Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 163
Filter
Add more filters

Publication year range
1.
Nano Lett ; 24(19): 5737-5745, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38686670

ABSTRACT

Tungsten oxide (WO3) doped indium oxide (IWO) field-effect transistors (FET), synthesized using atomic layer deposition (ALD) for three-dimensional integration and back-end-of-line (BEOL) compatibility, are demonstrated. Low-concentration (1∼4 W atom %) WO3-doping in In2O3 films is achieved by adjusting cycle ratios of the indium and tungsten precursors with the oxidant coreactant. Such doping suppresses oxygen deficiency from In2O2.5 to In2O3 stoichiometry with only 1 atom % W, allowing devices to turn off stably and enhancing threshold voltage stability. The ALD IWO FETs exhibit superior performance, including a low subthreshold slope of 67 mV/decade and negligible hysteresis. Strong tunability of the threshold voltage (Vth) is achieved through W concentration tuning, with 2 atom % IWO FETs showing an optimized Vth for enhancement-mode and a high drain current. ALD IWO FETs have remarkable stability under bias stress and nearly ideal performance extending to sub-100 nm channel lengths, making them promising candidates for high-performance monolithic 3D integrated devices.

2.
Small ; 20(36): e2401567, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38733220

ABSTRACT

Lithium-sulfur (Li-S) battery is identified as an ideal candidate for next-generation energy storage systems in consideration of its high theoretical energy density and abundant sulfur resources. However, the shuttling behavior of soluble polysulfides (LiPSs) and their sluggish reaction kinetics severely limit the practical application of the current Li-S battery. In this work, a series of In2O3 nanocubes with different oxygen vacancy concentrations are designed and prepared via a facile self-template method. The introduced oxygen vacancy on In2O3 can effectively rearrange the charge distribution and enhance sulfiphilic property. Moreover, the In2O3 with high oxygen vacancy concentration (H-In2O3) can slightly slow down the solid-liquid conversion process and significantly accelerate the liquid-solid conversion process, thus reducing the accumulation of LiPSs in electrolyte and inhibiting the shuttle effect. Contributed by the unique selective catalytic capability, the prepared H-In2O3 exhibits excellent electrochemical performance when used as sulfur host. For instance, a high reversible capacity of 609 mAh g-1 is obtained with only 0.044% capacity decay per cycle over 1000 cycles at 1.0 C. This work presents a typical example for designing advanced sulfur hosts, which is crucial for the commercialization of Li-S battery.

3.
Small ; 20(34): e2400561, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38639024

ABSTRACT

Thermochemical water-splitting cycles are technically feasible for hydrogen production from water. However, the ultrahigh operation temperature and low efficiency seriously restrict their practical application. Herein, one-step and one-pot thermocatalytic water-splitting process is reported at water boiling condition catalyzed by single atomic Pt on defective In2O3. Water splitting into hydrogen is verified by D2O isotopic experiment, with an optimized hydrogen production rate of 36.4 mmol·h-1·g-1 as calculated on Pt active sites. It is revealed that three-centered Pt1In2 surrounding oxygen vacancy as catalytic ensembles promote the dissociation of the adsorbed water into H, which transfers to singlet atomic Pt sites for H2 production. Remaining OH groups on adjacent In sites from Pt1In2 ensembles undergoes O─O bonding, hyperoxide formation and diminishing via triethylamine oxidation, water re-adsorption for completing the catalytic cycle. Current work represents an isothermal and continuous thermocatalytic water splitting under mild condition, which can re-awaken the research interest to produce H2 from water using low-grade heat and competes with photocatalytic, electrolytic, and photoelectric reactions.

4.
Nanotechnology ; 35(37)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38876085

ABSTRACT

This study introduces a novel heteroleptic indium complex, which incorporates an amidinate ligand, serving as a high-temperature atomic layer deposition (ALD) precursor. The most stable structure was determined using density functional theory and synthesized, demonstrating thermal stability up to 375 °C. We fabricated indium oxide thin-film transistors (In2O3TFTs) prepared with DBADMI precursor using ALD in wide range of window processing temperature of 200 °C, 300 °C, and 350 °C with an ozone (O3) as the source. The growth per cycle of ALD ranged from 0.06 to 0.1 nm cycle-1at different deposition temperatures. X-ray diffraction and transmission electron microscopy were employed to analyze the crystalline structure as it relates to the deposition temperature. At a relatively low deposition temperature of 200 °C, an amorphous morphology was observed, while at 300 °C and 350 °C, crystalline structures were evident. Additionally, x-ray photoelectron spectroscopy analysis was conducted to identify the In-O and OH-related products in the film. The OH-related product was found to be as low as 1% with an increase the deposition temperature. Furthermore, we evaluated In2O3TFTs and observed an increase in field-effect mobility, with minimal change in the threshold voltage (Vth), at 200 °C, 300 °C, and 350 °C. Consequently, the DBADMI precursor, given its stability at highdeposition temperatures, is ideal for producing high-quality films and stable crystalline phases, with wide processing temperature range makeing it suitable for various applications.

5.
Nano Lett ; 23(6): 2262-2268, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36913488

ABSTRACT

The electrochemical CO2 reduction reaction (CO2RR) provides an alternative protocol to producing industrial chemicals with renewable electricity sources, and the highly selective, durable, and economic catalysts should expedite CO2RR applications. Here, we demonstrate a composite Cu-In2O3 catalyst in which a trace amount of In2O3 decorated on Cu surface greatly improves the selectivity and stability for CO2-to-CO reduction as compared to the counterparts (Cu or In2O3), realizing a CO faradaic efficiency (FECO) of 95% at -0.7 V (vs RHE) and no obvious degradation within 7 h. In situ X-ray absorption spectroscopy reveals that In2O3 undergoes the redox reaction and preserves the metallic state of Cu during the CO2RR process. Strong electronic interaction and coupling occur at the Cu/In2O3 interface which serves as the active site for selective CO2RR. Theoretical calculation confirms the roles of In2O3 in preventing oxidation and altering the electronic structure of Cu to assist COOH* formation and demote CO* adsorption at the Cu/In2O3 interface.

6.
Molecules ; 29(16)2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39202795

ABSTRACT

Significant interest has emerged for the application of Pd-In2O3 catalysts as high-performance catalysts for CO2 hydrogenation to CH3OH. However, precise active site control in these catalysts and understanding their reaction mechanisms remain major challenges. In this investigation, a series of Pd-InOx catalysts were synthesized, revealing three distinct types of active sites: In-O, Pd-O(H)-In, and Pd2In3. Lower Pd loadings exhibited Pd-O(H)-In sites, while higher loadings resulted in Pd2In3 intermetallic compounds. These variations impacted catalytic performance, with Pd-O(H)-In catalysts showing heightened activity at lower temperatures due to the enhanced CO2 adsorption and H2 activation, and Pd2In3 catalysts performing better at elevated temperatures due to the further enhanced H2 activation. In situ DRIFTS studies revealed an alteration in key intermediates from *HCOO over In-O bonds to *COOH over Pd-O(H)-In and Pd2In3 sites, leading to a shift in the main reaction pathway transition and product distribution. Our findings underscore the importance of active site engineering for optimizing catalytic performance and offer valuable insights for the rational design of efficient CO2 conversion catalysts.

7.
Angew Chem Int Ed Engl ; 63(18): e202402369, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38446496

ABSTRACT

Solar-energy-driven photoreduction of CO2 is promising in alleviating environment burden, but suffers from low efficiency and over-reliance on sacrificial agents. Herein, rhenium (Re) is atomically dispersed in In2O3 to fabricate a 2Re-In2O3 photocatalyst. In sacrificial-agent-free photoreduction of CO2 with H2O, 2Re-In2O3 shows a long-term stable efficiency which is enhanced by 3.5 times than that of pure In2O3 and is also higher than those on Au-In2O3, Ag-In2O3, Cu-In2O3, Ir-In2O3, Ru-In2O3, Rh-In2O3 and Pt-In2O3 photocatalysts. Moreover, carbon-based product of the photoreduction overturns from CO on pure In2O3 to CH3OH on 2Re-In2O3. Re promotes charge separation, H2O dissociation and CO2 activation, thus enhancing photoreduction efficiency of CO2 on 2Re-In2O3. During the photoreduction, CO is a key intermediate. CO prefers to desorption rather than hydrogenation on pure In2O3, as CO binds to pure In2O3 very weakly. Re strengthens the interaction of CO with 2Re-In2O3 by 5.0 times, thus limiting CO desorption but enhancing CO hydrogenation to CH3OH. This could be the origin for photoreduction product overturn from CO on pure In2O3 to CH3OH on 2Re-In2O3. The present work opens a new way to boost sacrificial-agent-free photoreduction of CO2.

8.
Small ; 19(10): e2206440, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36650934

ABSTRACT

It is a substantial challenge to construct electrocatalysts with high activity, good selectivity, and long-term stability for electrocatalytic reduction of carbon dioxide to formic acid. Herein, bismuth and indium species are innovatively integrated into a uniform heterogeneous spherical structure by a neoteric quasi-microemulsion method, and a novel C@In2 O3 @Bi50 core-shell structure is constructed through a subsequent one-step phase separation strategy due to melting point difference and Kirkendall effect with the nano-limiting effect of the carbon structure. This core-shell C@In2 O3 @Bi50 catalyst can selectively reduce CO2 to formate with high selectivity (≈90% faradaic efficiency), large partial current density (24.53 mA cm-2 at -1.36 V), and long-term stability (up to 14.5 h), superior to most of the Bi-based catalysts. The hybrid Bi/In2 O3 interfaces of core-shell C@In2 O3 @Bi will stabilize the key intermediate HCOO* and suppress CO poisoning, benefiting the CO2 RR selectivity and stability, while the internal cavity of core-shell structure will improve the reaction kinetics because of the large specific surface area and the enhancement of ion shuttle and electron transfer. Furthermore, the nano-limited domain effect of outmost carbon prevent active components from oxidation and agglomeration, helpful for stabilizing the catalyst. This work offers valuable insights into core-shell structure engineering to promote practical CO2 conversion technology.

9.
Chemphyschem ; 24(10): e202200775, 2023 May 16.
Article in English | MEDLINE | ID: mdl-36807687

ABSTRACT

The sensing response of metal oxides activated with noble metal nanoparticles is significantly influenced by changes to the chemical state of corresponding elements under operating conditions. Here, a PdO/rh-In2 O3 consisting of PdO nanoparticles loaded onto rhombohedral In2 O3 was studied as a gas sensor for H2 gas (100-40000 ppm in an oxygen-free atmosphere) in the temperature range of 25-450 °C. The phase composition and chemical state of elements were examined by resistance measurements combined with synchrotron-based in situ X-ray diffraction and ex situ X-ray photoelectron spectroscopy. As found, PdO/rh-In2 O3 undergoes a series of structural and chemical transformations during operation: from PdO to Pd/PdHx and finally to the intermetallic Inx Pdy phase. The maximal sensing response (RN2 /RH2 ) of ∼5 ⋅ 107 towards 40000 ppm (4 vol %) H2 at 70 °C is correlated with the formation of PdH0.706 /Pd. The Inx Pdy intermetallic compounds formed around 250 °C significantly decrease the sensing response.

10.
Sensors (Basel) ; 23(3)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36772203

ABSTRACT

Methane (CH4), as the main component of natural gas and coal mine gas, is widely used in daily life and industrial processes and its leakage always causes undesirable misadventures. Thus, the rapid detection of low concentration methane is quite necessary. However, due to its robust chemical stability resulting from the strong tetrahedral-symmetry structure, the methane molecules are usually chemically inert to the sensing layers in detectors, making the rapid and efficient alert a big challenge. In this work, palladium nanoparticles (Pd NPs) embedded indium oxide porous hollow tubes (In2O3 PHTs) were successfully synthesized using Pd@MIL-68 (In) MOFs as precursors. All In2O3-based samples derived from Pd@MIL-68 (In) MOFs inherited the morphology of the precursors and exhibited the feature of hexagonal hollow tubes with porous architecture. The gas-sensing performances to 5000 ppm CH4 were evaluated and it was found that Pd@In2O3-2 gave the best response (Ra/Rg = 23.2) at 370 °C, which was 15.5 times higher than that of pristine-In2O3 sensors. In addition, the sensing materials also showed superior selectivity against interfering gases and a rather short response/recovery time of 7 s/5 s. The enhancement in sensing performances of Pd@In2O3-2 could be attributed to the large surface area, rich porosity, abundant oxygen vacancies and the catalytic function of Pd NPs.

11.
Sensors (Basel) ; 23(3)2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36772557

ABSTRACT

The nature of the constituent components of composite materials can significantly affect the character of their interaction with the gas phase. In this work, nanocrystalline In2O3 was synthesized by the chemical precipitation method and was modified using reduced graphene oxide (rGO). The obtained composites were characterized by several analysis techniques-XRD, TEM, SEM, FTIR and Raman spectroscopy, XPS, TGA, and DRIFTS. The XPS and FTIR and Raman spectroscopy results suggested the formation of interfacial contact between In2O3 and rGO. The results of the gas sensor's properties showed that additional UV illumination led to a decrease in resistance and an increase in sensor response at room temperature. However, the presence of humidity at room temperature led to the disappearance of the response for pure In2O3, while for the composites, an inversion of the sensor response toward ammonia was observed. The main reason may have been the formation of NH4NO3 intermediates with further hydrolysis and decomposition under light illumination with the formation of nitrite and nitrate species. The presence of these species was verified by in situ DRIFT spectroscopy. Their strong electron-accepting properties lead to an increase in resistance, which possibly affected the sensor signal's inversion.

12.
Int J Mol Sci ; 24(2)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36675093

ABSTRACT

The paper considers the relationship between the structure and properties of nanostructured conductometric sensors based on binary mixtures of semiconductor oxides designed to detect reducing gases in the environment. The sensor effect in such systems is determined by the chemisorption of molecules on the surface of catalytically active particles and the transfer of chemisorbed products to electron-rich nanoparticles, where these products react with the analyzed gas. In this regard, the role is evaluated of the method of synthesizing the composites, the catalytic activity of metal oxides (CeO2, SnO2, ZnO), and the type of conductivity of metal oxides (Co3O4, ZrO2) in the sensor process. The effect of oxygen vacancies present in the composites on the performance characteristics is also considered. Particular attention is paid to the influence of the synthesis procedure for preparing sensitive layers based on CeO2-In2O3 on the structure of the resulting composites, as well as their conductive and sensor properties.


Subject(s)
Nanoparticles , Oxides , Oxides/chemistry , Gases/chemistry
13.
Int J Mol Sci ; 24(9)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37175664

ABSTRACT

The efficient degradation of organic effluent is always desirable when using advanced photocatalysts with enhanced activity under visible light. Nickel-doped indium oxide (Ni-In2O3) is synthesized via a hydrothermal route as well as its composites with reduced graphene oxide (rGO). Facile synthesis and composite formation methods lead to a well-defined morphology of fabricated nanocomposite at low temperatures. The bandgap energy of indium oxide lies in the range of 3.00-4.30 eV. Its high light absorption capacity, high stability, and non-toxicity make it a choice as a photocatalyst that is active under visible light. The transition metal Ni-doping changes the indium oxide's chemical, optical, and physicochemical properties. The Ni-In2O3 and rGO composites improved the charge transport and reduced the charge recombination. The phase analysis of the developed photocatalysts was performed using X-ray diffraction (XRD), and the morphological and structural properties were observed using advanced microscopic techniques (SEM and TEM), while UV-vis and FTIR spectroscopic techniques were used to confirm the structure and optical and chemical properties. The electrochemical properties of the photocatalysts were investigated using cyclic voltammetry (CV), linear sweep voltammetry (LSV), and electrochemical impedance spectroscopy (EIS), and the charge-transfer properties of the obtained photocatalysts and the mechanism of the photocatalytic degradation mechanism of methylene blue, a common dye used in the dyeing industry, were determined.


Subject(s)
Environmental Pollutants , Nanoparticles , Wastewater , Oxides/chemistry , Light , Nanoparticles/chemistry
14.
Angew Chem Int Ed Engl ; 62(34): e202301901, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37395563

ABSTRACT

Construction of a "net-zero-emission" system through CO2 hydrogenation to methanol with solar energy is an eco-friendly way to mitigate the greenhouse effect. Traditional CO2 hydrogenation demands centralized mass production for cost reduction with mass water electrolysis for hydrogen supply. To achieve continuous reaction with intermittent and fluctuating flow of H2 on a small-scale for distributed application scenarios, modulating the catalyst interface environment and chemical adsorption capacity to adapt fluctuating reaction conditions is highly desired. This paper describes a distributed clean CO2 utilization system in which the surface structure of catalysts is carefully regulated. The Ni catalyst with unsaturated electrons loaded on In2 O3 can reduce the dissociation energy of H2 to overcome the slow response of intermittent H2 supply, exhibiting a faster response (12 min) than bare oxide catalysts (42 min). Moreover, the introduction of Ni enhances the sensitivity of the catalyst to hydrogen, yielding a Ni/In2 O3 catalyst with a good performance at lower H2 concentrations with a 15 times adaptability for wider hydrogen fluctuation range than In2 O3 , greatly reducing the negative impact of unstable H2 supplies derived from renewable energies.

15.
Part Fibre Toxicol ; 19(1): 69, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36539793

ABSTRACT

BACKGROUND: Many studies have shown that occupational exposure to indium and its compounds could induce lung disease. Although animal toxicological studies and human epidemiological studies suggest indium exposure may cause lung injury, inflammation, pulmonary fibrosis, emphysema, pulmonary alveolar proteinosis, and even lung cancer, related data collected from humans is currently limited and confined to single workplaces, and the early effects of exposure on the lungs are not well understood. OBJECTIVES: This study combined population studies and animal experiments to examine the links of indium with pulmonary injury, as well as its mechanism of action. A cross-sectional epidemiological study of indium-exposed workers from China was conducted to evaluate associations between occupational indium exposure and serum biomarkers of early effect. This study also compares and analyzes the causal perspectives of changes in human serum biomarkers induced by indium compound exposure and indium exposure-related rat lung pathobiology, and discusses possible avenues for their recognition and prevention. METHODS: This is a study of 57 exposed (at least 6 h per day for one year) workers from an indium ingot production plant, and 63 controls. Indium concentration in serum, urine, and airborne as exposure indices were measured by inductively coupled plasma-mass spectrometry. Sixteen serum biomarkers of pulmonary injury, inflammation, and oxidative stress were measured using ELISA. The associations between serum indium and 16 serum biomarkers were analyzed to explore the mechanism of action of indium on pulmonary injury in indium-exposed workers. Animal experiments were conducted to measure inflammatory factors levels in bronchoalveolar lavage fluid (BALF) and lung tissue protein expressions in rats. Four different forms of indium compound-exposed rat models were established (intratracheal instillation twice per week, 8 week exposure, 8 week recovery). Model I: 0, 1.2, 3, and 6 mg/kg bw indium tin oxide group; Model II: 0, 1.2, 3, and 6 mg/kg bw indium oxide (In2O3) group; Model III: 0, 0.523, 1.046, and 2.614 mg/kg bw indium sulfate (In2(SO4)3) group; Model IV: 0, 0.065, 0.65, and 1.3 mg/kg bw indium trichloride (InCl3) group. Lung pathological changes were assessed by hematoxylin & eosin, periodic acid Schiff, and Masson's staining, transmission electron microscopy, and the protein changes were determined by immunohistochemistry. RESULTS: In the production workshop, the airborne indium concentration was 78.4 µg/m3. The levels of serum indium and urine indium in indium-exposed workers were 39.3 µg/L and 11.0 ng/g creatinine. Increased lung damage markers, oxidative stress markers, and inflammation markers were found in indium-exposed workers. Serum indium levels were statistically and positively associated with the serum levels of SP-A, IL-1ß, IL-6 in indium-exposed workers. Among them, SP-A showed a duration-response pattern. The results of animal experiments showed that, with an increase in dosage, indium exposure significantly increased the levels of serum indium and lung indium, as well as the BALF levels of IL­1ß, IL­6, IL­10, and TNF­α and up-regulated the protein expression of SP-A, SP-D, KL-6, GM-CSF, NF-κB p65, and HO-1 in all rat models groups. TEM revealed that In2(SO4)3 and InCl3 are soluble and that no particles were found in lung tissue, in contrast to the non-soluble compounds (ITO and In2O3). No PAS-staining positive substance was found in the lung tissue of In2(SO4)3 and InCl3 exposure groups, whereas ITO and In2O3 rat models supported findings of pulmonary alveolar proteinosis and interstitial fibrosis seen in human indium lung disease. ITO and InCl3 can accelerate interstitial fibrosis. Findings from our in vivo studies demonstrated that intra-alveolar accumulation of surfactant (immunohistochemistry) and characteristic cholesterol clefts granulomas of indium lung disease (PAS staining) were triggered by a specific form of indium (ITO and In2O3). CONCLUSIONS: In indium-exposed workers, biomarker findings indicated lung damage, oxidative stress and an inflammatory response. In rat models of the four forms of indium encountered in a workplace, the biomarkers response to all compounds overall corresponded to that in humans. In addition, pulmonary alveolar proteinosis was found following exposure to indium tin oxide and indium oxide in the rat models, and interstitial fibrosis was found following exposure to indium tin oxide and indium trichloride, supporting previous report of human disease. Serum SP-A levels were positively associated with indium exposure and may be considered a potential biomarker of exposure and effect in exposed workers.


Subject(s)
Lung Injury , Pulmonary Alveolar Proteinosis , Pulmonary Fibrosis , Humans , Rats , Animals , Pulmonary Alveolar Proteinosis/chemically induced , Pulmonary Alveolar Proteinosis/pathology , Indium/toxicity , Indium/chemistry , Cross-Sectional Studies , Rodentia , Interleukin-6 , Inflammation , Biomarkers
16.
Mikrochim Acta ; 189(11): 431, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36284001

ABSTRACT

A highly sensitive kanamycin electrochemiluminescence (ECL) switch sensor was constructed. A signal element consisting of ordered mesoporous carbon loaded with indium oxide nanoparticles/carbon quantum dots (OMC/In2O3/C-dots) was assembled on the surface of a gold electrode. Then, a molecularly imprinted polymer (MIP) was prepared on the modified electrode surface using kanamycin as the template molecule and o-aminophenol as the functional monomer. After kanamycin elution, the prepared sensor retained specific kanamycin recognition sites. OMC/In2O3 effectively amplified the ECL signal of the C-dots, thereby enhancing the detection sensitivity, whereas kanamycin quenched the signal. Therefore, the imprinted sites acted as a switch, providing a new method for detecting kanamycin. Under the optimal experimental conditions, the concentration of kanamycin was proportional to the degree of ECL quenching within a linear range of 5-4500 × 10-12 mol L-1 at 0.8 V (vs. Ag/AgCl electrode electrode), and the detection limit was 5.8 × 10-13 mol L-1. When applied to the detection of kanamycin in actual samples, such as chicken, duck, pork, and milk, the recovery for spiked samples was in the range 92.7-110%.


Subject(s)
Molecular Imprinting , Nanoparticles , Quantum Dots , Kanamycin , Carbon , Molecular Imprinting/methods , Molecularly Imprinted Polymers , Gold
17.
Sensors (Basel) ; 22(19)2022 Oct 02.
Article in English | MEDLINE | ID: mdl-36236585

ABSTRACT

Acetylene detection plays an important role in fault diagnosis of power transformers. However, the available dissolved gas analysis (DGA) techniques have always relied on bulky instruments and are time-consuming. Herein, a high-performance acetylene sensor was fabricated on a microhotplate chip using In2O3 as the sensing material. To achieve high sensing response to acetylene, Pd-Ag core-shell nanoparticles were synthesized and used as catalysts. The transmission electron microscopy (TEM) image clearly shows that the Ag shell is deposited on one face of the cubic Pd nanoseeds. By loading the Pd-Ag bimetallic catalyst onto the surface of In2O3 sensing material, the acetylene sensor has been fabricated for acetylene detection. Due to the high catalytic performance of Pd-Ag bimetallic nanoparticles, the microhotplate sensor has a high response to acetylene gas, with a limit of detection (LOD) of 10 ppb. In addition to high sensitivity, the fabricated microhotplate sensor exhibits satisfactory selectivity, good repeatability, and fast response to acetylene. The high performance of the microhotplate sensor for acetylene gas indicates the application potential of trace acetylene detection in power transformer fault diagnosis.

18.
Nano Lett ; 21(3): 1311-1319, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33493396

ABSTRACT

Herein is developed a ternary heterostructured catalyst, based on a periodic array of 1D TiN nanotubes, with a TiO2 nanoparticulate intermediate layer and a In2O3-x(OH)y nanoparticulate shell for improved performance in the photocatalytic reverse water gas shift reaction. It is demonstrated that the ordering of the three components in the heterostructure sensitively determine its activity in CO2 photocatalysis. Specifically, TiN nanotubes not only provide a photothermal driving force for the photocatalytic reaction, owing to their strong optical absorption properties, but they also serve as a crucial scaffold for minimizing the required quantity of In2O3-x(OH)y nanoparticles, leading to an enhanced CO production rate. Simultaneously, the TiO2 nanoparticle layer supplies photogenerated electrons and holes that are transferred to active sites on In2O3-x(OH)y nanoparticles and participate in the reactions occurring at the catalyst surface.

19.
Nano Lett ; 21(1): 500-506, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33372788

ABSTRACT

In this work, we demonstrate enhancement-mode field-effect transistors by an atomic-layer-deposited (ALD) amorphous In2O3 channel with thickness down to 0.7 nm. Thickness is found to be critical on the materials and electron transport of In2O3. Controllable thickness of In2O3 at atomic scale enables the design of sufficient 2D carrier density in the In2O3 channel integrated with the conventional dielectric. The threshold voltage and channel carrier density are found to be considerably tuned by channel thickness. Such a phenomenon is understood by the trap neutral level (TNL) model, where the Fermi-level tends to align deeply inside the conduction band of In2O3 and can be modulated to the bandgap in atomic layer thin In2O3 due to the quantum confinement effect, which is confirmed by density function theory (DFT) calculation. The demonstration of enhancement-mode amorphous In2O3 transistors suggests In2O3 is a competitive channel material for back-end-of-line (BEOL) compatible transistors and monolithic 3D integration applications.

20.
Int J Mol Sci ; 23(21)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36361699

ABSTRACT

Solution-grown indium oxide (In2O3) based thin-film transistors (TFTs) hold good prospects for emerging advanced electronics due to their excellent mobility, prominent transparency, and possibility of low-cost and scalable manufacturing; however, pristine In2O3 TFTs suffer from poor switching characteristics due to intrinsic oxygen-vacancy-related defects and require external doping. According to Shanmugam's theory, among potential dopants, phosphorus (P) has a large dopant-oxygen bonding strength (EM-O) and high Lewis acid strength (L) that would suppress oxygen-vacancy related defects and mitigate dopant-induced carrier scattering; however, P-doped In2O3 (IPO) TFTs have not yet been demonstrated. Here, we report aqueous solution-grown crystalline IPO TFTs for the first time. It is suggested that the incorporation of P could effectively inhibit oxygen-vacancy-related defects while maintaining high mobility. This work experimentally demonstrates that dopant with high EM-O and L is promising for emerging oxide TFTs.


Subject(s)
Phosphorus , Transistors, Electronic , Indium/chemistry , Oxygen
SELECTION OF CITATIONS
SEARCH DETAIL