Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.301
Filter
Add more filters

Publication year range
1.
J Biol Chem ; : 107557, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39002668

ABSTRACT

Glycosylphosphatidylinositol (GPI) anchor protein modification in Plasmodium species is well known and represents the principal form of glycosylation in these organisms. The structure and biosynthesis of GPI anchors of Plasmodium spp. has been primarily studied in the asexual blood stage of P. falciparum and is known to contain the typical conserved GPI structure of EtN-P-Man3GlcN-PI. Here, we have investigated the circumsporozoite protein (CSP) for the presence of a GPI-anchor. CSP is the major surface protein of Plasmodium sporozoites, the infective stage of the malaria parasite. While it is widely assumed that CSP is a GPI-anchored cell surface protein, compelling biochemical evidence for this supposition is absent. Here, we employed metabolic labeling and mass-spectrometry based approaches to confirm the presence of a GPI anchor in CSP. Biosynthetic radiolabeling of CSP with [3H]-palmitic acid and [3H]-ethanolamine, with the former being base-labile and therefore ester-linked, provided strong evidence for the presence of a GPI anchor on CSP, but these data alone were not definitive. To provide further evidence, immunoprecipitated CSP was analyzed for presence of myo-inositol (a characteristic component of GPI anchor) using strong acid hydrolysis and GC-MS for a highly sensitive and quantitative detection. The single ion monitoring (SIM) method for GC-MS analysis confirmed the presence of the myo-inositol component in CSP. Taken together, these data provide confidence that the long-assumed presence of a GPI anchor on this important parasite protein is correct.

2.
J Proteome Res ; 23(7): 2552-2560, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38864484

ABSTRACT

Detection of exhaled volatile organic compounds (VOCs) is promising for noninvasive screening of esophageal cancer (EC). Cellular VOC analysis can be used to investigate potential biomarkers. Considering the crucial role of methionine (Met) during cancer development, exploring associated abnormal metabolic phenotypes becomes imperative. In this work, we employed headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) to investigate the volatile metabolic profiles of EC cells (KYSE150) and normal esophageal epithelial cells (HEECs) under a Met regulation strategy. Using untargeted approaches, we analyzed the metabolic VOCs of the two cell types and explored the differential VOCs between them. Subsequently, we utilized targeted approaches to analyze the differential VOCs in both cell types under gradient Met culture conditions. The results revealed that there were five/six differential VOCs between cells under Met-containing/Met-free culture conditions. And the difference in levels of two characteristic VOCs (1-butanol and ethyl 2-methylbutyrate) between the two cell types intensified with the increase of the Met concentration. Notably, this is the first report on VOC analysis of EC cells and the first to consider the effect of Met on volatile metabolic profiles. The present work indicates that EC cells can be distinguished through VOCs induced by Met regulation, which holds promise for providing novel insights into diagnostic strategies.


Subject(s)
Esophageal Neoplasms , Gas Chromatography-Mass Spectrometry , Methionine , Volatile Organic Compounds , Methionine/metabolism , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/pathology , Humans , Gas Chromatography-Mass Spectrometry/methods , Cell Line, Tumor , Solid Phase Microextraction , Epithelial Cells/metabolism , Epithelial Cells/drug effects
3.
Am Nat ; 203(4): 490-502, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38489779

ABSTRACT

AbstractGregarious species must distinguish group members from nongroup members. Olfaction is important for group recognition in social insects and mammals but rarely studied in birds, despite birds using olfaction in social contexts from species discrimination to kin recognition. Olfactory group recognition requires that groups have a signature odor, so we tested for preen oil and feather chemical similarity in group-living smooth-billed anis (Crotophaga ani). Physiology affects body chemistry, so we also tested for an effect of egg-laying competition, as a proxy for reproductive status, on female chemical similarity. Finally, the fermentation hypothesis for chemical recognition posits that host-associated microbes affect host odor, so we tested for covariation between chemicals and microbiota. Group members were more chemically similar across both body regions. We found no chemical differences between sexes, but females in groups with less egg-laying competition had more similar preen oil, suggesting that preen oil contains information about reproductive status. There was no overall covariation between chemicals and microbes; instead, subsets of microbes could mediate olfactory cues in birds. Preen oil and feather chemicals showed little overlap and may contain different information. This is the first demonstration of group chemical signatures in birds, a finding of particular interest given that smooth-billed anis live in nonkin breeding groups. Behavioral experiments are needed to test whether anis can distinguish group members from nongroup members using odor cues.


Subject(s)
Birds , Feathers , Animals , Female , Birds/physiology , Reproduction , Smell , Mammals
4.
Biochem Biophys Res Commun ; 729: 150356, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38986261

ABSTRACT

Analysis of pneumococcal polysaccharides (PnPs) has been an arduous task, especially in similar serotypes. Pneumococci invades the host immune response by modulating capsule structure with small genetic changes making them indistinguishable from similar serotypes by conventional modes of analysis. The new serotype 24F causing invasive pneumococcal-resistant infection is an analytical challenge for its analysis as related serotypes 24A and 24B Ps share a common backbone. The difference in the branched chain which contains arabinitol and ribitol in 24F and 24B respectively are stereoisomers making their identification even more challenging. The composition analysis by GC-MS revealed distinct peaks for arabinitol in 24F and 24A Ps and ribitol in Pn 24B serotype polysaccharide. The mass spectral analysis confirmed their identification along with a heterologous cross-reactivity which confirmed anti-Pn-24F mAb reactive to Pn 24B than Pn 24A. The quantitative analysis of pneumococcal 24A, 24B and 24F using GC-MS showed sensitive analysis over the concentration range 3.125-200 µg/mL with regression coefficient >0.99 making ideal modality for the characterization, identification, and quantitation of pneumococcal 24A, 24B and 24F similar serotypes.

5.
BMC Plant Biol ; 24(1): 595, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38914931

ABSTRACT

BACKGROUND: Monoterpenes are among the most important volatile aromatic compounds contributing to the flavor and aroma of grapes and wine. However, the molecular basis of monoterpene biosynthesis has not yet been fully elucidated. RESULTS: In our study, transcriptomics and gas chromatography-mass spectrometry (GC-MS) were used to mine candidate genes and transcription factors involved in monoterpene biosynthesis between high-monoterpene and zero-monoterpene table grape cultivars. We found that monoterpene biosynthesis was positively correlated by the expression of five genes encoding 1-deoxy-D-xylulose-5-phosphate synthase (VvDXSs), one encoding 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (VvHDR), three hydroxy-3-methylglutaryl-CoA synthases (VvHMGSs) and one mevalonate kinase (VvMVK), whereas the expression of one isopentenyl diphosphate isomerase (VvIDI) and one 3-hydroxy-3-methylglutaryl-CoA reductase (VvHMGR) negatively correlated monoterpene biosynthesis. Of these genes, VvIDI was selected to validate its function in monoterpene accumulation through a transient overexpression experiment, and was shown to inhibit the biosynthesis of grape linalool and α-terpineol. Meanwhile, we found that a 64-amino acid extension sequence at the N-terminus can guide the VvIDI protein to target the chloroplast. CONCLUSIONS: The findings of this study should help to guide future functional analysis of key genes as well as mining the potential regulatory mechanism of monoterpene biosynthesis in grapes and grape products.


Subject(s)
Carbon-Carbon Double Bond Isomerases , Monoterpenes , Vitis , Vitis/genetics , Vitis/enzymology , Vitis/metabolism , Monoterpenes/metabolism , Carbon-Carbon Double Bond Isomerases/metabolism , Carbon-Carbon Double Bond Isomerases/genetics , Transcriptome , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Gas Chromatography-Mass Spectrometry , Odorants , Hemiterpenes
6.
BMC Plant Biol ; 24(1): 519, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851682

ABSTRACT

Rice seeds of different varieties exhibited distinct metabolic profiles in our study. We analyzed the metabolites in seeds of six rice varieties (CH, HM, NX, YX, HY, and MX) using non-targeted GC-MS. Our findings revealed that amino acids, sugars, and organic acids were predominant in all varieties, with significant differences observed in CH compared to the others. Specifically phenylalanine and glycine content differed notably in NX and YX, respectively. Additionally, 1,5-anhydroglucitol content in NX, and glutamate, aspartate, and lactulose in NX, YX, HM, HY, and MX were up-regulated. Due to the biological functions of these amino acids and sugars, these indicated that compared to CH, rice of NX were more conducive to metabolism of carbohydrate and fat, and healthy growth maintenance in the human body, but mightThese variations suggest that NX rice may be more beneficial for carbohydrate and fat metabolism and overall health maintenance compared to CH. However, it may not be suitable for diabetic patients. YX rice may not be an ideal glycine supplement, rice ofwhile HM, HY, and MX rice could serve as potential lactulose sources. Furthermore, NX and YX rice exhibited higher levels of main storage proteins compared to CH. This study offers valuable insights into the metabolic differences among various rice varieties.


Subject(s)
Gas Chromatography-Mass Spectrometry , Metabolomics , Oryza , Seeds , Oryza/metabolism , Seeds/metabolism , Seeds/chemistry , Metabolomics/methods , Amino Acids/metabolism , Amino Acids/analysis , Metabolome
7.
Chembiochem ; 25(1): e202300593, 2024 01 02.
Article in English | MEDLINE | ID: mdl-37934005

ABSTRACT

Researchers have established that (+)-7-iso-jasmonic acid ((+)-7-iso-JA) is an intermediate in the production of cis-jasmone (CJ); however, the biosynthetic pathway of CJ has not been fully described. Previous reports stated that CJ, a substructure of pyrethrin II produced by pyrethrum (Tanacetum cinerariifolium), is not biosynthesized through this biosynthetic pathway. To clarify the ambiguity, stable isotope-labelled jasmonates were synthesized, and compounds were applied to apple mint (Mentha suaveolens) via air propagation. The results showed that cis-jasmone is not generated from intermediate (+)-7-iso-JA, and (+)-7-iso-JA is not produced from 3,7-dideydro-JA (3,7-ddh-JA); however, 3,7-didehydro-JA and 4,5-didehydro-7-iso-JA were converted into CJ and JA, respectively.


Subject(s)
Biosynthetic Pathways , Chrysanthemum cinerariifolium , Oxylipins/chemistry , Chrysanthemum cinerariifolium/metabolism , Cyclopentanes/chemistry
8.
Planta ; 259(6): 152, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38735012

ABSTRACT

MAIN CONCLUSION: Overexpression of Artemisia annua jasmonic acid carboxyl methyltransferase (AaJMT) leads to enhanced artemisinin content in Artemisia annua. Artemisinin-based combination therapies remain the sole deterrent against deadly disease malaria and Artemisia annua remains the only natural producer of artemisinin. In this study, the 1101 bp gene S-adenosyl-L-methionine (SAM): Artemisia annua jasmonic acid carboxyl methyltransferase (AaJMT), was characterised from A. annua, which converts jasmonic acid (JA) to methyl jasmonate (MeJA). From phylogenetic analysis, we confirmed that AaJMT shares a common ancestor with Arabidopsis thaliana, Eutrema japonica and has a close homology with JMT of Camellia sinensis. Further, the Clustal Omega depicted that the conserved motif I, motif III and motif SSSS (serine) required to bind SAM and JA, respectively, are present in AaJMT. The relative expression of AaJMT was induced by wounding, MeJA and salicylic acid (SA) treatments. Additionally, we found that the recombinant AaJMT protein catalyses the synthesis of MeJA from JA with a Km value of 37.16 µM. Moreover, site-directed mutagenesis of serine-151 in motif SSSS to tyrosine, asparagine-10 to threonine and glutamine-25 to histidine abolished the enzyme activity of AaJMT, thus indicating their determining role in JA substrate binding. The GC-MS analysis validated that mutant proteins of AaJMT were unable to convert JA into MeJA. Finally, the artemisinin biosynthetic and trichome developmental genes were upregulated in AaJMT overexpression transgenic lines, which in turn increased the artemisinin content.


Subject(s)
Acetates , Artemisia annua , Artemisinins , Cyclopentanes , Methyltransferases , Oxylipins , Phylogeny , Artemisia annua/genetics , Artemisia annua/enzymology , Artemisia annua/metabolism , Cyclopentanes/metabolism , Cyclopentanes/pharmacology , Artemisinins/metabolism , Oxylipins/metabolism , Oxylipins/pharmacology , Methyltransferases/metabolism , Methyltransferases/genetics , Acetates/pharmacology , Acetates/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Gene Expression Regulation, Plant , Salicylic Acid/metabolism
9.
BMC Microbiol ; 24(1): 210, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877404

ABSTRACT

Efficiently mitigating and managing environmental pollution caused by the improper disposal of dyes and effluents from the textile industry is of great importance. This study evaluated the effectiveness of Streptomyces albidoflavus 3MGH in decolorizing and degrading three different azo dyes, namely Reactive Orange 122 (RO 122), Direct Blue 15 (DB 15), and Direct Black 38 (DB 38). Various analytical techniques, such as Fourier Transform Infrared (FTIR) spectroscopy, High-Performance Liquid Chromatography (HPLC), and Gas Chromatography-Mass Spectrometry (GC-MS) were used to analyze the degraded byproducts of the dyes. S. albidoflavus 3MGH demonstrated a strong capability to decolorize RO 122, DB 15, and DB 38, achieving up to 60.74%, 61.38%, and 53.43% decolorization within 5 days at a concentration of 0.3 g/L, respectively. The optimal conditions for the maximum decolorization of these azo dyes were found to be a temperature of 35 °C, a pH of 6, sucrose as a carbon source, and beef extract as a nitrogen source. Additionally, after optimization of the decolorization process, treatment with S. albidoflavus 3MGH resulted in significant reductions of 94.4%, 86.3%, and 68.2% in the total organic carbon of RO 122, DB 15, and DB 38, respectively. After the treatment process, we found the specific activity of the laccase enzyme, one of the mediating enzymes of the degradation mechanism, to be 5.96 U/mg. FT-IR spectroscopy analysis of the degraded metabolites showed specific changes and shifts in peaks compared to the control samples. GC-MS analysis revealed the presence of metabolites such as benzene, biphenyl, and naphthalene derivatives. Overall, this study demonstrated the potential of S. albidoflavus 3MGH for the effective decolorization and degradation of different azo dyes. The findings were validated through various analytical techniques, shedding light on the biodegradation mechanism employed by this strain.


Subject(s)
Azo Compounds , Biodegradation, Environmental , Coloring Agents , Streptomyces , Streptomyces/metabolism , Azo Compounds/metabolism , Azo Compounds/chemistry , Coloring Agents/metabolism , Coloring Agents/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Textiles , Gas Chromatography-Mass Spectrometry , Hydrogen-Ion Concentration , Temperature , Textile Industry , Water Pollutants, Chemical/metabolism , Chromatography, High Pressure Liquid , Carbon/metabolism
10.
Plant Cell Environ ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38965879

ABSTRACT

Thrips, Frankliniella intonsa, is a highly polyphagous pest with a worldwide distribution. F. intonsa-infested sunflower seeds show marked visual damage. The study findings revealed that significantly more F. intonsa infested confection sunflower compared to oilseed sunflower, via olfactometer bioassay studies, we found that compared with the flower and pollen of oilseed sunflowers, those of confection sunflowers attract F. intonsa. Considering this discrepancy in the preference of F. intonsa on oilseed and confection sunflowers, the volatiles of the flower and pollens of two sunflowers were analysed by gas chromatography-mass spectroscopy. The behavioural responses of F. intonsa were assessed for these compounds using Y-tube bioassays. Geranyl bromide, a unique volatile component of oilseed sunflowers, induced an assertive approach-avoidance behaviour in F. intonsa, whereas the unique component ethyl isovalerate in confection sunflowers attracted F. intonsa. F. intonsa adults demonstrated significant attraction to the blends of confection sunflowers. Furthermore, field verification revealed that intercropping confection and oilseed sunflowers could effectively control F. intonsa. The study provided insights into the chemical cues used by F. intonsa in locating hosts. Therefore, oilseed sunflowers can be used as repellent plants to prevent F. intonsa invasion.

11.
Metabolomics ; 20(4): 78, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014031

ABSTRACT

INTRODUCTION: Amid the global health crisis, HIV/TB co-infection presents significant challenges, amplifying the burden on patients and healthcare systems alike. Metabolomics offers an innovative window into the metabolic disruptions caused by co-infection, potentially improving diagnosis and treatment monitoring. AIM: This study uses untargeted metabolomics to investigate the urinary metabolic signature of HIV/TB co-infection, enhancing understanding of the metabolic interplay between these infections. METHODS: Urine samples from South African adults, categorised into four groups - healthy controls, TB-positive, HIV-positive, and HIV/TB co-infected - were analysed using GCxGC-TOFMS. Metabolites showing significant differences among groups were identified through Kruskal-Wallis and Wilcoxon rank sum tests. RESULTS: Various metabolites (n = 23) were modulated across the spectrum of health and disease states represented in the cohorts. The metabolomic profiles reflect a pronounced disruption in biochemical pathways involved in energy production, amino acid metabolism, gut microbiome, and the immune response, suggesting a bidirectional exacerbation between HIV and TB. While both diseases independently perturb the host's metabolism, their co-infection leads to a unique metabolic phenotype, indicative of an intricate interplay rather than a simple additive effect. CONCLUSION: Metabolic profiling revealed a unique metabolic landscape shaped by HIV/TB co-infection. The findings highlight the potential of urinary differential metabolites for co-infection, offering a non-invasive tool for enhancing diagnostic precision and tailoring therapeutic interventions. Future research should focus on expanding sample sizes and integrating longitudinal analyses to build upon these foundational insights, paving the way for metabolomic applications in combating these concurrent pandemics.


Subject(s)
Coinfection , HIV Infections , Metabolomics , Tuberculosis , Humans , HIV Infections/complications , HIV Infections/metabolism , HIV Infections/urine , Metabolomics/methods , Coinfection/metabolism , Adult , Male , Tuberculosis/metabolism , Tuberculosis/urine , Female , Middle Aged , Metabolome , Biomarkers/urine
12.
Metabolomics ; 20(3): 47, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38642214

ABSTRACT

OBJECTIVES: Although colorectal cancer (CRC) is the leading cause of cancer-related morbidity and mortality, current diagnostic tests for early-stage CRC and colorectal adenoma (CRA) are suboptimal. Therefore, there is an urgent need to explore less invasive screening procedures for CRC and CRA diagnosis. METHODS: Untargeted gas chromatography-mass spectrometry (GC-MS) metabolic profiling approach was applied to identify candidate metabolites. We performed metabolomics profiling on plasma samples from 412 subjects including 200 CRC patients, 160 CRA patients and 52 normal controls (NC). Among these patients, 45 CRC patients, 152 CRA patients and 50 normal controls had their fecal samples tested simultaneously. RESULTS: Differential metabolites were screened in the adenoma-carcinoma sequence. Three diagnostic models were further developed to identify cancer group, cancer stage, and cancer microsatellite status using those significant metabolites. The three-metabolite-only classifiers used to distinguish the cancer group always keeps the area under the receiver operating characteristic curve (AUC) greater than 0.7. The AUC performance of the classifiers applied to discriminate CRC stage is generally greater than 0.8, and the classifiers used to distinguish microsatellite status of CRC is greater than 0.9. CONCLUSION: This finding highlights potential early-driver metabolites in CRA and early-stage CRC. We also find potential metabolic markers for discriminating the microsatellite state of CRC. Our study and diagnostic model have potential applications for non-invasive CRC and CRA detection.


Subject(s)
Adenoma , Colorectal Neoplasms , Humans , Metabolomics/methods , Biomarkers, Tumor , Colorectal Neoplasms/metabolism , ROC Curve , Adenoma/diagnosis , Adenoma/metabolism , Adenoma/pathology
13.
Microb Pathog ; 192: 106707, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38777241

ABSTRACT

Bacterial wilt of tomato caused by Ralstonia solanacearum is a critical soilborne disease that drastically reduces yield. In the current study, an endophytic strain NEAU-CP5 with strong antagonistic activity against R. solanacearum was isolated from tomato seeds and characterized. The strain was identified as Bacillus velezensis based on 16S rRNA gene and whole genome sequence analysis. NEAU-CP5 can secrete amylase, protease, and cellulase, and also produce known antibacterial metabolites, including cyclo (leucylprolyl), cyclo (phenylalanyl-prolyl), cyclo (Pro-Gly), 3-benzyl-2,5-piperazinedione, pentadecanoic acid, eicosane, 2-methyoic acid, isovaleric acid, dibuty phthalate, and esters of fatty acids (HFDU), which may be responsible for its strong antibacterial activity. Fourteen gene clusters associated with antibacterial properties were also identified in the whole genome sequence of NEAU-CP5. Pot experiment demonstrated that the application of 108 CFU/mL NEAU-CP5 on tomato plants significantly reduced the incidence of tomato bacterial wilt by 68.36 ± 1.67 %. NEAU-CP5 also increased the activity of defense-related enzymes (CAT, POD, PPO, SOD, and PAL) in tomato plants. This is the first report of an effective control of bacterial wilt on tomato plants by B. velezensis and highlights the potential of NEAU-CP5 as a potential biocontrol agent for the management of tomato bacterial wilt.


Subject(s)
Bacillus , Phylogeny , Plant Diseases , RNA, Ribosomal, 16S , Ralstonia solanacearum , Seeds , Solanum lycopersicum , Solanum lycopersicum/microbiology , Plant Diseases/microbiology , Ralstonia solanacearum/genetics , Bacillus/isolation & purification , Bacillus/genetics , Bacillus/metabolism , Bacillus/classification , Seeds/microbiology , RNA, Ribosomal, 16S/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Endophytes/isolation & purification , Endophytes/genetics , Endophytes/metabolism , Genome, Bacterial , Whole Genome Sequencing , Antibiosis , Multigene Family , Amylases/metabolism , Amylases/genetics , DNA, Bacterial/genetics
14.
Glob Chang Biol ; 30(2): e17175, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38337156

ABSTRACT

The increasing concentration of CO2 in the atmosphere is perturbing the global carbon (C) cycle, altering stocks of organic C, including soil organic matter (SOM). The effect of this disturbance on soils in arid ecosystems may differ from other ecosystems due to water limitation. In this study, we conducted a density fractionation on soils previously harvested from the Nevada Desert FACE Facility (NDFF) to understand how elevated atmospheric CO2 (eCO2 ) affects SOM stability. Soils from beneath the perennial shrub, Larrea tridentata, and from unvegetated interspace were subjected to a sodium polytungstate density fractionation to separate light, particulate organic matter (POM, <1.85 g/cm3 ) from heavier, mineral associated organic matter (MAOM, >1.85 g/cm3 ). These fractions were analyzed for organic C, total N, δ13 C and δ15 N, to understand the mechanisms behind changes. The heavy fraction was further analyzed by pyrolysis GC/MS to assess changes in organic compound composition. Elevated CO2 decreased POM-C and MAOM-C in soils beneath L. tridentata while interspace soils exhibited only a small increase in MAOM-N. Analysis of δ13 C revealed incorporation of new C into both POM and MAOM pools indicating eCO2 stimulated rapid turnover of both POM and MAOM. The largest losses of POM-C and MAOM-C observed under eCO2 occurred in soils 20-40 cm in depth, highlighting that belowground C inputs may be a significant driver of SOM decomposition in this ecosystem. Pyrolysis GC/MS analysis revealed a decrease in organic compound diversity in the MAOM fraction of L. tridentata soils, becoming more similar to interspace soils under eCO2 . These results provide further evidence that MAOM stability may be compromised under disturbance and that SOC stocks in arid ecosystems are vulnerable under continued climate change.


Subject(s)
Carbon , Ecosystem , Carbon/metabolism , Carbon Dioxide/metabolism , Soil , Minerals , Organic Chemicals/metabolism
15.
Chemistry ; 30(27): e202400272, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38445549

ABSTRACT

Springtails use unique compounds for their outermost epicuticular wax layer, often of terpenoid origin. We report here the structure and synthesis of socialane, the major cuticular constituent of the Collembola Hypogastrura socialis. Socialane is also the first regular nonaprenyl terpene with a cyclic head group. The saturated side chain has seven stereogenic centers, making the determination of the configuration difficult. We describe here the identification of socialane and a synthetic approach using the building blocks farnesol and phytol, enantioselective hydrogenation, and α-alkylation of sulfones for the synthesis of various stereoisomers. NMR experiments showed the presence of an anti-configuration of the methyl groups closest to the benzene ring and that the other methyl groups of the polyprenyl side-chain are not uniformly configured. Furthermore, socialane is structurally different from [6+2]-terpene viaticene of the closely related H. viatica, showing species specificity of the epicuticular lipids of this genus and hinting at a possible role of surface lipids in the communication of these gregarious arthropods.


Subject(s)
Arthropods , Terpenes , Animals , Stereoisomerism , Terpenes/chemistry , Arthropods/chemistry , Lipids/chemistry , Farnesol/chemistry , Farnesol/analogs & derivatives , Phytol/chemistry , Magnetic Resonance Spectroscopy , Hydrogenation
16.
Chem Senses ; 492024 01 01.
Article in English | MEDLINE | ID: mdl-38319120

ABSTRACT

Chemical information in canid urine has been implicated in territoriality and influences the spacing of individuals. We identified the key volatile organic compound (VOC) components in dingo (Canis lupus dingo) urine and investigated the potential role of scents in territorial spacing. VOC analysis, using headspace gas chromatography-mass spectrometry (GC-MS), demonstrated that the information in fresh urine from adult male dingoes was sufficient to allow statistical classification into age categories. Discriminant function analyses demonstrated that the relative amounts or combinations of key VOCs from pre-prime (3-4 years), prime (5-9 years), and post-prime (≥10 years) males varied between these age categories, and that scents exposed to the environment for 4 (but not 33) days could still be classified to age categories. Further, a field experiment showed that dingoes spent less time in the vicinity of prime male dingo scents than other scents. Collectively, these results indicate that age-related scent differences may be discriminable by dingoes. Previous authors have suggested the potential to use scent as a management tool for wild canids by creating an artificial territorial boundary/barrier. Our results suggest that identifying the specific signals in prime-age male scents could facilitate the development of scent-based tools for non-lethal management.


Subject(s)
Odorants , Volatile Organic Compounds , Humans , Male , Infant, Newborn , Odorants/analysis , Volatile Organic Compounds/chemistry , Pheromones , Gas Chromatography-Mass Spectrometry
17.
Chem Senses ; 492024 01 01.
Article in English | MEDLINE | ID: mdl-38175732

ABSTRACT

Although studies have shown that olfaction may contribute to the perception of tastant, literature is scarce or circumstantial, especially in humans. This study aims to (i) explore whether humans can perceive solutions of basic prototypical tastants through orthonasal and retronasal olfaction and (ii) to examine what volatile odor compounds (VOCs) underlie this ability. Solutions of 5 basic tastants (sucrose, sodium chloride, citric acid, monosodium glutamate [MSG], quinine) dissolved in water, and 2 fatty acids (oleic and linoleic acid) dissolved in mineral oil were prepared. Triangle discrimination tests were performed (n = 41 in duplicate) to assess whether the tastant solutions can be distinguished from blanks (solvents) through ortho- and retronasal olfaction. Participants were able to distinguish all tastant solutions from blank through orthonasal olfaction. Only sucrose, sodium chloride, oleic acid, and linoleic acid were distinguished from blank by retronasal olfaction. Ethyl dichloroacetate, methylene chloride, and/or acetone were identified in the headspace of sucrose, MSG, and quinine solutions but not in the headspace of water, sodium chloride, and citric acid solutions. Fat oxidation compounds such as alcohols and aldehydes were detected in the headspace of the oleic and linoleic acid solutions but not the mineral oil. We conclude that prototypical tastant solutions can be discriminated from water and fatty acid solutions from mineral oil through orthonasal olfaction. Differences in the volatile headspace composition between blanks and tastant solutions may have facilitated the olfactory discrimination. These findings can have methodological implications for future studies assessing gustatory perception using these prototypical taste compounds.


Subject(s)
Smell , Sodium Chloride , Humans , Sodium Glutamate , Quinine , Mineral Oil , Taste , Water , Sucrose , Citric Acid/pharmacology , Linoleic Acids
18.
Anal Biochem ; 694: 115620, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39029642

ABSTRACT

GC-MS/MS combines the superior chromatographic resolution of GC with the specific and sensitive detection of tandem MS. On paper, it is an ideal system for the routine analyses of organic acids, yet very few studies have used and published such methods. This is likely due to several challenges highlighted in this communication. Briefly, the combination of EI ionization with MRM detection provides arguably insufficient specificity when targeting organic acids. Moreover, the narrow peaks generally produced by GC can lead to inaccurate quantification when the mass spectrometer's cycle time is too long. Potential solutions to these problems are discussed.

19.
Amino Acids ; 56(1): 21, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38461423

ABSTRACT

Metformin (N,N-dimethylbiguanide), an inhibitor of gluconeogenesis and insulin sensitizer, is widely used for the treatment of type 2 diabetes. In some patients with renal insufficiency, metformin can accumulate and cause lactic acidosis, known as metformin-associated lactic acidosis (MALA, defined as lactate ≥ 5 mM, pH < 7.35, and metformin concentration > 38.7 µM). Here, we report on the post-translational modification (PTM) of proline (Pro) to 4-hydroxyproline (OH-Pro) in metformin-associated lactic acidosis and in metformin-treated patients with Becker muscular dystrophy (BMD). Pro and OH-Pro were measured simultaneously by gas chromatography-mass spectrometry before, during, and after renal replacement therapy in a patient admitted to the intensive care unit (ICU) because of MALA. At admission to the ICU, plasma metformin concentration was 175 µM, with a corresponding lactate concentration of 20 mM and a blood pH of 7.1. Throughout ICU admission, the Pro concentration was lower compared to healthy controls. Renal excretion of OH-Pro was initially high and decreased over time. Moreover, during the first 12 h of ICU admission, OH-Pro seems to be renally secreted while thereafter, it was reabsorbed. Our results suggest that MALA is associated with hyper-hydroxyprolinuria due to elevated PTM of Pro to OH-Pro by prolyl-hydroxylase and/or inhibition of OH-Pro metabolism in the kidneys. In BMD patients, metformin, at the therapeutic dose of 3 × 500 mg per day for 6 weeks, increased the urinary excretion of OH-Pro suggesting elevation of Pro hydroxylation to OH-Pro. Our study suggests that metformin induces specifically the expression/activity of prolyl-hydroxylase in metformin intoxication and BMD.


Subject(s)
Acidosis, Lactic , Diabetes Mellitus, Type 2 , Metformin , Muscular Dystrophy, Duchenne , Humans , Metformin/adverse effects , Diabetes Mellitus, Type 2/drug therapy , Acidosis, Lactic/chemically induced , Acidosis, Lactic/therapy , Hydroxyproline , Gas Chromatography-Mass Spectrometry , Proline , Hydroxylation , Muscular Dystrophy, Duchenne/drug therapy , Lactic Acid , Mixed Function Oxygenases/therapeutic use , Hypoglycemic Agents/adverse effects
20.
Arch Microbiol ; 206(3): 98, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38351169

ABSTRACT

Hydrocarbons are considered as one of the most common and harmful environmental pollutants affecting human health and the environment. Bioremediation as an environmentally friendly, highly efficient, and cost-effective method in remediating oil-contaminated environments has been interesting in recent decades. In this study, hydrocarbon degrader bacterial strains were isolated from the highly petroleum-contaminated soils in the Dehloran oil field in the west of Iran. Out of 37 isolates, 15 can grow on M9 agar medium that contains 1.5 g L-1 of crude oil as the sole carbon source. The morphological, biochemical, and 16SrRNA sequencing analyses were performed for the isolates. The choosing of the isolates as the hydrocarbon degrader was examined by evaluating the efficacy of their crude oil removal at a concentration of 10 g L-1 in an aqueous medium. The results showed that five isolates belonging to Pseudomonas sp., Pseudomonas oryzihabitans, Roseomonas aestuarii, Pantoea agglomerans, and Arthrobacter sp. had a hyper hydrocarbon-degrading activity and they could remove more than 85% of the total petroleum hydrocarbon (TPH) after 96 h. The highest TPH removal of about 95.75% and biodegradation rate of 0.0997 g L-1 h-1 was observed for P. agglomerans. The gas chromatography-mass spectroscopy (GC-MS) analysis was performed during the biodegradation process by P. agglomerans to detect the degradation intermediates and final products. The results confirmed the presence of intermediates such as alcohols and fatty acids in the terminal oxidation pathway of alkanes in this biodegradation process. A promising P. agglomerans NB391 strain can remove aliphatic and aromatic hydrocarbons simultaneously.


Subject(s)
Hydrocarbons, Aromatic , Pantoea , Petroleum , Soil Pollutants , Humans , Pantoea/genetics , Pantoea/metabolism , Petroleum/metabolism , Iran , Soil Pollutants/metabolism , Hydrocarbons/metabolism , Biodegradation, Environmental , Soil/chemistry , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL