Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
J Cell Sci ; 135(24)2022 12 15.
Article in English | MEDLINE | ID: mdl-36546396

ABSTRACT

Pancreatic cancer is a deadly and highly metastatic disease, although how metastatic lesions establish is not fully understood. A key feature of pancreatic tumours is extensive fibrosis and deposition of extracellular matrix (ECM). While pancreatic cancer cells are programmed by stimuli derived from a stiff ECM, metastasis requires loss of attachment and adaptation to a softer microenvironment at distant sites. Growing evidence suggests that stiff ECM influences pancreatic cancer cell behaviour. Here, we argue that this influence is reversible and that pancreatic cancer cells can be reprogrammed upon sensing soft substrates. Using engineered polyacrylamide hydrogels with tuneable mechanical properties, we show that collagen VI is specifically upregulated in pancreatic cancer cells on soft substrates, due to a lack of integrin engagement. Furthermore, the expression of collagen VI is inversely correlated with mechanosensing and activity of YAP (also known as YAP1), which might be due to a direct or indirect effect on transcription of genes encoding collagen VI. Collagen VI supports migration in vitro and metastasis formation in vivo. Metastatic nodules formed by pancreatic cancer cells lacking Col6a1 display stromal cell-derived collagen VI deposition, suggesting that collagen VI derived from either cancer cells or the stroma is an essential component of the metastatic niche. This article has an associated First Person interview with Vasileios Papalazarou, joint first author of the paper.


Subject(s)
Collagen , Pancreatic Neoplasms , Humans , Collagen/metabolism , Extracellular Matrix/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Integrins/metabolism , Tumor Microenvironment , Pancreatic Neoplasms
2.
Proc Natl Acad Sci U S A ; 117(39): 24326-24335, 2020 09 29.
Article in English | MEDLINE | ID: mdl-32929022

ABSTRACT

Kindlin-3 (K3)-mediated integrin adhesion controls homing and bone marrow (BM) retention of normal hematopoietic cells. However, the role of K3 in leukemic stem cell (LSC) retention and growth in the remodeled tumor-promoting BM is unclear. We report that loss of K3 in a mouse model of chronic myeloid leukemia (CML) triggers the release of LSCs from the BM into the circulation and impairs their retention, proliferation, and survival in secondary organs, which curbs CML development, progression, and metastatic dissemination. We found de novo expression of cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) on CML-LSCs but not normal hematopoietic stem cells and this enabled us to specifically deplete K3 with a CTLA-4-binding RNA aptamer linked to a K3-siRNA (small interfering RNA) in CTLA-4+ LSCs in vivo, which mobilized LSCs in the BM, induced disease remission, and prolonged survival of mice with CML. Thus, disrupting interactions of LSCs with the BM environment is a promising strategy to halt the disease-inducing and relapse potential of LSCs.


Subject(s)
Bone Marrow/metabolism , Cytoskeletal Proteins/deficiency , Leukemia, Myeloid/metabolism , Neoplastic Stem Cells/metabolism , Animals , CTLA-4 Antigen/genetics , CTLA-4 Antigen/metabolism , Cell Movement , Cytoskeletal Proteins/genetics , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/metabolism , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Humans , Leukemia, Myeloid/genetics , Leukemia, Myeloid/physiopathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Neoplastic Stem Cells/cytology , Stem Cell Niche , Tumor Microenvironment
3.
J Am Soc Nephrol ; 33(4): 786-808, 2022 04.
Article in English | MEDLINE | ID: mdl-35260418

