Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 113
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Cell Sci ; 137(11)2024 06 01.
Article in English | MEDLINE | ID: mdl-38832798

ABSTRACT

Plasmodium sporozoites are the infective forms of the malaria parasite in the mosquito and vertebrate host. Gliding motility allows sporozoites to migrate and invade mosquito salivary glands and mammalian hosts. Motility and invasion are powered by an actin-myosin motor complex linked to the glideosome, which contains glideosome-associated proteins (GAPs), MyoA and the myosin A tail-interacting protein (MTIP). However, the role of several proteins involved in gliding motility remains unknown. We identified that the S14 gene is upregulated in sporozoite from transcriptome data of Plasmodium yoelii and further confirmed its transcription in P. berghei sporozoites using real-time PCR. C-terminal 3×HA-mCherry tagging revealed that S14 is expressed and localized on the inner membrane complex of the sporozoites. We disrupted S14 in P. berghei and demonstrated that it is essential for sporozoite gliding motility, and salivary gland and hepatocyte invasion. The gliding and invasion-deficient S14 knockout sporozoites showed normal expression and organization of inner membrane complex and surface proteins. Taken together, our data show that S14 plays a role in the function of the glideosome and is essential for malaria transmission.


Subject(s)
Malaria , Plasmodium berghei , Protozoan Proteins , Sporozoites , Sporozoites/metabolism , Plasmodium berghei/metabolism , Plasmodium berghei/genetics , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Animals , Mice , Malaria/parasitology , Salivary Glands/parasitology , Salivary Glands/metabolism , Anopheles/parasitology
2.
EMBO Rep ; 24(7): e57064, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37306042

ABSTRACT

Eukaryotic cell adhesion and migration rely on surface adhesins connecting extracellular ligands to the intracellular actin cytoskeleton. Plasmodium sporozoites are transmitted by mosquitoes and rely on adhesion and gliding motility to colonize the salivary glands and to reach the liver after transmission. During gliding, the essential sporozoite adhesin TRAP engages actin filaments in the cytoplasm of the parasite, while binding ligands on the substrate through its inserted (I) domain. Crystal structures of TRAP from different Plasmodium species reveal the I domain in closed and open conformations. Here, we probe the importance of these two conformational states by generating parasites expressing versions of TRAP with the I domain stabilized in either the open or closed state with disulfide bonds. Strikingly, both mutations impact sporozoite gliding, mosquito salivary gland entry, and transmission. Absence of gliding in sporozoites expressing the open TRAP I domain can be partially rescued by adding a reducing agent. This suggests that dynamic conformational change is required for ligand binding, gliding motility, and organ invasion and hence sporozoite transmission from mosquito to mammal.


Subject(s)
Culicidae , Plasmodium , Animals , Sporozoites/metabolism , Ligands , Plasmodium/metabolism , Liver/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Plasmodium berghei/genetics , Plasmodium berghei/metabolism , Mammals/metabolism
3.
J Bacteriol ; 206(4): e0006824, 2024 04 18.
Article in English | MEDLINE | ID: mdl-38517170

ABSTRACT

Flavobacterium columnare causes columnaris disease in fish. Columnaris disease is incompletely understood, and adequate control measures are lacking. The type IX secretion system (T9SS) is required for F. columnare gliding motility and virulence. The T9SS and gliding motility machineries share some, but not all, components. GldN (required for gliding and for secretion) and PorV (involved in secretion but not required for gliding) are both needed for virulence, implicating T9SS-mediated secretion in virulence. The role of motility in virulence is uncertain. We constructed and analyzed sprB, sprF, and gldJ mutants that were defective for motility but that maintained T9SS function to understand the role of motility in virulence. Wild-type cells moved rapidly and formed spreading colonies. In contrast, sprB and sprF deletion mutants were partially defective in gliding and formed nonspreading colonies. Both mutants exhibited reduced virulence in rainbow trout fry. A gldJ deletion mutant was nonmotile, secretion deficient, and avirulent in rainbow trout fry. To separate the roles of GldJ in secretion and in motility, we generated gldJ truncation mutants that produce nearly full-length GldJ. Mutant gldJ563, which produces GldJ truncated at amino acid 563, was defective for gliding but was competent for secretion as measured by extracellular proteolytic activity. This mutant displayed reduced virulence in rainbow trout fry, suggesting that motility contributes to virulence. Fish that survived exposure to the sprB deletion mutant or the gldJ563 mutant exhibited partial resistance to later challenge with wild-type cells. The results aid our understanding of columnaris disease and may suggest control strategies.IMPORTANCEFlavobacterium columnare causes columnaris disease in many species of freshwater fish in the wild and in aquaculture systems. Fish mortalities resulting from columnaris disease are a major problem for aquaculture. F. columnare virulence is incompletely understood, and control measures are inadequate. Gliding motility and protein secretion have been suggested to contribute to columnaris disease, but evidence directly linking motility to disease was lacking. We isolated and analyzed mutants that were competent for secretion but defective for motility. Some of these mutants exhibited decreased virulence. Fish that had been exposed to these mutants were partially protected from later exposure to the wild type. The results contribute to our understanding of columnaris disease and may aid development of control strategies.


Subject(s)
Bacterial Proteins , Fish Diseases , Animals , Bacterial Proteins/metabolism , Virulence , Molecular Motor Proteins/metabolism , Flavobacterium , Fish Diseases/microbiology
4.
EMBO Rep ; 23(7): e54719, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35403820

ABSTRACT

During transmission of malaria-causing parasites from mosquitoes to mammals, Plasmodium sporozoites migrate rapidly in the skin to search for a blood vessel. The high migratory speed and narrow passages taken by the parasites suggest considerable strain on the sporozoites to maintain their shape. Here, we show that the membrane-associated protein, concavin, is important for the maintenance of the Plasmodium sporozoite shape inside salivary glands of mosquitoes and during migration in the skin. Concavin-GFP localizes at the cytoplasmic periphery and concavin(-) sporozoites progressively round up upon entry of salivary glands. Rounded concavin(-) sporozoites fail to pass through the narrow salivary ducts and are rarely ejected by mosquitoes, while normally shaped concavin(-) sporozoites are transmitted. Strikingly, motile concavin(-) sporozoites disintegrate while migrating through the skin leading to parasite arrest or death and decreased transmission efficiency. Collectively, we suggest that concavin contributes to cell shape maintenance by riveting the plasma membrane to the subtending inner membrane complex. Interfering with cell shape maintenance pathways might hence provide a new strategy to prevent a malaria infection.


Subject(s)
Anopheles , Malaria , Parasites , Plasmodium , Animals , Anopheles/parasitology , Mammals , Sporozoites/metabolism
5.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Article in English | MEDLINE | ID: mdl-33723073

ABSTRACT

Motility is ubiquitous in prokaryotic organisms including the photosynthetic cyanobacteria where surface motility powered by type 4 pili (T4P) is common and facilitates phototaxis to seek out favorable light environments. In cyanobacteria, chemotaxis-like systems are known to regulate motility and phototaxis. The characterized phototaxis systems rely on methyl-accepting chemotaxis proteins containing bilin-binding GAF domains capable of directly sensing light, and the mechanism by which they regulate the T4P is largely undefined. In this study we demonstrate that cyanobacteria possess a second, GAF-independent, means of sensing light to regulate motility and provide insight into how a chemotaxis-like system regulates the T4P motors. A combination of genetic, cytological, and protein-protein interaction analyses, along with experiments using the proton ionophore carbonyl cyanide m-chlorophenyl hydrazine, indicate that the Hmp chemotaxis-like system of the model filamentous cyanobacterium Nostoc punctiforme is capable of sensing light indirectly, possibly via alterations in proton motive force, and modulates direct interaction between the cyanobacterial taxis protein HmpF, and Hfq, PilT1, and PilT2 to regulate the T4P motors. Given that the Hmp system is widely conserved in cyanobacteria, and the finding from this study that orthologs of HmpF and T4P proteins from the distantly related model unicellular cyanobacterium Synechocystis sp. strain PCC6803 interact in a similar manner to their N. punctiforme counterparts, it is likely that this represents a ubiquitous means of regulating motility in response to light in cyanobacteria.


Subject(s)
Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cyanobacteria/physiology , Cyanobacteria/radiation effects , Fimbriae, Bacterial/physiology , Light , Phototaxis , Gene Expression Regulation, Bacterial/radiation effects , Nostoc/physiology
6.
Mol Microbiol ; 117(6): 1324-1339, 2022 06.
Article in English | MEDLINE | ID: mdl-35301756

ABSTRACT

Plasmodium sporozoites are extracellular forms introduced during mosquito bite that selectively invade mammalian hepatocytes. Sporozoites are delimited by a cell membrane that is linked to the underlying acto-myosin molecular motor. While membrane proteins with roles in motility and invasion have been well studied, very little is known about proteins that maintain the sporozoite shape. We demonstrate that in Plasmodium berghei (Pb) a conserved hypothetical gene, PBANKA_1422900 specifies sporozoite structural integrity maintenance protein (SIMP) required for maintaining the sporozoite shape and motility. Sporozoites lacking SIMP exhibited loss of regular shape, extensive membrane blebbing at multiple foci, and membrane detachment. The mutant sporozoites failed to infect hepatocytes, though the altered shape did not affect the organization of cytoskeleton or inner membrane complex (IMC). Interestingly, the components of IMC failed to extend under the membrane blebs likely suggesting that SIMP may assist in anchoring the membrane to IMC. Endogenous C-terminal HA tagging localized SIMP to membrane and revealed the C-terminus of the protein to be extracellular. Since SIMP is highly conserved among Plasmodium species, these findings have important implications for utilizing it as a novel sporozoite-specific vaccine candidate.


Subject(s)
Protozoan Proteins , Sporozoites , Animals , Dipeptides , Hepatocytes/metabolism , Mammals/metabolism , Plasmodium berghei/genetics , Plasmodium berghei/metabolism , Protozoan Proteins/metabolism , Sporozoites/metabolism
7.
New Phytol ; 240(2): 770-783, 2023 10.
Article in English | MEDLINE | ID: mdl-37548082

ABSTRACT

Biofilm-forming benthic diatoms are key primary producers in coastal habitats, where they frequently dominate sunlit intertidal substrata. The development of gliding motility in raphid diatoms was a key molecular adaptation that contributed to their evolutionary success. However, the structure-function correlation between diatom adhesives utilized for gliding and their relationship to the extracellular matrix that constitutes the diatom biofilm is unknown. Here, we have used proteomics, immunolocalization, comparative genomics, phylogenetics and structural homology analysis to investigate the evolutionary history and function of diatom adhesive proteins. Our study identified eight proteins from the adhesive trails of Craspedostauros australis, of which four form a new protein family called Trailins that contain an enigmatic Choice-of-Anchor A (CAA) domain, which was acquired through horizontal gene transfer from bacteria. Notably, the CAA-domain shares a striking structural similarity with one of the most widespread domains found in ice-binding proteins (IPR021884). Our work offers new insights into the molecular basis for diatom biofilm formation, shedding light on the function and evolution of diatom adhesive proteins. This discovery suggests that there is a transition in the composition of biomolecules required for initial surface colonization and those utilized for 3D biofilm matrix formation.


Subject(s)
Diatoms , Diatoms/metabolism , Adhesives/metabolism , Gene Transfer, Horizontal , Biofilms , Bacteria
8.
Microbiol Immunol ; 67(9): 389-395, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37430383

ABSTRACT

This review describes the upstream-directed movement in the small parasitic bacterium Mycoplasma. Many Mycoplasma species exhibit gliding motility, a form of biological motion over surfaces without the aid of general surface appendages such as flagella. The gliding motility is characterized by a constant unidirectional movement without changes in direction or backward motion. Unlike flagellated bacteria, Mycoplasma lacks the general chemotactic signaling system to control their moving direction. Therefore, the physiological role of directionless travel in Mycoplasma gliding remains unclear. Recently, high-precision measurements under an optical microscope have revealed that three species of Mycoplasma exhibited rheotaxis, that is, the direction of gliding motility is lead upstream by the water flow. This intriguing response appears to be optimized for the flow patterns encountered at host surfaces. This review provides a comprehensive overview of the morphology, behavior, and habitat of Mycoplasma gliding, and discusses the possibility that the rheotaxis is ubiquitous among them.


Subject(s)
Mycoplasma , Mycoplasma/physiology , Movement
9.
Cell Mol Life Sci ; 79(2): 125, 2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35132495

ABSTRACT

Apicomplexan parasites, such as Plasmodium spp., rely on an unusual actomyosin motor, termed glideosome, for motility and host cell invasion. The actin filaments are maintained by a small set of essential regulators, which provide control over actin dynamics in the different stages of the parasite life cycle. Actin filament capping proteins (CPs) are indispensable heterodimeric regulators of actin dynamics. CPs have been extensively characterized in higher eukaryotes, but their role and functional mechanism in Apicomplexa remain enigmatic. Here, we present the first crystal structure of a homodimeric CP from the malaria parasite and compare the homo- and heterodimeric CP structures in detail. Despite retaining several characteristics of a canonical CP, the homodimeric Plasmodium berghei (Pb)CP exhibits crucial differences to the canonical heterodimers. Both homo- and heterodimeric PbCPs regulate actin dynamics in an atypical manner, facilitating rapid turnover of parasite actin, without affecting its critical concentration. Homo- and heterodimeric PbCPs show partially redundant activities, possibly to rescue actin filament capping in life cycle stages where the ß-subunit is downregulated. Our data suggest that the homodimeric PbCP also influences actin kinetics by recruiting lateral actin dimers. This unusual function could arise from the absence of a ß-subunit, as the asymmetric PbCP homodimer lacks structural elements essential for canonical barbed end interactions suggesting a novel CP binding mode. These findings will facilitate further studies aimed at elucidating the precise actin filament capping mechanism in Plasmodium.


Subject(s)
Actin Capping Proteins , Antigens, Protozoan , Malaria/parasitology , Plasmodium/metabolism , Protozoan Proteins , Actin Capping Proteins/chemistry , Actin Capping Proteins/metabolism , Antigens, Protozoan/chemistry , Antigens, Protozoan/metabolism , Kinetics , Models, Molecular , Protein Binding , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism
10.
Mol Microbiol ; 115(5): 916-929, 2021 05.
Article in English | MEDLINE | ID: mdl-33278047

ABSTRACT

Toxoplasma and other apicomplexan parasites undergo a unique form of cellular locomotion referred to as "gliding motility." Gliding motility is crucial for parasite survival as it powers tissue dissemination, host cell invasion and egress. Distinct environmental cues lead to activation of gliding motility and have become a prominent focus of recent investigation. Progress has been made toward understanding what environmental cues are sensed and how these signals are transduced in order to regulate the machinery and cellular events powering gliding motility. In this review, we will discuss new findings and integrate these into our current understanding to propose a model of how environmental sensing is achieved to regulate gliding motility in Toxoplasma. Collectively, these findings also have implications for the understanding of gliding motility across Apicomplexa more broadly.


Subject(s)
Toxoplasma/cytology , Toxoplasma/metabolism , Toxoplasmosis/parasitology , Animals , Cell Movement , Ecosystem , Humans , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Toxoplasma/genetics
11.
J Cell Sci ; 133(22)2020 11 30.
Article in English | MEDLINE | ID: mdl-33257498

ABSTRACT

The maintenance of intracellular processes, like organelle transport and cell division, depend on bidirectional movement along microtubules. These processes typically require kinesin and dynein motor proteins, which move with opposite directionality. Because both types of motors are often simultaneously bound to the cargo, regulatory mechanisms are required to ensure controlled directional transport. Recently, it has been shown that parameters like mechanical motor activation, ATP concentration and roadblocks on the microtubule surface differentially influence the activity of kinesin and dynein motors in distinct manners. However, how these parameters affect bidirectional transport systems has not been studied. Here, we investigate the regulatory influence of these three parameters using in vitro gliding motility assays and stochastic simulations. We find that the number of active kinesin and dynein motors determines the transport direction and velocity, but that variations in ATP concentration and roadblock density have no significant effect. Thus, factors influencing the force balance between opposite motors appear to be important, whereas the detailed stepping kinetics and bypassing capabilities of the motors only have a small effect.


Subject(s)
Cytoplasmic Dyneins , Kinesins , Adenosine Triphosphate , Dyneins/metabolism , Kinesins/genetics , Kinesins/metabolism , Microtubules/metabolism
12.
J Cell Sci ; 134(5)2020 04 15.
Article in English | MEDLINE | ID: mdl-32034083

ABSTRACT

During transmission of malaria-causing parasites from mosquito to mammal, Plasmodium sporozoites migrate at high speed within the skin to access the bloodstream and infect the liver. This unusual gliding motility is based on retrograde flow of membrane proteins and highly dynamic actin filaments that provide short tracks for a myosin motor. Using laser tweezers and parasite mutants, we previously suggested that actin filaments form macromolecular complexes with plasma membrane-spanning adhesins to generate force during migration. Mutations in the actin-binding region of profilin, a near ubiquitous actin-binding protein, revealed that loss of actin binding also correlates with loss of force production and motility. Here, we show that different mutations in profilin, that do not affect actin binding in vitro, still generate lower force during Plasmodium sporozoite migration. Lower force generation inversely correlates with increased retrograde flow suggesting that, like in mammalian cells, the slow down of flow to generate force is the key underlying principle governing Plasmodium gliding motility.


Subject(s)
Malaria , Parasites , Actins/genetics , Animals , Plasmodium berghei , Profilins/genetics , Protozoan Proteins/genetics
13.
Annu Rev Microbiol ; 71: 61-78, 2017 09 08.
Article in English | MEDLINE | ID: mdl-28525300

ABSTRACT

Rod-shaped Myxococcus xanthus cells are polarized with proteins asymmetrically localizing to specific positions. This spatial organization is important for regulation of motility and cell division and changes over time. Dedicated protein modules regulate motility independent of the cell cycle, and cell division dependent on the cell cycle. For motility, a leading-lagging cell polarity is established that is inverted during cellular reversals. Establishment and inversion of this polarity are regulated hierarchically by interfacing protein modules that sort polarized motility proteins to the correct cell poles or cause their relocation between cell poles during reversals akin to a spatial toggle switch. For division, a novel self-organizing protein module that incorporates a ParA ATPase positions the FtsZ-ring at midcell. This review covers recent findings concerning the spatiotemporal regulation of motility and cell division in M. xanthus and illustrates how the study of diverse bacteria may uncover novel mechanisms involved in regulating bacterial cell polarity.


Subject(s)
Cell Division , Cell Polarity , Gene Expression Regulation, Bacterial , Locomotion , Myxococcus xanthus/physiology , Bacterial Proteins/metabolism , Protein Transport , Spatio-Temporal Analysis
14.
Article in English | MEDLINE | ID: mdl-35699986

ABSTRACT

Three chitinolytic, Gram-negative, light pink, capsule-forming, rod-shaped bacterial strains with gliding motion (MYSH2T, MJ1aT and dk17T) were isolated from seashells, soil and foxtail, respectively. Phylogenetic analysis of the 16S rRNA gene sequences and concatenated alignment of 92 core genes indicated that strains MYSH2T, MJ1aT and dk17T were novel species of the genus Mucilaginibacter and exhibited a high 16S rRNA sequence similarity (i.e. more than 97.2 %) among each other. These novel strains contained summed feature 3 (C16:1 ω7c and/or C16:1 ω6), iso-C15:0 and MK-7 as the predominant fatty acids and menaquinone. According to the CAZys coding gene of KAAS, MYSH2T and MJ1aT were interpreted as strains containing both GH18 and 19 family coding genes, except for dk17T, which shows only GH19 family genes. These strains likely degrade chitin to chitobiose or directly to N-acetyl-d-glucosamine, which may enhance their chitinolytic capacity, thus making these stains potentially useful for industrial chitin degradation. Based on distinct morphological, physiological, chemotaxonomic and phylogenetic differences from their closest phylogenetic neighbours, we propose that strains MYSH2T, MJ1aT and dk17T represent three novel species in the genus Mucilaginibacter, for which the names Mucilaginibacter conchicola sp. nov. (=KACC 19716T=JCM 32787T), Mucilaginibacter achroorhodeus sp. nov. (=KACC 19906T=NBRC 113667T) and Mucilaginibacter pallidiroseus sp. nov. (=KACC 19907T=NBRC 113666T) are proposed. An emended description of the genus Mucilaginibacter is proposed.


Subject(s)
Fatty Acids , Soil Microbiology , Bacterial Typing Techniques , Bacteroidetes , Base Composition , Chitin , DNA, Bacterial/genetics , Fatty Acids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
15.
Proc Natl Acad Sci U S A ; 116(50): 25087-25096, 2019 12 10.
Article in English | MEDLINE | ID: mdl-31767758

ABSTRACT

The motility mechanism of certain prokaryotes has long been a mystery, since their motion, known as gliding, involves no external appendages. The physical principles behind gliding still remain poorly understood. Using myxobacteria as an example of such organisms, we identify here the physical principles behind gliding motility and develop a theoretical model that predicts a 2-regime behavior of the gliding speed as a function of the substrate stiffness. Our theory describes the elasto-capillary-hydrodynamic interactions between the membrane of the bacteria, the slime it secretes, and the soft substrate underneath. Defining gliding as the horizontal translation under zero net force, we find the 2-regime behavior is due to 2 distinct mechanisms of motility thrust. On mildly soft substrates, the thrust arises from bacterial shape deformations creating a flow of slime that exerts a pressure along the bacterial length. This pressure in conjunction with the bacterial shape provides the necessary thrust for propulsion. On very soft substrates, however, we show that capillary effects must be considered that lead to the formation of a ridge at the slime-substrate-air interface, thereby creating a thrust in the form of a localized pressure gradient at the bacterial leading edge. To test our theory, we perform experiments with isolated cells on agar substrates of varying stiffness and find the measured gliding speeds in good agreement with the predictions from our elasto-capillary-hydrodynamic model. The mechanisms reported here serve as an important step toward an accurate theory of friction and substrate-mediated interactions between bacteria proliferating in soft media.


Subject(s)
Bacterial Physiological Phenomena , Models, Biological , Movement/physiology , Biomechanical Phenomena/physiology , Friction , Hydrodynamics , Myxococcus xanthus/physiology
16.
Microsc Microanal ; : 1-7, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35105420

ABSTRACT

The members of the Bacteroidetes phylum move on surfaces by gliding motility in the absence of external motility appendages, leading to the formation of spreading colonies. Here, the structural features of the spreading colony were assessed in a uranium-tolerant Bacteroidetes bacterium, Chryseobacterium sp. strain PMSZPI, by using correlative light and scanning electron microscopy (CLSEM). We developed a simple and convenient workflow for CLSEM using a shuttle and find software module and a correlative sample holding slide designed to transport samples between the light/fluorescence microscope (LM/FM) and the scanning electron microscope (SEM) to image spreading colony edges. The datasets from the CLSEM studies allowed convenient examination of the colonial organization by LM/FM followed by ultrastructural analysis by SEM. The regions of interest (ROIs) of the spreading colony edges that were observed in LM/FM in the absence and presence of uranium could be re-identified in the SEM quickly without prolonged searching. Perfect correlation between LM and SEM could be achieved with minimum preparation steps. Subsequently, imaging of the correlated regions was done at higher resolution in SEM to obtain more comprehensive information. We further showed the association of uranium with the gliding PMSZPI cells by energy-dispersive X-ray spectroscopy (EDS) attached to SEM.

17.
J Bacteriol ; 203(13): e0012621, 2021 06 08.
Article in English | MEDLINE | ID: mdl-33875546

ABSTRACT

In bacteria, the nucleotide-based second messenger bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) binds to effectors to generate outputs in response to changes in the environment. In Myxococcus xanthus, c-di-GMP regulates type IV pilus-dependent motility and the starvation-induced developmental program that results in formation of spore-filled fruiting bodies; however, little is known about the effectors that bind c-di-GMP. Here, we systematically inactivated all 24 genes encoding PilZ domain-containing proteins, which are among the most common c-di-GMP effectors. We confirm that the stand-alone PilZ domain protein PlpA is important for regulation of motility independently of the Frz chemosensory system and that Pkn1, which is composed of a Ser/Thr kinase domain and a PilZ domain, is specifically important for development. Moreover, we identify two PilZ domain proteins that have distinct functions in regulating motility and development. PixB, which is composed of two PilZ domains and an acetyltransferase domain, binds c-di-GMP in vitro and regulates type IV pilus-dependent and gliding motility in a Frz-dependent manner as well as development. The acetyltransferase domain is required and sufficient for function during growth, while all three domains and c-di-GMP binding are essential for PixB function during development. PixA is a response regulator composed of a PilZ domain and a receiver domain, binds c-di-GMP in vitro, and regulates motility independently of the Frz system, likely by setting up the polarity of the two motility systems. Our results support a model whereby PlpA, PixA, and PixB act in independent pathways and have distinct functions in regulation of motility. IMPORTANCE c-di-GMP signaling controls bacterial motility in many bacterial species by binding to downstream effector proteins. Here, we identify two PilZ domain-containing proteins in Myxococcus xanthus that bind c-di-GMP. We show that PixB, which contains two PilZ domains and an acetyltransferase domain, acts in a manner that depends on the Frz chemosensory system to regulate motility via the acetyltransferase domain, while the intact protein and c-di-GMP binding are essential for PixB to support development. In contrast, PixA acts in a Frz-independent manner to regulate motility. Taking our results together with previous observations, we conclude that PilZ domain proteins and c-di-GMP act in multiple independent pathways to regulate motility and development in M. xanthus.


Subject(s)
Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Myxococcus xanthus/genetics , Myxococcus xanthus/metabolism , Protein Domains , Cyclic GMP/analogs & derivatives , Cyclic GMP/metabolism , Fimbriae, Bacterial/metabolism , Gene Expression Regulation, Bacterial , Protein Binding
18.
Mol Microbiol ; 114(4): 597-608, 2020 10.
Article in English | MEDLINE | ID: mdl-32614458

ABSTRACT

Cyanobacteria comprise a phylum defined by the capacity for oxygenic photosynthesis. Members of this phylum are frequently motile as well. Strains that display gliding or twitching motility across semisolid surfaces are powered by a conserved type IV pilus system (T4P). Among the filamentous, heterocyst-forming cyanobacteria, motility is usually confined to specialized filaments known as hormogonia, and requires the deposition of an associated hormogonium polysaccharide (HPS). The genes involved in assembly and export of HPS are largely undefined, and it has been hypothesized that HPS exits the outer membrane via an atypical T4P-driven mechanism. Here, several novel hps loci, primarily encoding glycosyl transferases, are identified. Mutational analysis demonstrates that the majority of these genes are essential for both motility and production of HPS. Notably, most mutant strains accumulate wild-type cellular levels of the major pilin PilA, but not extracellular PilA, indicating dysregulation of the T4P motors, and, therefore, a regulatory interaction between HPS assembly and T4P activity. A co-occurrence analysis of Hps orthologs among cyanobacteria identified an extended set of putative Hps proteins comprising most components of a Wzx/Wzy-type polysaccharide synthesis and export system. This implies that HPS may be secreted through a more canonical pathway, rather than a T4P-mediated mechanism.


Subject(s)
Cyanobacteria/metabolism , Fimbriae, Bacterial/metabolism , Bacterial Proteins/metabolism , Cyanobacteria/physiology , Fimbriae Proteins/metabolism , Gene Expression Regulation, Bacterial/genetics , Nostoc/metabolism , Nostoc/physiology , Polysaccharides/metabolism
19.
J Cell Sci ; 132(16)2019 08 19.
Article in English | MEDLINE | ID: mdl-31371489

ABSTRACT

In addition to bend propagation for swimming, Chlamydomonas cells use their flagella to glide along a surface. When polystyrene microspheres are added to cells, they attach to and move along the flagellar surface, thus serving as a proxy for gliding that can be used to assay for the flagellar components required for gliding motility. Gliding and microsphere movement are dependent on intraflagellar transport (IFT). Circumstantial evidence suggests that mechanical coupling of the IFT force-transducing machinery to a substrate is mediated by the flagellar transmembrane glycoprotein FMG-1B. Here, we show that cells carrying an insertion in the 5'-UTR of the FMG-1B gene lack FMG-1B protein, yet assemble normal-length flagella despite the loss of the major protein component of the flagellar membrane. Transmission electron microscopy shows a complete loss of the glycocalyx normally observed on the flagellar surface, suggesting it is composed of the ectodomains of FMG-1B molecules. Microsphere movements and gliding motility are also greatly reduced in the 5'-UTR mutant. Together, these data provide the first rigorous demonstration that FMG-1B is necessary for the normal expression of force at the flagellar surface in ChlamydomonasThis article has an associated First Person interview with authors from the paper.


Subject(s)
Chlamydomonas , Flagella , Glycoproteins , Plant Proteins , Chlamydomonas/genetics , Chlamydomonas/metabolism , Chlamydomonas/ultrastructure , Flagella/genetics , Flagella/metabolism , Flagella/ultrastructure , Glycoproteins/genetics , Glycoproteins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
20.
Appl Environ Microbiol ; 87(16): e0081221, 2021 07 27.
Article in English | MEDLINE | ID: mdl-34106011

ABSTRACT

Increasing problems with antibiotic resistance have directed interest toward phage therapy in the aquaculture industry. However, phage resistance evolving in target bacteria is considered a challenge. To investigate how phage resistance influences the fish pathogen Flavobacterium columnare, two wild-type bacterial isolates, FCO-F2 and FCO-F9, were exposed to phages (FCO-F2 to FCOV-F2, FCOV-F5, and FCOV-F25, and FCO-F9 to FCL-2, FCOV-F13, and FCOV-F45), and resulting phenotypic and genetic changes in bacteria were analyzed. Bacterial viability first decreased in the exposure cultures but started to increase after 1 to 2 days, along with a change in colony morphology from original rhizoid to rough, leading to 98% prevalence of the rough morphotype. Twenty-four isolates (including four isolates from no-phage treatments) were further characterized for phage resistance, antibiotic susceptibility, motility, adhesion, and biofilm formation, protease activity, whole-genome sequencing, and virulence in rainbow trout fry. The rough isolates arising in phage exposure were phage resistant with low virulence, whereas rhizoid isolates maintained phage susceptibility and high virulence. Gliding motility and protease activity were also related to the phage susceptibility. Observed mutations in phage-resistant isolates were mostly located in genes encoding the type IX secretion system, a component of the Bacteroidetes gliding motility machinery. However, not all phage-resistant isolates had mutations, indicating that phage resistance in F. columnare is a multifactorial process, including both genetic mutations and changes in gene expression. Phage resistance may not, however, be a challenge for development of phage therapy against F. columnare infections since phage resistance is associated with decreases in bacterial virulence. IMPORTANCE Phage resistance of infectious bacteria is a common phenomenon posing challenges for the development of phage therapy. Along with a growing world population and the need for increased food production, constantly intensifying animal farming has to face increasing problems of infectious diseases. Columnaris disease, caused by Flavobacterium columnare, is a worldwide threat for salmonid fry and juvenile farming. Without antibiotic treatments, infections can lead to 100% mortality in a fish stock. Phage therapy of columnaris disease would reduce the development of antibiotic-resistant bacteria and antibiotic loads by the aquaculture industry, but phage-resistant bacterial isolates may become a risk. However, phenotypic and genetic characterization of phage-resistant F. columnare isolates in this study revealed that they are less virulent than phage-susceptible isolates and thus not a challenge for phage therapy against columnaris disease. This is valuable information for the fish farming industry globally when considering phage-based prevention and curing methods for F. columnare infections.


Subject(s)
Bacterial Proteins/genetics , Bacterial Secretion Systems/genetics , Bacteriophages/physiology , Fish Diseases/microbiology , Flavobacteriaceae Infections/veterinary , Flavobacterium/cytology , Flavobacterium/pathogenicity , Flavobacterium/virology , Animals , Bacterial Proteins/immunology , Bacterial Secretion Systems/immunology , Bacteriophages/genetics , Fishes , Flavobacteriaceae Infections/microbiology , Flavobacterium/immunology , Mutation , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL