. The surviving fraction at 2 Gy (SF2) and the sensitizer enhancement ratio (SER) were calculated from radiation cell survival curves in the presence or absence of eribulin. Combination index (CI) was calculated to determine if there is a true synergistic interaction between eribulin and irradiation. Cell cycle changes were assessed by propidium iodide staining and flow cytometry. Apoptotic cells were detected by annexin V and TUNEL-assay. Results: Mean IC50s and IC10s were 1.58 nM and 0.7 nM and 0.7 nM and 0.27 nM for HeLa and FaDu cells, respectively. Radiosensitization was observed in both lines with a SER up to 2.71 and 2.32 for HeLa and FaDu cells, respectively. A true synergistic effect was showed with a CI of 0.82 and 0.76 for HeLa and FaDu cells, respectively. Eribulin induced significant G2/M cell arrest and marked apoptosis. Irradiation combined with 3 nM eribulin increased the apoptotic response to radiation in Hela cells. Conclusion: Eribulin shows a true in vitro radiosensitizing effect in HeLa and FaDu cells by inducing significant G2/M phase arrest. In HeLa, the enhancement radiation-induced apoptosis could be an additional mechanism of radiosensitization. Further studies are needed to evaluate the clinical benefits of concurrent eribulin and radiotherapy as a novel therapeutic strategy for cancer.

17.
J Virol ; 94(6)2020 02 28.
Article in English | MEDLINE | ID: mdl-31852787

ABSTRACT

Severe fever with thrombocytopenia syndrome virus (SFTSV) is a newly identified phlebovirus associated with severe hemorrhagic fever in humans. While many viruses subvert the host cell cycle to promote viral growth, it is unknown whether this is a strategy employed by SFTSV. In this study, we investigated how SFTSV manipulates the cell cycle and the effect of the host cell cycle on SFTSV replication. Our results suggest that cells arrest at the G2/M transition following infection with SFTSV. The accumulation of cells at the G2/M transition did not affect virus adsorption and entry but did facilitate viral replication. In addition, we found that SFTSV NSs, a nonstructural protein that forms viroplasm-like structures in the cytoplasm of infected cells and promotes virulence by modulating the interferon response, induces a large number of cells to arrest at the G2/M transition by interacting with CDK1. The interaction between NSs and CDK1, which is inclusion body dependent, inhibits formation and nuclear import of the cyclin B1-CDK1 complex, thereby leading to cell cycle arrest. Expression of a CDK1 loss-of-function mutant reversed the inhibitive effect of NSs on the cell cycle, suggesting that this protein is a potential antiviral target. Our study provides new insight into the role of a specific viral protein in SFTSV replication, indicating that NSs induces G2/M arrest of SFTSV-infected cells, which promotes viral replication.IMPORTANCE Severe fever with thrombocytopenia syndrome virus (SFTSV) is a tick-borne pathogen that causes severe hemorrhagic fever. Although SFTSV poses a serious threat to public health and was recently isolated, its pathogenesis remains unclear. In particular, the relationship between SFTSV infection and the host cell cycle has not been described. Here, we show for the first time that both asynchronized and synchronized SFTSV-susceptible cells arrest at the G2/M checkpoint following SFTSV infection and that the accumulation of cells at this checkpoint facilitates viral replication. We also identify a key mechanism underlying SFTSV-induced G2/M arrest, in which SFTSV NSs interacts with CDK1 to inhibit formation and nuclear import of the cyclin B1-CDK1 complex, thus preventing it from regulating cell cycle progression. Our study highlights the key role that NSs plays in SFTSV-induced G2/M arrest.


Subject(s)
Bunyaviridae Infections/metabolism , CDC2 Protein Kinase/metabolism , G2 Phase Cell Cycle Checkpoints , Phlebovirus/physiology , Viral Nonstructural Proteins/metabolism , Virus Replication , Bunyaviridae Infections/genetics , Bunyaviridae Infections/pathology , CDC2 Protein Kinase/genetics , Cyclin B1/genetics , Cyclin B1/metabolism , HEK293 Cells , HeLa Cells , Hep G2 Cells , Humans , Viral Nonstructural Proteins/genetics
18.
FASEB J ; 34(9): 12599-12614, 2020 09.
Article in English | MEDLINE | ID: mdl-32706145

ABSTRACT

Renal tubulointerstitial fibrosis (TIF) is a common pathological feature of aristolochic acid (AA) nephropathy (AAN). G2/M arrest of proximal tubular cells (PTCs) is implicated in renal fibrosis of AAN, but the upstream regulatory molecule remains unknown. Hypoxia inducible factor-1α (HIF-1α) promotes renal fibrosis in kidney disease, but the role of HIF-1α in AAN is unclear. Evidence shows that HIF-1α and p21, a known inducer of cellular G2/M arrest, are closely related to each other. To investigate the role of HIF-1α in renal fibrosis of AAN and its effects on p21 expression and PTCs G2/M arrest, mice with HIF-1α gene knockout PTCs (PT-HIF-1α-KO) were generated, and AAN was induced by AA. In vitro tests were conducted on the human PTCs line HK-2 and primary mouse PTCs. HIF-1α and p21 expression, fibrogenesis, and G2/M arrest of PTCs were determined. Results showed that HIF-1α was upregulated in the kidneys of wild-type (WT) AAN mice, accompanied by p21 upregulation, PTCs G2/M arrest and renal fibrosis, and these alterations were reversed in PT-HIF-1α-KO AAN mice. Similar results were observed in HK-2 cells and were further confirmed in primary PTCs from PT-HIF-1α-KO and WT mice. Inhibiting p21 in HK-2 cells and primary PTCs did not change the expression of HIF-1α, but G2/M arrest and fibrogenesis were reduced. These data indicate that HIF-1α plays a key role in renal fibrosis in AAN by inducing PTCs G2/M arrest modulated through p21. HIF-1α may serve as a potential therapeutic target for AAN.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p21/metabolism , Epithelial Cells/cytology , Hypoxia-Inducible Factor 1, alpha Subunit/physiology , Kidney Tubules, Proximal , Nephritis, Interstitial/metabolism , Animals , Aristolochic Acids , Cell Line , Fibrosis/chemically induced , G2 Phase Cell Cycle Checkpoints , Humans , Kidney Tubules, Proximal/cytology , Kidney Tubules, Proximal/pathology , Mice , Mice, Knockout
19.
Int J Mol Sci ; 22(20)2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34681878

ABSTRACT

Titanium (IV)-dithiophenolate complex chitosan nanocomposites (DBT-CSNPs) are featured by their antibacterial activities, cytotoxicity, and capacity to bind with DNA helixes. In this study, their therapeutic effects against rat liver damage induced by carbon tetrachloride (CCl4) and their anti-proliferative activity against human liver cancer (HepG2) cell lines were determined. Results of treatment were compared with cisplatin treatment. Markers of apoptosis, oxidative stress, liver functions, and liver histopathology were determined. The results showed that DBT-CSNPs and DBT treatments abolished liver damage induced by CCl4 and improved liver architecture and functions. DNA fragmentation, Bax, and caspase-8 were reduced, but Bcl-2 and the Bcl-2/Bax ratios were increased. However, there was a non-significant change in the oxidative stress markers. DBT-CSNPs and DBT inhibited the proliferation of HepG2 cells by arresting cells in the G2/M phase and inducing cell death. DBT-CSNPs were more efficient than DBT. Low doses of DBT and DBT-CSNPs applied to healthy rats for 14 days had no adverse effect. DBT and DBT-CSNP treatment gave preferable results than the treatment with cisplatin. In conclusion, DBT-CSNPs and DBT have anti-apoptotic activities against liver injuries and have anti-neoplastic impacts. DBT-CSNPs are more efficient. Both compounds can be used in pharmacological fields.


Subject(s)
Antineoplastic Agents/administration & dosage , Carcinoma, Hepatocellular/drug therapy , Chemical and Drug Induced Liver Injury/drug therapy , Chitosan/chemistry , Nanocomposites/administration & dosage , Phenols/chemistry , Sulfhydryl Compounds/chemistry , Titanium/chemistry , Animals , Antineoplastic Agents/chemistry , Apoptosis , Carbon Tetrachloride/toxicity , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Hep G2 Cells , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Male , Nanocomposites/chemistry , Oxidative Stress , Rats , Rats, Sprague-Dawley
20.
Molecules ; 26(15)2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34361649

ABSTRACT

Hispolon, a polyphenol compound isolated from Phellinus linteus, has been reported to exhibit antioxidant, antiproliferative, and antitumor activities. This study aimed to explore the antitumor effects of hispolon on glioblastoma multiforme (GBM) cells in vitro and in vivo. The results revealed that hispolon significantly inhibited GBM cell proliferation and induced apoptosis through caspase-9 and caspase-3 activation and PARP cleavage. Hispolon also induced cell cycle G2/M phase arrest in GBM cells, as supported by flow cytometry analysis and confirmed by a decrease in cyclin B1, cdc2, and cdc25c protein expressions in a dose- and time-dependent manner. Furthermore, hispolon suppressed the migration and invasion of GBM cells by modulating epithelial-mesenchymal transition (EMT) markers via wound healing, transwell assays, and real-time PCR. Moreover, hispolon significantly reduced tumor growth in DBTRG xenograft mice and activated caspase-3 in hispolon-treated tumors. Thus, our findings revealed that hispolon is a potential candidate for the treatment of GBM.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Catechols/pharmacology , Cell Movement/drug effects , Cell Proliferation/drug effects , Glioblastoma/drug therapy , Animals , Basidiomycota/metabolism , Cell Line, Tumor , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Rats
SELECTION OF CITATIONS
SEARCH DETAIL