ABSTRACT

BACKGROUND: The cell-matrix adhesion between podocytes and the glomerular basement membrane is essential for the integrity of the kidney's filtration barrier. Despite increasing knowledge about the complexity of integrin adhesion complexes, an understanding of the regulation of these protein complexes in glomerular disease remains elusive. METHODS: We mapped the in vivo composition of the podocyte integrin adhesome. In addition, we analyzed conditional knockout mice targeting a gene (Parva) that encodes an actin-binding protein (α-parvin), and murine disease models. To evaluate podocytes in vivo, we used super-resolution microscopy, electron microscopy, multiplex immunofluorescence microscopy, and RNA sequencing. We performed functional analysis of CRISPR/Cas9-generated PARVA single knockout podocytes and PARVA and PARVB double knockout podocytes in three- and two-dimensional cultures using specific extracellular matrix ligands and micropatterns. RESULTS: We found that PARVA is essential to prevent podocyte foot process effacement, detachment from the glomerular basement membrane, and the development of FSGS. Through the use of in vitro and in vivo models, we identified an inherent PARVB-dependent compensatory module at podocyte integrin adhesion complexes, sustaining efficient mechanical linkage at the filtration barrier. Sequential genetic deletion of PARVA and PARVB induces a switch in structure and composition of integrin adhesion complexes. This redistribution of these complexes translates into a loss of the ventral actin cytoskeleton, decreased adhesion capacity, impaired mechanical resistance, and dysfunctional extracellular matrix assembly. CONCLUSIONS: The findings reveal adaptive mechanisms of podocyte integrin adhesion complexes, providing a conceptual framework for therapeutic strategies to prevent podocyte detachment in glomerular disease.


Subject(s)
Glomerular Filtration Barrier , Microfilament Proteins , Podocytes , Animals , Glomerular Filtration Barrier/metabolism , Integrins/metabolism , Mice , Mice, Knockout , Microfilament Proteins/metabolism , Podocytes/metabolism
4.
J Nanobiotechnology ; 20(1): 418, 2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36123687

ABSTRACT

The cell/microenvironment interface is the starting point of integrin-mediated mechanotransduction, but many details of mechanotransductive signal integration remain elusive due to the complexity of the involved (extra)cellular structures, such as the glycocalyx. We used nano-bio-interfaces reproducing the complex nanotopographical features of the extracellular matrix to analyse the glycocalyx impact on PC12 cell mechanosensing at the nanoscale (e.g., by force spectroscopy with functionalised probes). Our data demonstrates that the glycocalyx configuration affects spatio-temporal nanotopography-sensitive mechanotransductive events at the cell/microenvironment interface. Opposing effects of major glycocalyx removal were observed, when comparing flat and specific nanotopographical conditions. The excessive retrograde actin flow speed and force loading are strongly reduced on certain nanotopographies upon strong reduction of the native glycocalyx, while on the flat substrate we observe the opposite trend. Our results highlight the importance of the glycocalyx configuration in a molecular clutch force loading-dependent cellular mechanism for mechanosensing of microenvironmental nanotopographical features.


Subject(s)
Glycocalyx , Mechanotransduction, Cellular , Actins , Glycocalyx/physiology , Integrins , Perception
5.
J Biol Chem ; 294(46): 17354-17370, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31591270

ABSTRACT

Arf GAP with Src homology 3 domain, ankyrin repeat, and pleckstrin homology (PH) domain 1 (ASAP1) is a multidomain GTPase-activating protein (GAP) for ADP-ribosylation factor (ARF)-type GTPases. ASAP1 affects integrin adhesions, the actin cytoskeleton, and invasion and metastasis of cancer cells. ASAP1's cellular function depends on its highly-regulated and robust ARF GAP activity, requiring both the PH and the ARF GAP domains of ASAP1, and is modulated by phosphatidylinositol 4,5-bisphosphate (PIP2). The mechanistic basis of PIP2-stimulated GAP activity is incompletely understood. Here, we investigated whether PIP2 controls binding of the N-terminal extension of ARF1 to ASAP1's PH domain and thereby regulates its GAP activity. Using [Δ17]ARF1, lacking the N terminus, we found that PIP2 has little effect on ASAP1's activity. A soluble PIP2 analog, dioctanoyl-PIP2 (diC8PIP2), stimulated GAP activity on an N terminus-containing variant, [L8K]ARF1, but only marginally affected activity on [Δ17]ARF1. A peptide comprising residues 2-17 of ARF1 ([2-17]ARF1) inhibited GAP activity, and PIP2-dependently bound to a protein containing the PH domain and a 17-amino acid-long interdomain linker immediately N-terminal to the first ß-strand of the PH domain. Point mutations in either the linker or the C-terminal α-helix of the PH domain decreased [2-17]ARF1 binding and GAP activity. Mutations that reduced ARF1 N-terminal binding to the PH domain also reduced the effect of ASAP1 on cellular actin remodeling. Mutations in the ARF N terminus that reduced binding also reduced GAP activity. We conclude that PIP2 regulates binding of ASAP1's PH domain to the ARF1 N terminus, which may partially regulate GAP activity.


Subject(s)
ADP-Ribosylation Factor 1/genetics , ADP-Ribosylation Factors/genetics , Adaptor Proteins, Signal Transducing/genetics , Phosphatidylinositol 4,5-Diphosphate/genetics , ADP-Ribosylation Factor 1/chemistry , ADP-Ribosylation Factors/chemistry , Actins/chemistry , Actins/genetics , Adaptor Proteins, Signal Transducing/chemistry , GTPase-Activating Proteins/chemistry , GTPase-Activating Proteins/genetics , Humans , Neoplasms/genetics , Phosphatidylinositol 4,5-Diphosphate/chemistry , Pleckstrin Homology Domains/genetics , Point Mutation/genetics , Protein Binding/genetics
6.
J Cell Sci ; 129(22): 4159-4163, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27799358

ABSTRACT

The adhesion nexus is the site at which integrin receptors bridge intracellular cytoskeletal and extracellular matrix networks. The connection between integrins and the cytoskeleton is mediated by a dynamic integrin adhesion complex (IAC), the components of which transduce chemical and mechanical signals to control a multitude of cellular functions. In this Cell Science at a Glance article and the accompanying poster, we integrate the consensus adhesome, a set of 60 proteins that have been most commonly identified in isolated IAC proteomes, with the literature-curated adhesome, a theoretical network that has been assembled through scholarly analysis of proteins that localise to IACs. The resulting IAC network, which comprises four broad signalling and actin-bridging axes, provides a platform for future studies of the regulation and function of the adhesion nexus in health and disease.


Subject(s)
Integrins/metabolism , Proteome/metabolism , Animals , Cell Adhesion , Disease , Humans
7.
Brain Behav Immun ; 61: 80-95, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28011263

ABSTRACT

A growing body of evidence indicates that prenatal alcohol exposure (PAE) may predispose individuals to secondary medical disabilities later in life. Animal models of PAE reveal neuroimmune sequelae such as elevated brain astrocyte and microglial activation with corresponding region-specific changes in immune signaling molecules such as cytokines and chemokines. The aim of this study was to evaluate the effects of moderate PAE on the development and maintenance of allodynia induced by chronic constriction injury (CCI) of the sciatic nerve in adult male rat offspring. Because CCI allodynia requires the actions of glial cytokines, we analyzed lumbar spinal cord glial and immune cell surface markers indicative of their activation levels, as well as sciatic nerve and dorsal root ganglia (DRG) cytokines in PAE offspring in adulthood. While PAE did not alter basal sensory thresholds before or after sham manipulations, PAE significantly potentiated adult onset and maintenance of allodynia. Microscopic analysis revealed exaggerated astrocyte and microglial activation, while flow cytometry data demonstrated increased proportions of immune cells with cell surface major histocompatibility complex II (MHCII) and ß-integrin adhesion molecules, which are indicative of PAE-induced immune cell activation. Sciatic nerves from CCI rats revealed that PAE potentiated the proinflammatory cytokines interleukin (IL)-1ß, IL-6 and tumor necrosis factor-alpha (TNFα) protein levels with a simultaneous robust suppression of the anti-inflammatory cytokine, IL-10. A profound reduction in IL-10 expression in the DRG of PAE neuropathic rats was also observed. Taken together, our results provide novel insights into the vulnerability that PAE produces for adult-onset central nervous system (CNS) pathological conditions from peripheral nerve injury.


Subject(s)
Cytokines/metabolism , Ethanol/administration & dosage , Ganglia, Spinal/metabolism , Microglia/metabolism , Neuralgia/metabolism , Prenatal Exposure Delayed Effects/metabolism , Sciatic Nerve/metabolism , Animals , Astrocytes/metabolism , Female , Ganglia, Spinal/physiopathology , Hyperalgesia/metabolism , Hyperalgesia/physiopathology , Male , Neuralgia/physiopathology , Pain Measurement , Pregnancy , Prenatal Exposure Delayed Effects/physiopathology , Rats , Rats, Long-Evans , Sciatic Nerve/physiopathology , Spinal Cord/metabolism , Spinal Cord/physiopathology
8.
Cells ; 13(9)2024 May 02.
Article in English | MEDLINE | ID: mdl-38727316

ABSTRACT

Epithelial-mesenchymal transition (EMT) is a process during which epithelial cells lose epithelial characteristics and gain mesenchymal features. Here, we used several cell models to study migratory activity and redistribution of cell-cell adhesion proteins in cells in different EMT states: EGF-induced EMT of epithelial IAR-20 cells; IAR-6-1 cells with a hybrid epithelial-mesenchymal phenotype; and their more mesenchymal derivatives, IAR-6-1-DNE cells lacking adherens junctions. In migrating cells, the cell-cell adhesion protein α-catenin accumulated at the leading edges along with ArpC2/p34 and α-actinin. Suppression of α-catenin shifted cell morphology from fibroblast-like to discoid and attenuated cell migration. Expression of exogenous α-catenin in MDA-MB-468 cells devoid of α-catenin drastically increased their migratory capabilities. The Y654 phosphorylated form of ß-catenin was detected at integrin adhesion complexes (IACs). Co-immunoprecipitation studies indicated that α-catenin and pY654-ß-catenin were associated with IAC proteins: vinculin, zyxin, and α-actinin. Taken together, these data suggest that in cells undergoing EMT, catenins not participating in assembly of adherens junctions may affect cell migration.


Subject(s)
Actin Cytoskeleton , Cell Movement , Epithelial-Mesenchymal Transition , Animals , Actin Cytoskeleton/metabolism , Actinin/metabolism , Adherens Junctions/metabolism , alpha Catenin/metabolism , beta Catenin/metabolism , Cell Adhesion , Cell Line, Tumor , Epithelial Cells/metabolism , Integrins/metabolism , Phosphorylation , Vinculin/metabolism , Zyxin/metabolism , Rats
9.
Trends Cell Biol ; 33(3): 204-220, 2023 03.
Article in English | MEDLINE | ID: mdl-36055943

ABSTRACT

Detection and conversion of mechanical forces into biochemical signals is known as mechanotransduction. From cells to tissues, mechanotransduction regulates migration, proliferation, and differentiation in processes such as immune responses, development, and cancer progression. Mechanosensitive structures such as integrin adhesions, the actin cortex, ion channels, caveolae, and the nucleus sense and transmit forces. In vitro approaches showed that mechanosensing is based on force-dependent protein deformations and reorganizations. However, the mechanisms in cells remained unclear since cell imaging techniques lacked molecular resolution. Thanks to recent developments in super-resolution microscopy (SRM) and molecular force sensors, it is possible to obtain molecular insight of mechanosensing in live cells. We discuss how understanding of molecular mechanotransduction was revolutionized by these innovative approaches, focusing on integrin adhesions, actin structures, and the plasma membrane.


Subject(s)
Actins , Mechanotransduction, Cellular , Humans , Mechanotransduction, Cellular/physiology , Actins/metabolism , Cytoskeleton/metabolism , Integrins/metabolism , Microscopy , Cell Adhesion , Actin Cytoskeleton/metabolism
10.
Methods Mol Biol ; 2600: 283-289, 2023.
Article in English | MEDLINE | ID: mdl-36587104

ABSTRACT

The ligand-receptor complexes in the cell-cell and cell-ECM interfaces mediate the mechanical coupling of cells to their microenvironment and transduce downstream signals to modulate cell functions. In this chapter I describe a microfabrication strategy to prepare a substrate of spatially segregated supported lipid bilayers and ECM components on which cells can form juxtacrine receptor signaling complexes and integrin adhesions simultaneously. This platform is specifically applicable for microscopically monitoring the signal transduction of each receptor, as well as the modulatory effects of receptor signaling on integrin adhesions and cell behaviors.


Subject(s)
Lipid Bilayers , Signal Transduction , Lipid Bilayers/chemistry , Cell Adhesion/physiology , Signal Transduction/physiology , Cell Membrane/metabolism , Integrins/metabolism
11.
Biomedicines ; 12(1)2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38255186

ABSTRACT

Prostate cancer is among the top five cancer types according to incidence and mortality. One of the main obstacles in prostate cancer management is the inability to foresee its course, which ranges from slow growth throughout years that requires minimum or no intervention to highly aggressive disease that spreads quickly and resists treatment. Therefore, it is not surprising that numerous studies have attempted to find biomarkers of prostate cancer occurrence, risk stratification, therapy response, and patient outcome. However, only a few prostate cancer biomarkers are used in clinics, which shows how difficult it is to find a novel biomarker. Cell adhesion to the extracellular matrix (ECM) through integrins is among the essential processes that govern its fate. Upon activation and ligation, integrins form multi-protein intracellular structures called integrin adhesion complexes (IACs). In this review article, the focus is put on the biomarker potential of the ECM- and IAC-related molecules stemming from both body fluids and prostate cancer tissue. The processes that they are involved in, such as tumor stiffening, bone turnover, and communication via exosomes, and their biomarker potential are also reviewed.

12.
Heliyon ; 9(4): e15282, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37089315

ABSTRACT

Integrin Adhesion Complexes (IACs) serve as links between the cytoskeleton and extracellular environment, acting as mechanosensing and signaling hubs. As such, IACs participate in many aspects of cellular motility, tissue morphogenesis, anchorage-dependent growth and cell survival. Focal Adhesion Kinase (FAK) has emerged as a critical organizer of IAC signaling events due to its early recruitment and diverse substrates, and thus has become a genetic and therapeutic target. Here we present the design and characterization of simple, reversible, and scalable Bimolecular Complementation sensors to monitor FAK phosphorylation in living cells. These probes provide novel means to quantify IAC signaling, expanding on the currently available toolkit for interrogating FAK phosphorylation during diverse cellular processes.

13.
Biomedicines ; 11(7)2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37509645

ABSTRACT

Prostate cancer is a heterogeneous disease, and one of the main obstacles in its management is the inability to foresee its course. Therefore, novel biomarkers are needed that will guide the treatment options. The extracellular matrix (ECM) is an important part of the tumor microenvironment that largely influences cell behavior. ECM components are ligands for integrin receptors which are involved in every step of tumor progression. An underlying characteristic of integrin activation and ligation is the formation of integrin adhesion complexes (IACs), intracellular structures that carry information conveyed by integrins. By using The Cancer Genome Atlas data, we show that the expression of ECM- and IACs-related genes is changed in prostate cancer. Moreover, machine learning methods revealed that they are a source of biomarkers for progression-free survival of patients that are stratified according to the Gleason score. Namely, low expression of FMOD and high expression of PTPN2 genes are associated with worse survival of patients with a Gleason score lower than 9. The FMOD gene encodes protein that may play a role in the assembly of the ECM and the PTPN2 gene product is a protein tyrosine phosphatase activated by integrins. Our results suggest potential biomarkers of prostate cancer progression.

14.
Elife ; 122023 08 16.
Article in English | MEDLINE | ID: mdl-37585334

ABSTRACT

Endothelial cell interactions with their extracellular matrix are essential for vascular homeostasis and expansion. Large-scale proteomic analyses aimed at identifying components of integrin adhesion complexes have revealed the presence of several RNA binding proteins (RBPs) of which the functions at these sites remain poorly understood. Here, we explored the role of the RBP SAM68 (Src associated in mitosis, of 68 kDa) in endothelial cells. We found that SAM68 is transiently localized at the edge of spreading cells where it participates in membrane protrusive activity and the conversion of nascent adhesions to mechanically loaded focal adhesions by modulation of integrin signaling and local delivery of ß-actin mRNA. Furthermore, SAM68 depletion impacts cell-matrix interactions and motility through induction of key matrix genes involved in vascular matrix assembly. In a 3D environment SAM68-dependent functions in both tip and stalk cells contribute to the process of sprouting angiogenesis. Altogether, our results identify the RBP SAM68 as a novel actor in the dynamic regulation of blood vessel networks.


Subject(s)
Adaptor Proteins, Signal Transducing , RNA , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Endothelial Cells/metabolism , Proteomics , Cell Cycle Proteins/metabolism , Integrins/metabolism , Basement Membrane/metabolism
15.
G3 (Bethesda) ; 12(7)2022 07 06.
Article in English | MEDLINE | ID: mdl-35536217

ABSTRACT

Integrin plays a crucial role in the attachment of cells to the extracellular matrix. Integrin recruits many proteins intracellularly, including a 4-protein complex (kindlin, ILK, PINCH, and parvin). Caenorhabditis elegans muscle provides an excellent model to study integrin adhesion complexes. In Caenorhabditis elegans, UNC-112 (kindlin) binds to the cytoplasmic tail of PAT-3 (ß-integrin) and to PAT-4 (ILK). We previously reported that PAT-4 binding to UNC-112 is essential for the binding of UNC-112 to PAT-3. Although there are crystal structures for ILK and a kindlin, there is no co-crystal structure available. To understand the molecular interaction between PAT-4 and UNC-112, we took a genetic approach. First, using a yeast 2-hybrid method, we isolated mutant PAT-4 proteins that cannot bind to UNC-112 and then isolated suppressor mutant UNC-112 proteins that restore interaction with mutant PAT-4 proteins. Second, we demonstrated that these mutant PAT-4 proteins cannot localize to attachment structures in nematode muscle, but upon co-expression of an UNC-112 suppressor mutant protein, mutant PAT-4 proteins could localize to attachment structures. Third, overexpression of a PAT-4 mutant results in the disorganization of adhesion plaques at muscle cell boundaries and co-expression of the UNC-112 suppressor mutant protein alleviates this defect. Thus, we demonstrate that UNC-112 binding to PAT-4 is required for the localization and function of PAT-4 in integrin adhesion complexes in vivo. The missense mutations were mapped onto homology models of PAT-4 and UNC-112, and taking into account previously isolated mutations, we suggest a surface of PAT-4 that binds to UNC-112.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Benzeneacetamides , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Integrin beta Chains/metabolism , Integrins/genetics , Integrins/metabolism , Mutant Proteins/metabolism , Protein Binding , Pyridines
16.
Curr Top Dev Biol ; 149: 203-261, 2022.
Article in English | MEDLINE | ID: mdl-35606057

ABSTRACT

Hematopoietic stem cells (HSCs), the apex of the hierarchically organized blood cell production system, are generated in the yolk sac, aorta-gonad-mesonephros region and placenta of the developing embryo. To maintain life-long hematopoiesis, HSCs emigrate from their site of origin and seed in distinct microenvironments, called niches, of fetal liver and bone marrow where they receive supportive signals for self-renewal, expansion and production of hematopoietic progenitor cells (HPCs), which in turn orchestrate the production of the hematopoietic effector cells. The interactions of hematopoietic stem and progenitor cells (HSPCs) with niche components are to a large part mediated by the integrin superfamily of adhesion molecules. Here, we summarize the current knowledge regarding the functional properties of integrins and their activators, Talin-1 and Kindlin-3, for HSPC generation, function and fate decisions during development and in adulthood. In addition, we discuss integrin-mediated mechanosensing for HSC-niche interactions, ex vivo protocols aimed at expanding HSCs for therapeutic use, and recent approaches targeting the integrin-mediated adhesion in leukemia-inducing HSCs in their protecting, malignant niches.


Subject(s)
Hematopoietic Stem Cells , Integrins , Bone Marrow , Female , Hematopoiesis , Humans , Integrins/metabolism , Mesonephros , Pregnancy
17.
J Leukoc Biol ; 111(4): 745-758, 2022 04.
Article in English | MEDLINE | ID: mdl-34888947

ABSTRACT

Integrin-mediated interactions between hematopoietic cells and their microenvironment are important for the development and function of immune cells. Here, the role of the integrin adaptor Kindlin-3 in B cell homeostasis is studied. Comparing the individual steps of B cell development in B cell-specific Kindlin-3 or alpha4 integrin knockout mice, we found in both conditions a phenotype of reduced late immature, mature, and recirculating B cells in the bone marrow. In the spleen, constitutive B cell-specific Kindlin-3 knockout caused a loss of marginal zone B cells and an unexpected expansion of follicular B cells. Alpha4 integrin deficiency did not induce this phenotype. In Kindlin-3 knockout B cells VLA-4 as well as LFA-1-mediated adhesion was abrogated, and short-term homing of these cells in vivo was redirected to the spleen. Upon inducible Kindlin-3 knockout, marginal zone B cells were lost due to defective retention within 2 weeks, while follicular B cell numbers were unaltered. Kindlin-3 deficient follicular B cells displayed higher IgD, CD40, CD44, CXCR5, and EBI2 levels, and elevated PI3K signaling upon CXCR5 stimulation. They also showed transcriptional signatures of spontaneous follicular B cell activation. This activation manifested in scattered germinal centers in situ, early plasmablasts differentiation, and signs of IgG class switch.


Subject(s)
B-Lymphocytes , Cytoskeletal Proteins , Animals , B-Lymphocytes/metabolism , Cell Adhesion/genetics , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Integrin alpha4/metabolism , Lymphocyte Function-Associated Antigen-1 , Mice , Phosphatidylinositol 3-Kinases/metabolism
18.
Elife ; 112022 01 20.
Article in English | MEDLINE | ID: mdl-35049497

ABSTRACT

Integrin adhesion complexes (IACs) are integrin-based plasma-membrane-associated compartments where cells sense environmental cues. The physical mechanisms and molecular interactions that mediate initial IAC formation are unclear. We found that both p130Cas ('Cas') and Focal adhesion kinase ('FAK') undergo liquid-liquid phase separation in vitro under physiologic conditions. Cas- and FAK- driven phase separation is sufficient to reconstitute kindlin-dependent integrin clustering in vitro with recombinant mammalian proteins. In vitro condensates and IACs in mouse embryonic fibroblasts (MEFs) exhibit similar sensitivities to environmental perturbations including changes in temperature and pH. Furthermore, mutations that inhibit or enhance phase separation in vitro reduce or increase the number of IACs in MEFs, respectively. Finally, we find that the Cas and FAK pathways act synergistically to promote phase separation, integrin clustering, IAC formation and partitioning of key components in vitro and in cells. We propose that Cas- and FAK-driven phase separation provides an intracellular trigger for integrin clustering and nascent IAC formation.


Subject(s)
Cell Adhesion Molecules/metabolism , Cell Adhesion , Fibroblasts/physiology , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Integrins/metabolism , Animals , Cell Line , Focal Adhesion Protein-Tyrosine Kinases/genetics , Integrins/genetics , Mice , Phosphorylation , Sf9 Cells , Signal Transduction
19.
Methods Mol Biol ; 2217: 57-69, 2021.
Article in English | MEDLINE | ID: mdl-33215377

ABSTRACT

Integrins are heterodimeric adhesion receptors that maintain cell-extracellular matrix (ECM) interactions in diverse tissue microenvironments. They mediate cell adhesion and signaling through the assembly of large cytoplasmic multiprotein complexes that focally connect with the cytoskeleton. Integrin adhesion complexes (IAC) are specialized by the type of integrin-ECM contact and are sensitive to mechanical forces. Thus, they encrypt context-dependent information about the microenvironment in their composition. Signals mediated through IACs modulate many aspects of cell behavior, which allows cells to adapt to their surroundings. To gain insights into their function, IACs have been isolated from cultured cells and explored by proteomics. IACs are insoluble by nature and held together by transient/weak interactions, which makes it challenging to isolate intact IACs. Usually all IACs coupled to a specified ECM, which may employ different integrins, are isolated. Here we describe an alternative method based on proximity-dependent biotin identification (BioID), where specific integrin interaction partners are labeled in live cells and isolated without the need to isolate intact IACs.


Subject(s)
Biological Assay , Carbon-Nitrogen Ligases/metabolism , Escherichia coli Proteins/metabolism , Integrin alpha Chains/metabolism , Integrin beta Chains/metabolism , Protein Interaction Mapping/methods , Recombinant Fusion Proteins/metabolism , Repressor Proteins/metabolism , Amino Acid Sequence , Animals , Biotin/chemistry , Biotin/metabolism , Biotinylation , Carbon-Nitrogen Ligases/genetics , Cell Adhesion , Cell Membrane/chemistry , Cell Membrane/metabolism , Dogs , Escherichia coli Proteins/genetics , Extracellular Matrix/chemistry , Extracellular Matrix/metabolism , Integrin alpha Chains/classification , Integrin alpha Chains/genetics , Integrin beta Chains/classification , Integrin beta Chains/genetics , Madin Darby Canine Kidney Cells , Plasmids/chemistry , Plasmids/metabolism , Protein Binding , Protein Multimerization , Recombinant Fusion Proteins/genetics , Repressor Proteins/genetics , Staining and Labeling/methods , Transfection
20.
Cell Signal ; 85: 110046, 2021 09.
Article in English | MEDLINE | ID: mdl-34004332

ABSTRACT

Acting as a bridge between the cytoskeleton of the cell and the extra cellular matrix (ECM), the cell-ECM adhesions with integrins at their core, play a major role in cell signalling to direct mechanotransduction, cell migration, cell cycle progression, proliferation, differentiation, growth and repair. Biochemically, these adhesions are composed of diverse, yet an organised group of structural proteins, receptors, adaptors, various enzymes including protein kinases, phosphatases, GTPases, proteases, etc. as well as scaffolding molecules. The major integrin adhesion complexes (IACs) characterised are focal adhesions (FAs), invadosomes (podosomes and invadopodia), hemidesmosomes (HDs) and reticular adhesions (RAs). The varied composition and regulation of the IACs and their signalling, apart from being an integral part of normal cell survival, has been shown to be of paramount importance in various developmental and pathological processes. This review per-illustrates the recent advancements in the research of IACs, their crucial roles in normal as well as diseased states. We have also touched on few of the various methods that have been developed over the years to visualise IACs, measure the forces they exert and study their signalling and molecular composition. Having such pertinent roles in the context of various pathologies, these IACs need to be understood and studied to develop therapeutical targets. We have given an update to the studies done in recent years and described various techniques which have been applied to study these structures, thereby, providing context in furthering research with respect to IAC targeted therapeutics.


Subject(s)
Focal Adhesions , Mechanotransduction, Cellular , Cell Adhesion , Extracellular Matrix/metabolism , Focal Adhesions/metabolism , Integrins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL