Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 224
Filter
Add more filters

Publication year range
1.
Planta ; 259(5): 103, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38551683

ABSTRACT

MAIN CONCLUSION: Heavy metal pollution caused by human activities is a serious threat to the environment and human health. Plants have evolved sophisticated defence systems to deal with heavy metal stress, with proteins and enzymes serving as critical intercepting agents for heavy metal toxicity reduction. Proteomics continues to be effective in identifying markers associated with stress response and metabolic processes. This review explores the complex interactions between heavy metal pollution and plant physiology, with an emphasis on proteomic and biotechnological perspectives. Over the last century, accelerated industrialization, agriculture activities, energy production, and urbanization have established a constant need for natural resources, resulting in environmental degradation. The widespread buildup of heavy metals in ecosystems as a result of human activity is especially concerning. Although some heavy metals are required by organisms in trace amounts, high concentrations pose serious risks to the ecosystem and human health. As immobile organisms, plants are directly exposed to heavy metal contamination, prompting the development of robust defence mechanisms. Proteomics has been used to understand how plants react to heavy metal stress. The development of proteomic techniques offers promising opportunities to improve plant tolerance to toxicity from heavy metals. Additionally, there is substantial scope for phytoremediation, a sustainable method that uses plants to extract, sequester, or eliminate contaminants in the context of changes in protein expression and total protein behaviour. Changes in proteins and enzymatic activities have been highlighted to illuminate the complex effects of heavy metal pollution on plant metabolism, and how proteomic research has revealed the plant's ability to mitigate heavy metal toxicity by intercepting vital nutrients, organic substances, and/or microorganisms.


Subject(s)
Metals, Heavy , Soil Pollutants , Humans , Ecosystem , Biodegradation, Environmental , Proteomics , Metals, Heavy/toxicity , Metals, Heavy/metabolism , Plants/metabolism , Soil Pollutants/toxicity , Soil Pollutants/metabolism , Soil
2.
Environ Res ; 252(Pt 1): 118861, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38579997

ABSTRACT

Microorganisms have developed mechanisms to adapt to environmental stress, but how microbial communities adapt to long-term and combined heavy-metal contamination under natural environmental conditions remains unclear. Specifically, this study analyzed the characteristics of heavy metal composition, microbial community, and heavy metal resistance genes (MRGs) in sediments along Mang River, a tributary of the Yellow River, which has been heavily polluted by industrial production for more than 40 years. The results showed that the concentrations of Cr, Zn, Pb, Cu and As in most sediments were higher than the ambient background values. Bringing the heavy metals speciation and concentration into the risk evaluation method, two-thirds of the sediment samples were at or above the moderate risk level, and the ecological risk of combined heavy metals in the sediments decreased along the river stream. The high ecological risk of heavy metals affected the microbial community structure, metabolic pathways and MRG distribution. The formation of a HM-resistant microbiome possibly occurred through the spread of insertion sequences (ISs) carrying multiple MRGs, the types of ISs carrying MRGs outnumber those of plasmids, and the quantity of MRGs on ISs is also higher than that on plasmids. These findings could improve our understanding of the adaptation mechanism of microbial communities to long-term combined heavy metal contamination.


Subject(s)
Geologic Sediments , Metals, Heavy , Microbiota , Rivers , Water Pollutants, Chemical , Metals, Heavy/toxicity , Metals, Heavy/analysis , Geologic Sediments/microbiology , Geologic Sediments/chemistry , Rivers/microbiology , Rivers/chemistry , Microbiota/drug effects , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , China , Environmental Monitoring , Bacteria/genetics , Bacteria/drug effects
3.
Ecotoxicol Environ Saf ; 274: 116181, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38460406

ABSTRACT

The emergence of polyvinyl chloride (PVC) microplastics (MPs) as pollutants in agricultural soils is increasingly alarming, presenting significant toxic threats to soil ecosystems. Ajwain (Trachyspermum ammi L.), a plant of significant medicinal and culinary value, is increasingly subjected to environmental stressors that threaten its growth and productivity. This situation is particularly acute given the well-documented toxicity of chromium (Cr), which has been shown to adversely affect plant biomass and escalate risks to the productivity of such economically and therapeutically important species. The present study was conducted to investigate the individual effects of different levels of PVC-MPs (0, 2, and 4 mg L-1) and Cr (0, 150, and 300 mg kg-1) on various aspects of plant growth. Specifically, we examined growth and biomass, photosynthetic pigments, gas exchange attributes, oxidative stress responses, antioxidant compound activity (both enzymatic and nonenzymatic), gene expression, sugar content, nutritional status, organic acid exudation, and Cr accumulation in different parts of Ajwain (Trachyspermum ammi L.) seedlings, which were also exposed to varying levels of titanium dioxide (TiO2) nanoparticles (NPs) (0, 25, and 50 µg mL-1). Results from the present study showed that the increasing levels of Cr and PVC-MPs in soils significantly decreased plant growth and biomass, photosynthetic pigments, gas exchange attributes, sugars, and nutritional contents from the roots and shoots of the plants. Conversely, increasing levels of Cr and PVC-MPs in the soil increased oxidative stress indicators in term of malondialdehyde, hydrogen peroxide, and electrolyte leakage, and also increased organic acid exudation pattern in the roots of T. ammi seedlings. Interestingly, the application of TiO2-NPs counteracted the toxicity of Cr and PVC-MPs in T. ammi seedlings, leading to greater growth and biomass. This protective effect is facilitated by the NPs' ability to sequester reactive oxygen species, thereby reducing oxidative stress and lowering Cr concentrations in both the roots and shoots of the plants. Our research findings indicated that the application of TiO2-NPs has been shown to enhance the resilience of T. ammi seedlings to Cr and PVC-MPs toxicity, leading to not only improved biomass but also a healthier physiological state of the plants. This was demonstrated by a more balanced exudation of organic acids, which is a critical response mechanism to metal stress.


Subject(s)
Ammi , Soil Pollutants , Titanium , Antioxidants/metabolism , Ammi/metabolism , Microplastics/metabolism , Plastics/metabolism , Chromium/analysis , Ecosystem , Oxidative Stress , Soil , Gene Expression , Soil Pollutants/analysis
4.
World J Microbiol Biotechnol ; 40(6): 191, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38702442

ABSTRACT

Seed endophytes played a crucial role on host plants stress tolerance and heavy metal (HM) accumulation. Dysphania ambrosioides is a hyperaccumulator and showed strong tolerance and extraordinary accumulation capacities of multiple HMs. However, little is known about its seed endophytes response to field HM-contamination, and its role on host plants HM tolerance and accumulation. In this study, the seed endophytic community of D. ambrosioides from HM-contaminated area (H) and non-contaminated area (N) were investigated by both culture-dependent and independent methods. Moreover, Cd tolerance and the plant growth promoting (PGP) traits of dominant endophytes from site H and N were evaluated. The results showed that in both studies, HM-contamination reduced the diversity and richness of endophytic community and changed the most dominant endophyte, but increased resistant species abundance. By functional trait assessments, a great number of dominant endophytes displayed multiple PGP traits and Cd tolerance. Interestingly, soil HM-contamination significantly increased the percentage of Cd tolerance isolates of Agrobacterium and Epicoccum, but significantly decreased the ration of Agrobacterium with the siderophore production ability. However, the other PGP traits of isolates from site H and N showed no significant difference. Therefore, it was suggested that D. ambrosioides might improve its HM tolerance and accumulation through harboring more HM-resistant endophytes rather than PGP endophytes, but to prove this, more work need to be conducted in the future.


Subject(s)
Cadmium , Endophytes , Metals, Heavy , Seeds , Soil Microbiology , Soil Pollutants , Endophytes/metabolism , Endophytes/isolation & purification , Metals, Heavy/metabolism , Seeds/microbiology , Soil Pollutants/metabolism , Cadmium/metabolism , Biodiversity , Bacteria/classification , Bacteria/metabolism , Bacteria/isolation & purification , Bacteria/genetics , Soil/chemistry , Biodegradation, Environmental , Plant Roots/microbiology
5.
Environ Monit Assess ; 196(9): 781, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39096411

ABSTRACT

The increasing proximity of the Dudumbia dumpsite, an open dumpsite in Navrongo, Ghana, to human settlements necessitates an investigation of the soil quality to safeguard the environment from heavy metal toxicity. This study examined the impact of waste dumping activities on the physicochemical properties of the soil, as well as the level of heavy metal (Pb, Cd, Ni, Cr, As, Hg, Cu, Mn, and Zn) contamination and associated risks. Various contamination and risk assessment tools were used, including the geoaccumulation index (Igeo), pollution load index (PLI), potential ecological risk (Er), and potential ecological risk index (PERI). The study found significant improvements in notable soil attributes such as phosphorus (P), organic carbon (C), total nitrogen (N), calcium (Ca), magnesium (Mg), potassium (K), sodium (Na), and effective cation exchange capacity, with percentage increases ranging from 50.8 to 2078.3%. Igeo values ranged from 2.07 to 6.20, indicating contamination levels from moderate to extreme. The PLI and PERI values were 16.241 and 1810, respectively. The Er values for the heavy metals ranged from 36 to 607, indicating ecological risk levels from low to very high, with Cd and Hg posing very high risks. These results suggest that while the dumpsite soil shows improvements in some characteristics favourable for plant cultivation, waste dumping significantly contributes to heavy metal contamination. The soil at the dumpsite is deteriorated and poses significant health risks, particularly due to Cd and Hg. Therefore, remediation efforts should prioritise mitigating the risks posed by Cd and Hg.


Subject(s)
Environmental Monitoring , Metals, Heavy , Soil Pollutants , Soil , Ghana , Metals, Heavy/analysis , Soil Pollutants/analysis , Soil/chemistry , Waste Disposal Facilities , Risk Assessment
6.
BMC Plant Biol ; 23(1): 648, 2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38102555

ABSTRACT

In the current industrial scenario, cadmium (Cd) as a metal is of great importance but poses a major threat to the ecosystem. However, the role of micronutrient - amino chelates such as iron - lysine (Fe - lys) in reducing Cr toxicity in crop plants was recently introduced. In the current experiment, the exogenous applications of Fe - lys i.e., 0 and10 mg L - 1, were examined, using an in vivo approach that involved plant growth and biomass, photosynthetic pigments, oxidative stress indicators and antioxidant response, sugar and osmolytes under the soil contaminated with varying levels of Cd i.e., 0, 50 and 100 µM using two different varieties of canola i.e., Sarbaz and Pea - 09. Results revealed that the increasing levels of Cd in the soil decreased plant growth and growth-related attributes and photosynthetic apparatus and also the soluble protein and soluble sugar. In contrast, the addition of different levels of Cd in the soil significantly increased the contents of malondialdehyde (MDA) and hydrogen peroxide (H2O2), which induced oxidative damage in both varieties of canola i.e., Sarbaz and Pea - 09. However, canola plants increased the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and non-enzymatic compounds such as phenolic, flavonoid, proline, and anthocyanin, which scavenge the over-production of reactive oxygen species (ROS). Cd toxicity can be overcome by the supplementation of Fe - lys, which significantly increased plant growth and biomass, improved photosynthetic machinery and sugar contents, and increased the activities of different antioxidative enzymes, even in the plants grown under different levels of Cd in the soil. Research findings, therefore, suggested that the Fe - lys application can ameliorate Cd toxicity in canola and result in improved plant growth and composition under metal stress.


Subject(s)
Brassica napus , Soil Pollutants , Cadmium/toxicity , Cadmium/metabolism , Brassica napus/metabolism , Lysine/metabolism , Iron/metabolism , Hydrogen Peroxide/metabolism , Ecosystem , Antioxidants/metabolism , Oxidative Stress , Soil/chemistry , Sugars/metabolism , Soil Pollutants/metabolism
7.
Environ Res ; 238(Pt 2): 117175, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37741567

ABSTRACT

Climate change-mediated rise in sea level and storm surges, along with indiscriminate exploitation of groundwater along populous coastal regions have led to seawater intrusion. Studies on groundwater salinization and heavy metal contamination trends are limited. Present study investigated the heavy metal contamination, associated risks and provided initial information on the impacts of groundwater salinization on heavy metals along the coastal plains of Odisha, India. Total 50 groundwater samples (25 each in post- and pre-monsoon) were collected and analysed. Concentrations of Fe (44%), Mn (44%), As (4%) and Al (4%) in post-monsoon and Fe (32%), Mn (32%), As (4%), B (8%) and Ni (16%) in pre-monsoon exceeded Bureau of Indian Standards (BIS) drinking water limits. High concentrations of heavy metals (Fe, Sr, Mn, B, Ba, Li, Ni and Co) and high EC (>3000 µS/cm) indicated that the groundwater-seawater mixing process has enhanced the leaching and ion exchange of metallic ions in central part of the study area. Multivariate statistical analysis suggested leaching process, seawater intrusion and agricultural practices as the main heavy metal sources in the groundwater. 4% of samples in post- and 16% in pre-monsoon represented high heavy metal pollution index (HPI). Pollution indices indicated the central and south-central regions are highly polluted due to saline water intrusion and high agricultural activities. Ecological risks in the groundwater systems found low (ERI <110) in both seasons. Children population found more susceptible to health risks than adults. Hazard index (HI > 1) has shown significant non-carcinogenic risks where Fe, Mn, As, B, Li and Co are the potential contributors. Incremental lifetime cancer risk (ILCR >1.0E-03) has suggested high carcinogenic risks, where As and Ni are the major contributors. The study concluded that groundwater salinization could increase the heavy metal content and associated risks. This would help policymakers to take appropriate measures for sustainable coastal groundwater management.


Subject(s)
Groundwater , Metals, Heavy , Water Pollutants, Chemical , Adult , Child , Humans , Environmental Monitoring , Climate Change , Water Pollutants, Chemical/analysis , Metals, Heavy/analysis , India , Risk Assessment
8.
Environ Geochem Health ; 45(10): 7215-7236, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36933105

ABSTRACT

The pollution of heavy metals in soil caused by exposed coal gangue and its prevention and control has become a hot issue restricting the green mining of coal in China. Nemerow integrated pollution index (NIPI), potential ecological risk index (RI) and human health risk assessment model were used to evaluate the pollution and risk of heavy metals (Cu, Cr, As, Pb) in the soil around the typical coal gangue hill in Fengfeng mining area of China. The results show that: firstly, the accumulation of coal gangue leads to the enrichment of four heavy metals in the surrounding shallow soil, and NIPI and RI were 1.0-4.4 and 21.63-91.28, respectively. The comprehensive pollution level of heavy metals in soil reached the warning line and above, and the potential ecological risk level reached slightly and above. When the horizontal distance exceeded 300 m, 300 m and 200 m, respectively, the influence of coal gangue hill on the heavy metal content in shallow soil, the comprehensive pollution level of heavy metals and the potential ecological risk level basically disappeared. In addition, based on the potential ecological risk assessment results and main risk factors, the ecological risk configuration of the study area was divided into five categories: "strong ecological risk + As," "intermediate ecological risk + As + Cu," "intermediate ecological risk + As + Cu or Pb," "minor ecological risk + As + Cu" and "minor ecological risk + As + Cu or Pb." The hazard index (HI) and total carcinogenic risk (TCR) of shallow soil polluted by heavy metals in the study area were 0.24-1.07 and 0.41 × 10-4-1.78 × 10-4, respectively, which posed non-carcinogenic and carcinogenic risks to children, but the risks were controllable. This study will help to take strategic measures to accurately control and repair the heavy metal pollution in the soil around the coal gangue hill and provide a scientific basis for solving the safe use of agricultural land and realizing the construction of ecological civilization.


Subject(s)
Metals, Heavy , Soil Pollutants , Child , Humans , Environmental Monitoring/methods , Coal , Lead , Soil Pollutants/analysis , Metals, Heavy/toxicity , Metals, Heavy/analysis , Risk Assessment , Soil , China
9.
World J Microbiol Biotechnol ; 40(2): 52, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38146029

ABSTRACT

Escalating proportions of industrially contaminated sites are one of the major catastrophes faced at the present time due to the industrial revolution. The difficulties associated with culturing the microbes, has been circumvent by the direct use of metagenomic analysis of various complex niches. In this study, a metagenomic approach using next generation sequencing technologies was applied to exemplify the taxonomic abundance and metabolic potential of the microbial community residing in Amlakhadi canal, Ankleshwar at two different seasons. All the metagenomes revealed a predominance of Proteobacteria phylum. However, difference was observed within class level where Gammaproteobacteria was relatively high in polluted metagenome in Summer while in Monsoon the abundance shifted to Betaproteobacteria. Similarly, significant statistical differences were obtained while comparing the genera amongst contaminated sites where Serratia, Achromobacter, Stenotrophomonas and Pseudomonas were abundant in summer season and the dominance changed to Thiobacillus, Thauera, Acidovorax, Nitrosomonas, Sulfuricurvum, Novosphingobium, Hyphomonas and Geobacter in monsoon. Further upon functional characterization, the microbiomes revealed the diverse survival mechanisms, in response to the prevailing ecological conditions (such as degradation of aromatic compounds, heavy metal resistance, oxidative stress responses and multidrug resistance efflux pumps, etc.). The results have important implications in understanding and predicting the impacts of human-induced activities on microbial communities inhabiting natural niche and their responses in coping with the fluctuating pollution load.


Subject(s)
Betaproteobacteria , Gammaproteobacteria , Microbiota , Humans , Gammaproteobacteria/genetics , Betaproteobacteria/genetics , Betaproteobacteria/metabolism , Seasons , Bacteria/metabolism , Microbiota/genetics , Organic Chemicals/metabolism
10.
Environ Monit Assess ; 196(1): 43, 2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38102340

ABSTRACT

The northern part of James Ross Island is the largest deglaciated area in the Antarctic Peninsula region with a unique ecosystem created during the Late Glacial. This research aims to evaluate the degree of contamination of the locality with toxic metals (As, Hg, Cd, and Pb) through bioindicators in the aquatic environment-colonies of cyanobacteria and algae. For this purpose, bottom lake sediments of Big Lachman Lake were studied for contents of Fe, As, Hg, Cd, Pb, Cr, Co, Ni, Cu, and Zn, as well as samples of cyanobacterial mat, in which Fe, As, Hg, Cd, and Pb were determined. Metal contents were determined by means of inductively coupled plasma optical emission spectrometry and atomic absorption spectrometry. The contents of metals in sediments did not differ from the usual values in the area of the Antarctic Peninsula. The bioaccumulation of metals in cyanobacterial mat was evaluated by calculating enrichment factors (the calculation to Fe as a reference element). According to this method, moderate pollution of Big Lachman Lake was confirmed for Hg and Cd.


Subject(s)
Cyanobacteria , Mercury , Metals, Heavy , Water Pollutants, Chemical , Metals, Heavy/analysis , Lakes/chemistry , Antarctic Regions , Ecosystem , Cadmium/analysis , Lead/analysis , Geologic Sediments/chemistry , Environmental Monitoring/methods , Mercury/analysis , Water Pollutants, Chemical/analysis , Risk Assessment
11.
Bull Environ Contam Toxicol ; 110(1): 37, 2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36607448

ABSTRACT

Phytoextraction is an efficient strategy for remediating heavy metal-contaminated soil. Chelators can improve the bioavailability of heavy metals and increase phytoextraction efficiency. However, traditional chelators have gradually been replaced due to secondary pollution. In this study, a typical organic acid (citric acid, CA) and a novel biodegradable chelator (poly-glutamic acid, PGA), were investigated using pot experiments to compare the phytoextraction efficiency of Solanum nigrum L. (a Cd (hyper)accumulator) for cadmium (Cd) and lead (Pb) in contaminated soil. The results showed CA and PGA significantly improved plant growth, and total Cd and Pb amounts of S. nigrum, both CA and PGA significantly increased the shoot Cd and Pb concentrations. However, only PGA significantly increased the root Pb concentration. CA and PGA application promoted the bioavailability of Cd and Pb in rhizosphere soils and their translocations from roots to shoots in S. nigrum. Both CA and PGA increased the phytoextraction efficiency of Cd and Pb in S. nigrum plants, and the PGA for Cd and Pb phytoextraction was more effective than CA. Our findings demonstrate that the biodegradable chelator PGA has great potential for enhancing phytoextraction from compound Cd-Pb contaminated soils, suggesting that biodegradable chelator-assisted phytoextraction with (hyper)accumulator is strongly recommended in severely contaminated sites.


Subject(s)
Metals, Heavy , Soil Pollutants , Solanum nigrum , Cadmium/analysis , Glutamic Acid , Lead , Citric Acid , Biodegradation, Environmental , Soil Pollutants/analysis , Metals, Heavy/analysis , Chelating Agents/pharmacology , Soil
12.
Environ Res ; 207: 112198, 2022 05 01.
Article in English | MEDLINE | ID: mdl-34656635

ABSTRACT

Microfibers (MFs) in aquatic and marine ecosystems adsorb toxic heavy metals and then transfer the heavy metals enriched MFs to living organisms. In this research paper, the adsorption-desorption dynamics of heavy metals onto MFs was studied by using theoretical models and experimental investigations. The adsorption of metals onto MFs was well correlated for the Freundlich model and the adsorption kinetics follows pseudo-second order rate equation. The adsorption capacity of naturally weathered MFs was 30.8 mg g-1 which is about 35% higher than the synthetic fiber of similar range of size of MFs. The leaching of heavy metals from MFs was found that 90-95% of adsorbed metals were leached within 24 h. The leaching of Ti(II) and Al(III) were slower than the other metal ions. The salinity has shown decrease in adsorption capacity of MFs for heavy metals. Based on the Nemerov pollution index (PN), the naturally weathered MFs enriched with heavy metals in sediments became heavily polluted with PN values between 2.98 and 3.49. The risk index value of 396 represents that the bottom dwellers and other marine organisms in the Narmada estuary high risk from MFs and MFs enriched with metals. This study indicates that MFs play dominant role in fate and distribution of heavy metals in the estuarine ecosystems.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Adsorption , Ecosystem , Environmental Monitoring , Estuaries , Geologic Sediments , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis
13.
Environ Res ; 213: 113576, 2022 10.
Article in English | MEDLINE | ID: mdl-35710022

ABSTRACT

Heavy metal pollution affected the stability and function of soil ecosystem. The impact of heavy metals on soil microbial community and the interaction of microbial community has been widely studied, but little was known about the response of community assembly to the heavy metal pollution. In this study, we collected 30 soil samples from non (CON), moderately (CL) and severely (CH) contaminated fields. The prokaryotic community was studied using high-throughput Illumina sequencing of 16s rRNA gene amplicons, and community assembly were quantified using phylogenetic-bin-based null approach (iCAMP). Results showed that diversity and composition of both bacterial and archaeal community changed significantly in response to heavy metal pollution. The microbial community assembly tended to be more deterministic with the increase of heavy metal concentration. Among the assembly processes, the relative importance of homogeneous selection (deterministic process) increased significantly (increased by 16.2%), and the relative importance of drift and dispersal limitation (stochastic process) decreased significantly (decreased by 11.4% and 5.4%, respectively). The determinacy of bacterial and archaeal community assembly also increased with heavy metal stress, but the assembly models were different. The deterministic proportion of microorganisms tolerant to heavy metals, such as Thiobacillus, Euryarchaeota and Crenarchaeota (clustered in bin 32, bin59 and bin60, respectively) increased, while the stochastic proportion of microorganisms sensitive to heavy metals, such as Koribacteraceae (clustered in bin23) increased. Therefore, the heavy metal stress made the prokaryotic community be deterministic, however, the effects on the assembly process of different microbial groups differed obviously.


Subject(s)
Metals, Heavy , Microbiota , Soil Pollutants , Bacteria/genetics , Metals, Heavy/analysis , Metals, Heavy/toxicity , Phylogeny , RNA, Ribosomal, 16S/genetics , Soil , Soil Microbiology , Soil Pollutants/analysis , Soil Pollutants/toxicity
14.
Ecotoxicol Environ Saf ; 234: 113403, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35286961

ABSTRACT

To clarify the global status and research hotspots of heavy metal pollution phytoremediation, we used Web of Science, Cite Space software, and VOS viewer to analyse 1123 publications from the period of 2000-2020. Literature categories, research hotpots, and the most prolific publications by country, institution, and author were analysed separately. Around 34% of the articles are contributed from five countries: China (29.37%), India (11.00%), Spain (6.29%), Italy (6.20%), and Pakistan (5.67%). The hot research topic keywords were "diversity", "translocation", and "enhanced phytoremediation". Cadmium was the most highly concerned heavy metal in the phytoremediation. Twenty-three articles were highly cited, and they mainly focused on 1) enhancing the remediation ability of plants in heavy metal contaminated soil by microbial and chemical additives; 2) the molecular effect and mechanism of heavy metals on plant growth and development; 3) discovering novel heavy metal hyper-enriched plants which can remediate mixed heavy metal pollution. From the above analysis, we concluded that the future research directions should be 1) strengthening the plant remediation ability by biochemical means; 2) studying the molecular mechanism underlying heavy metal damage to plants; 3) studying the enrichment principle of plants for heavy metals. The present study provides a further understanding of the trends in phytoremediation of heavy metal pollution, and the data analysed can be used as a guide for future research directions.

15.
Ecotoxicol Environ Saf ; 236: 113462, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35397444

ABSTRACT

The Jiangzhe Area was relatively common area that rely on industrial process for rapid development with serious heavy metals contamination. This study investigated the spatial, vertical and speciation distribution, correlation of heavy metals, as well as assessed pollution and health risks in three representative contamination industries at Jingjiang (electroplating site), Taizhou (e-waste recycling site) and Wenzhou (leather production site) in the Jiangzhe Area. The results indicated that the Cr(VI) pollution was serious in all three sites and there was a tendency to gradually decrease with depth. As for other heavy metals, not only the total concentration, but also the addition of acid soluble and reducible speciation generally decreased with soil depth at Jingjiang and Taizhou sites. Significantly positive correlations supported by correlation analysis were detected between the following elements: Cu-Ni (p < 0.01), Cr(VI)-Ni (p < 0.05) and Cr(VI)-Cu (p < 0.05) at Jingjiang site, Cu-Ni (p < 0.01), Cu-Cd (p < 0.01) and Ni-Cd (p < 0.05) at Taizhou site indicating possibly the same sources and pathways of origin, while the significantly negative correlation of Cd-Ni (p < 0.05) at Wenzhou site meaning the different sources. As regards the pollution assessment of topsoil, the mean PI value indicated that Cr(VI) contaminated severe in all three sites. In general, Jingjiang site was severe pollution (4.06), while Taizhou and Wenzhou (2.27 and 2.66) were moderate pollution, as NIPI value shown. In terms of health risk assessment that received much attention, non-carcinogenic risks caused by Pb contamination were significant for children at Jingjiang and Taizhou sites, with the HI values of 3.42E+ 00 and 2.03E+ 00, respectively. Ni caused unacceptable carcinogenic risk for both adults and children at all three sites. The present study can help to better understand the contamination characteristics of heavy metals in the commonly developed industrial area, and thus to control the environmental quality, so as to truly achieve the goal of "Green Deal objectives ".


Subject(s)
Metals, Heavy , Soil Pollutants , Adult , Cadmium/analysis , Carcinogens/analysis , Child , China , Environmental Monitoring/methods , Humans , Metals, Heavy/analysis , Risk Assessment , Soil , Soil Pollutants/analysis
16.
Ecotoxicol Environ Saf ; 236: 113490, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35398649

ABSTRACT

To investigate the characteristics of heavy metals (As, Cd, Cr, Cu, Pb, Hg, Ni and Zn) in urban road dust from different cities and functional areas in the Pearl River Delta (PRD), South China, a total of 294 dust samples were analyzed. The contamination characteristics and health risk of heavy metals in the dust were assessed, their chemical speciation were distinguished, and their sources were identified by the correlations, cluster and principal component analysis (PCA). The mean concentrations of As (15.89 mg/kg), Cd (1.59 mg/kg), Cr (143.75 mg/kg), Cu (184.42 mg/kg), Pb (114.82 mg/kg), Hg (0.11 mg/kg), Ni (41.53 mg/kg) and Zn (645.94 mg/kg) in urban road dust were in high or moderate levels compare with other previous researches. In this case, the contamination of Cr, Cu, Ni and Zn in the industrial area (IA) and the contamination of Cd and Hg in the commercial area (CA) were significantly higher relative to other functional areas (P < 0.05), and the contamination of heavy metals in Foshan City was significantly higher than other cities (P < 0.01). The order of mobility of the heavy metals with higher concentration in urban road dust of the Pearl River Delta declined in the following order: Zn, Ni, Cu, Pb and Cr. Statistical analysis result showed the contaminated heavy metals in urban road dust were mainly contributed by industrial activities, traffic activities and building pollution. There were no significant carcinogenic and noncarcinogenic risks for adults, children however showed significant noncarcinogenic effect caused by As and Cr in partial points, albeit with low contamination level of the two metals. The ingestion was a principal pathway for heavy metals via urban road dust to exposure population. More protection measures should be considered to reduce children's exposure to the dust, especially in the CA and IA.


Subject(s)
Mercury , Metals, Heavy , Adult , Cadmium/analysis , Child , China , Cities , Dust/analysis , Environmental Monitoring , Humans , Lead/analysis , Mercury/analysis , Metals, Heavy/analysis , Risk Assessment , Rivers
17.
J Environ Manage ; 302(Pt A): 114057, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34749085

ABSTRACT

The contamination of soil with heavy metals is known to affect the yield the soil fertility, which in turn affects the growth of agricultural crops. This study investigates the role of coconut shell biochar (CSB) and earthworms (Eudrilus euginea) in the bioremediation and growth of Palak spinach (Spinacia oleracea L.) in cadmium (Cd) contaminated soil. The soils were amended with different combinations of CSB and earthworms and incubated for 35 days. Later, the soil samples were analyzed for the changes in the soil properties, soil enzyme activity, and heavy metal contents. It is observed that the treatments with both CSB and earthworms resulted in the improvement of soil properties and soil enzyme activity which was directly related to soil fertility. Meanwhile, the maximum removal of 94.38% of total Cd content in the soil was obtained for the soil sample contain both CSB and earthworms. The improved soil properties resulted in a higher germination percentage of Spinacia oleracea L. seeds in the Cd contaminated soil.


Subject(s)
Metals, Heavy , Oligochaeta , Soil Pollutants , Animals , Biodegradation, Environmental , Cadmium/analysis , Charcoal , Cocos , Metals, Heavy/analysis , Soil , Soil Pollutants/analysis , Spinacia oleracea
18.
J Environ Manage ; 286: 112227, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33647673

ABSTRACT

Mining activity and abandoned mine land are one of the major sources of heavy metal pollution. Thus, ecological rehabilitation of abandoned mine lands is crucial to control heavy metal pollution. This research aims to explore the influencing factors and effects of different vegetation on copper (Cu) accumulation and soil amelioration. In this study, the abandoned land of Tongguanshan Cu mine in Tongling city, Anhui province, China, was chosen as the test area, and nine sampling points were established. Samples of soil and plants were collected from each plot, and the impacts of Cu pollution on soil enzymes and other features were analyzed, as well as the correlation between Cu accumulation of different plants and soil properties. The results showed that Cu content of soil in the Tongguanshan area varied greatly with the depth of the soil profile. Moreover, Cu in the soil can inhibit soil enzyme activities; and the correlation coefficients of total soil Cu with urease and catalase were -0.83 and -0.73, respectively. Clearly, the accumulation of Cu in plants was positively correlated with Cu content in soil. It was found that Pueraria lobata had the best remediation effect on soil Cu pollution in a short period of time. Hence the preliminary tests clearly indicate that phytoremediation in abandoned mine lands can not only reduce heavy metal pollution, but also enhance soil nutrition and enzyme activity, helping to ameliorate degraded land and promote regional socioeconomic sustainable development.


Subject(s)
Metals, Heavy , Soil Pollutants , China , Copper , Environmental Monitoring , Metals, Heavy/analysis , Mining , Soil , Soil Pollutants/analysis
19.
J Environ Manage ; 281: 111837, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33418387

ABSTRACT

The metal mineral has a complex influence on the thermal decomposition of biomass due to the sophisticated structure of biomass and parallel reactions. Therefore, the influencing mechanisms of metal minerals on biomass decomposition kinetic expressions needed to be thoroughly investigated. In this study, the decomposition of the three major components of biomass was considered separately. The iso-conversional method and integral master-plots method based on thermogravimetry were firstly introduced to explore the kinetic model changes after the introduction of zinc mineral. The thermogravimetric results showed that the presence of zinc mineral had discrepant influences on different biomass components, demoting the fragmentation of hemicellulose while promoting cellulose degradation. In the kinetic analysis, the presence of zinc mineral, the activation energy of three pseudo-components (91.90, 184.64 and 210.91 kJ mol-1) increased to 178.84, 299.05, and 359.45 kJ mol-1, respectively. The kinetic models were altered from 2.0-order reaction (F2.0) for hemicellulose, random nucleation (A1.8) for cellulose, and 2.3-order reaction (F2.3) for lignin to F2.8, F3.0, and F3.2, respectively. This indicated that the zinc mineral was beneficial to the occurrence of multimolecular repolymerization of the primary degradation products. In products analysis, the increment of biochar yields and the C4-C5 products of cellulose (especially furfural) in metal-polluted biomass pyrolysis were detected, which confirmed the simulated reaction mechanisms. The obtained results are expected to provide a mechanism reference to practical applications of metal-contaminated biomass.


Subject(s)
Pyrolysis , Zea mays , Biomass , Kinetics , Minerals , Thermogravimetry , Zinc
20.
Environ Geochem Health ; 43(6): 2213-2230, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33098495

ABSTRACT

In this study, two amendments, poultry waste and ammonium nitrate, were evaluated to condition and stabilize a mine tailing and thus help the vegetation cover settle. Individually, ammonium nitrate was tested as a nitrogen source and chicken bone ash as a phosphate source. For this, laboratory tests were made on soil columns from the area to be remediated. The mobility and availability of metals and nutrients were determined by analyzing their leachates chemically. The results showed that the use of chicken bone ash decreases soluble metal concentrations, particularly in Fe and soluble Mn. On the other hand, experimental conditions proved that the acidification produced by ammonium nitrate nitrification does not significantly increase the lechate metal content. Therefore, its use for fertilization does not involve phytotoxicity risks. Regarding the availability of macronutrients as well as trace elements, the results showed that the concentrations lie within the ranges suitable for plant nutrition. So, the treatments are effective both for fertilization and phytoremediation.


Subject(s)
Copper , Environmental Restoration and Remediation/methods , Mining , Nitrates/chemistry , Poultry , Soil Pollutants/chemistry , Soil/chemistry , Animals , Biodegradation, Environmental , Chile , Fertilizers , Metals/analysis , Metals/chemistry , Nitrogen , Soil Pollutants/analysis , Waste Products
SELECTION OF CITATIONS
SEARCH DETAIL