Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 234
Filter
Add more filters

Publication year range
1.
Exp Eye Res ; 240: 109823, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38331017

ABSTRACT

Age-related macular degeneration (AMD) is a major cause of blindness in the elderly worldwide. Multiple studies have shown that epithelial-mesenchymal transition (EMT) plays a pivotal role in the pathogenesis of AMD. Isorhamnetin (Isor) is a flavonoid compound that inhibits EMT in tumor cells. However, whether it can also attenuate EMT in the retinal pigment epithelium (RPE) is unknown. Therefore, our study was designed to probe the possible impact of Isor on EMT process in both mouse retina and ARPE-19 cells. C57BL/6 mice were utilized to establish a dry AMD model. Isor and LCZ (a mixture of luteine/ß-carotene/zinc gluconate) were administered orally for 3 months. The effects of Isor on the retina were evaluated using fundus autofluorescence, optical coherence tomography, and transmission electron microscopy. Transwell and wound healing assay were employed to assess ARPE-19 cell migration. Western blotting and immunofluorescence were used to measure the protein expressions associated with EMT, Nrf2 and AKT/GSK-3ß pathway. The findings indicated that Isor alleviated dry AMD-like pathological changes in vehicle mice retina, inhibited the migration of Ox-LDL-treated ARPE-19 cells, and repressed the EMT processes in vivo and in vitro. Furthermore, Isor activated Nrf2 pathway and deactivated AKT/GSK-3ß pathway in both vehicle mice and ARPE-19 cells. Interestingly, when Nrf2 siRNA was transfected into ARPE-19 cells, the inhibitory effect of Isor on EMT and AKT/GSK-3ß pathway was attenuated. These results suggested that Isor inhibited EMT processes via Nrf2-dependent AKT/GSK-3ß pathway and is a promising candidate for dry AMD treatment.


Subject(s)
Proto-Oncogene Proteins c-akt , Quercetin/analogs & derivatives , Signal Transduction , Humans , Mice , Animals , Aged , Proto-Oncogene Proteins c-akt/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , NF-E2-Related Factor 2/metabolism , Retinal Pigment Epithelium/metabolism , Mice, Inbred C57BL , Cell Line, Tumor , Epithelial-Mesenchymal Transition
2.
Mol Biol Rep ; 51(1): 653, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734766

ABSTRACT

Prostate cancer is a malignant epithelial tumor of the prostate gland and is the most common malignant tumor of the male genitourinary system. Pharmacological therapies, including chemotherapy and androgen deprivation therapy, play a key role in the treatment of prostate cancer. However, drug resistance and side effects limit the use of these drugs and so there is a need for new drug therapies for prostate cancer patients. Flavonoids, with their wide range of sources and diverse biological activities, have attracted much attention in the field of anti-tumor drug screening. In 2016, at least 58 flavonoids were reported to have anti-prostate cancer activity. In recent years, six additional flavonoid compounds have been found to have anti-prostate cancer potential. In this review, we have collected a large amount of evidence on the anti-prostate cancer effects of these six flavonoids, including a large number of cellular experiments and a small number of preclinical animal experiments. In addition, we predicted their drug-forming properties using Schrödinger's QikProp software and ADMETlab due to the lack of in vivo pharmacokinetic data for the six compounds. In conclusion, this review has fully confirmed the anti-prostate cancer effects of these six flavonoids, summarized their mechanisms of action and predicted their druggability. It provides a reference for the further development of these compounds into anti-prostate cancer drugs.


Subject(s)
Flavonoids , Prostatic Neoplasms , Male , Flavonoids/pharmacology , Flavonoids/therapeutic use , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Humans , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
3.
Hereditas ; 161(1): 2, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38167125

ABSTRACT

BACKGROUND: Suanzaoren Decoction (SZRD), a well-known formula from traditional Chinese medicine, has been shown to have reasonable cognitive effects while relaxing and alleviating insomnia. Several studies have demonstrated significant therapeutic effects of SZRD on diabetes and Alzheimer's disease (AD). However, the active ingredients and probable processes of SZRD in treating Alzheimer's with diabetes are unknown. This study aims to preliminarily elucidate the potential mechanisms and potential active ingredients of SZRD in the treatment of Alzheimer's with diabetes. METHODS: The main components and corresponding protein targets of SZRD were searched on the TCMSP database. Differential gene expression analysis for diabetes and Alzheimer's disease was conducted using the Gene Expression Omnibus database, with supplementation from OMIM and genecards databases for differentially expressed genes. The drug-compound-target-disease network was constructed using Cytoscape 3.8.0. Disease and SZRD targets were imported into the STRING database to construct a protein-protein interaction network. Further, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed on the intersection of genes. Molecular docking and molecular dynamics simulations were conducted on the Hub gene and active compounds. Gene Set Enrichment Analysis was performed to further analyze key genes. RESULTS: Through the Gene Expression Omnibus database, we obtained 1977 diabetes related genes and 622 AD related genes. Among drugs, diabetes and AD, 97 genes were identified. The drug-compound-target-disease network revealed that quercetin, kaempferol, licochalcone a, isorhamnetin, formononetin, and naringenin may be the core components exerting effects. PPI network analysis identified hub genes such as IL6, TNF, IL1B, CXCL8, IL10, CCL2, ICAM1, STAT3, and IL4. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses showed that SZRD in the treatment of Alzheimer's with diabetes is mainly involved in biological processes such as response to drug, aging, response to xenobiotic, and enzyme binding; as well as signaling pathways such as Pathways in cancer, Chemical carcinogenesis - receptor activation, and Fluid shear stress and atherosclerosis. Molecular docking results showed that licochalcone a, isorhamnetin, kaempferol, quercetin, and formononetin have high affinity with CXCL8, IL1B, and CCL2. Molecular dynamics simulations also confirmed a strong interaction between CXCL8 and licochalcone a, isorhamnetin, and kaempferol. Gene Set Enrichment Analysis revealed that CXCL8, IL1B, and CCL2 have significant potential in diabetes. CONCLUSION: This study provides, for the first time, insights into the active ingredients and potential molecular mechanisms of SZRD in the treatment of Alzheimer's with diabetes, laying a theoretical foundation for future basic research.


Subject(s)
Alzheimer Disease , Diabetes Mellitus , Humans , Network Pharmacology , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Kaempferols , Molecular Docking Simulation , Quercetin , Diabetes Mellitus/drug therapy , Diabetes Mellitus/genetics
4.
Immunopharmacol Immunotoxicol ; 46(3): 319-329, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38466121

ABSTRACT

OBJECTIVE: Isorhamnetin (IH) has been reported to have significant anti-inflammatory effects in various diseases, but its role and mechanism in AKI remain unclear. This study aimed to explore the potential role and mechanism of isorhamnetin in inhibiting macrophage related inflammation and improving AKI injury. METHODS: We established an AKI mouse model by intraperitoneal injection of cisplatin in vivo, and constructed an inflammatory cell model by stimulating RAW264.7 cells with LPS. Creatinine and urea nitrogen were measured to evaluate the changes of renal function in AKI mice. The changes of renal pathological structure were observed by H&E staining. The inflammatory factor-related proteins and RNA expression levels were detected by Western blot and real time PCR. RESULTS: Isorhamnetin protected the kidney from cisplatin induced AKI and significantly inhibited the mRNA and protein levels of inflammatory cytokines (IL-1ß, IL-6, and TNF-α) both in AKI kidney and LPS-stimulated RAW264.7 cells. Interestingly, the data also demonstrated that isorhamnetin significantly upregulated the expression of secretory leukocyte peptidase inhibitor (SLPI), an anti-inflammatory factor, in AKI kidney and LPS-stimulated macrophages, as well as inhibited the M1 macrophage and activated M2 macrophage in vitro. Blocking of SLPI by siRNA activated Mincle-associated inflammatory signaling in macrophages, and the inhibitory effect of isorhamnetin on inflammation was significantly attenuated. CONCLUSION: Isorhamnetin inhibits macrophage inflammation and protects kidney in AKI may be related to downregulating Mincle/Syk/NF-κB-maintained macrophage phenotype by activating SLPI.


Subject(s)
Acute Kidney Injury , Anti-Inflammatory Agents , Cisplatin , Macrophages , Quercetin , Animals , Quercetin/analogs & derivatives , Quercetin/pharmacology , Acute Kidney Injury/drug therapy , Acute Kidney Injury/chemically induced , Acute Kidney Injury/pathology , Acute Kidney Injury/metabolism , Mice , Cisplatin/pharmacology , Cisplatin/adverse effects , RAW 264.7 Cells , Macrophages/drug effects , Macrophages/metabolism , Anti-Inflammatory Agents/pharmacology , Male , Mice, Inbred C57BL
5.
Int J Mol Sci ; 25(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38612598

ABSTRACT

Severe acute pancreatitis (SAP), a widespread inflammatory condition impacting the abdomen with a high mortality rate, poses challenges due to its unclear pathogenesis and the absence of effective treatment options. Isorhamnetin (ISO), a naturally occurring flavonoid, demonstrates robust antioxidant and anti-inflammatory properties intricately linked to the modulation of mitochondrial function. However, the specific protective impact of ISO on SAP remains to be fully elucidated. In this study, we demonstrated that ISO treatment significantly alleviated pancreatic damage and reduced serum lipase and amylase levels in the mouse model of SAP induced by sodium taurocholate (STC) or L-arginine. Utilizing an in vitro SAP cell model, we found that ISO co-administration markedly prevented STC-induced pancreatic acinar cell necrosis, primarily by inhibiting mitochondrial ROS generation, preserving ATP production, maintaining mitochondrial membrane potential, and preventing the oxidative damage and release of mitochondrial DNA. Mechanistically, our investigation identified that high-temperature requirement A2 (HtrA2) may play a central regulatory role in mediating the protective effect of ISO on mitochondrial dysfunction in STC-injured acinar cells. Furthermore, through an integrated approach involving bioinformatics analysis, molecular docking analysis, and experimental validation, we uncovered that ISO may directly impede the histone demethylation activity of KDM5B, leading to the restoration of pancreatic HtrA2 expression and thereby preserving mitochondrial function in pancreatic acinar cells following STC treatment. In conclusion, this study not only sheds new light on the intricate molecular complexities associated with mitochondrial dysfunction during the progression of SAP but also underscores the promising value of ISO as a natural therapeutic option for SAP.


Subject(s)
Mitochondrial Diseases , Pancreatitis , Quercetin/analogs & derivatives , Animals , Mice , Pancreatitis/drug therapy , Acute Disease , Molecular Docking Simulation , Mitochondria , Signal Transduction
6.
Int J Mol Sci ; 25(1)2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38203840

ABSTRACT

Programmed death ligand-1 (PD-L1) is highly expressed in a variety of cancer cells and suggests a poorer prognosis for patients. The natural compound isorhamnetin (ISO) shows promise in treating cancers and causing damage to canine mammary tumor (CMT) cells. We investigated the mechanism of ISO in reducing PD-L1 expression in CMT cells. Clustered, regularly interspaced short palindromic repeat-associated protein 9 (CRISPR/Cas9) was used to mediate CD274 knockout in U27 cells. Then, monoclonal cells were screened and cultured. Nucleotide sequencing and expression of PD-L1 were detected. Additionally, we examined cell migration, invasion, and damage. Immunofluorescent staining of PD-L1 was examined in U27 cells. The signaling pathways were measured by Western blotting. Murine xenotransplantation models and murine immunocompetent allograft mammary tumor models were established to evaluate the effect of ISO therapy. Expression of Ki-67, caspase3, and PD-L1 were analyzed by immunohistochemistry. A pull-down assay was used to explore which proteins could bind to ISO. Canine EGFR protein was purified and used to detect whether it directly binds to ISO using a surface plasmon resonance assay. ISO inhibited the EGFR-STAT3-PD-L1 signaling pathway and blocked cancer growth, significantly increasing the survival rate of healthy cells. The cell membrane receptor EGFR was identified as a direct target of ISO. ISO could be exploited as an antineoplastic treatment of CMT by targeting EGFR to suppress PD-L1 expression.


Subject(s)
B7-H1 Antigen , Breast Neoplasms , Quercetin , Animals , Dogs , Mice , B7-H1 Antigen/genetics , ErbB Receptors/genetics , Ligands , Quercetin/analogs & derivatives , Signal Transduction , STAT3 Transcription Factor , Breast Neoplasms/veterinary
7.
J Clin Biochem Nutr ; 75(1): 24-32, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39070537

ABSTRACT

The endosomal-lysosomal system represents a crucial degradation pathway for various extracellular substances, and its dysfunction is linked to cardiovascular and neurodegenerative diseases. This degradation process involves multiple steps: (1) the uptake of extracellular molecules, (2) transport of cargos to lysosomes, and (3) digestion by lysosomal enzymes. While cellular uptake and lysosomal function are reportedly regulated by the mTORC1-TFEB axis, the key regulatory signal for cargo transport remains unclear. Notably, our previous study discovered that isorhamnetin, a dietary flavonoid, enhances endosomal-lysosomal proteolysis in the J774.1 cell line independently of the mTORC1-TFEB axis. This finding suggests the involvement of another signal in the mechanism of isorhamnetin. This study analyzes the molecular mechanism of isorhamnetin using transcriptome analysis and reveals that the transcription factor GATA3 plays a critical role in enhanced endosomal-lysosomal degradation. Our data also demonstrate that mTORC2 regulates GATA3 nuclear translocation, and the mTORC2-GATA3 axis alters endosomal formation and maturation, facilitating the efficient transport of cargos to lysosomes. This study suggests that the mTORC2-GATA3 axis might be a novel target for the degradation of abnormal substances.

8.
Plant Foods Hum Nutr ; 79(1): 143-150, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38206481

ABSTRACT

Opuntia ficus-indica fruits have been widely used due to their nutritional composition and beneficial effects on health, particularly against chronic diseases such as diabetes, obesity, cardiovascular diseases and cancer, among others. In recent years, prickly pear peel and pulp extracts have been characterised, and a high number of bioactive compounds have been identified. This study aimed to analyse the triglyceride-lowering effect of prickly pear peel and pulp extracts obtained from fruits of three varieties (Pelota, Sanguinos, and Colorada) in 3T3-L1 maturing and mature adipocytes. At a concentration of 50 µg/mL, peel extracts from Colorada reduced triglyceride accumulation in pre-adipocytes and mature adipocytes. Additionally, at 25 µg/mL, Pelota peel extract decreased triglyceride content in mature adipocytes. Moreover, maturing pre-adipocytes treated with 50 and 25 µg/mL of Sanguinos pulp extract showed a reduction of triglyceride accumulation. In addition, the lipid-lowering effect of the main individual betalain and phenolic compounds standards were assayed. Piscidic acid and isorhamnetin glycoside (IG2), found in Colorada peel extract, were identified as the bioactive compounds that could contribute more notably to the triglyceride-lowering effect of the extract. Thus, the betalain and phenolic-rich extracts from Opuntia ficus indica fruits may serve as an effective tool in obesity management.


Subject(s)
Opuntia , Mice , Animals , Fruit/chemistry , 3T3-L1 Cells , Phenols/analysis , Betalains , Plant Extracts/pharmacology , Triglycerides , Lipids
9.
Curr Issues Mol Biol ; 45(9): 7668-7679, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37754268

ABSTRACT

Oxidative stress and inflammation are implicated in depression. While selective serotonin reuptake inhibitors (SSRIs) like escitalopram are commonly prescribed as first-line treatments, their inconsistent efficacy and delayed onset of action necessitates the exploration of adjunctive therapies. Isorhamnetin, a flavonol, has shown antioxidant and anti-inflammatory properties that makes exploring its antidepressant effect attractive. This study aims to investigate the adjuvant potential of isorhamnetin in combination with escitalopram to enhance its antidepressant efficacy in a lipopolysaccharide (LPS)-induced depression model using Swiss albino mice. Behavioral paradigms, such as the forced swim test and open field test, were employed to assess depressive symptoms, locomotion, and sedation. Additionally, enzyme-linked immunosorbent assays were utilized to measure Nrf2, BDNF, HO-1, NO, and IL-6 levels in the prefrontal cortex and hippocampus. The results demonstrate that isorhamnetin significantly improves the antidepressant response of escitalopram, as evidenced by reduced floating time in the forced swim test. Moreover, isorhamnetin enhanced antidepressant effects of escitalopram and effectively restored depleted levels of Nrf2, BDNF, and HO-1 in the cortex caused by LPS-induced depression. Isorhamnetin shows promise in enhancing the efficacy of conventional antidepressant therapy through antioxidant and anti-inflammatory effects.

10.
Microb Pathog ; 185: 106382, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37839759

ABSTRACT

The increasing incidence of Streptococcus pneumoniae (S. pneumoniae) infection severely threatened the global public heath, causing a significant fatality in immunocompromised hosts. Notably, pneumolysin (PLY) as a pore-forming cytolysin plays a crucial role in the pathogenesis of pneumococcal pneumonia and lung injury. In this study, a natural flavonoid isorhamnetin was identified as a PLY inhibition to suppress PLY-induced hemolysis by engaging the predicted residues and attenuate cytolysin PLY-mediated A549 cells injury. Underlying mechanisms revealed that PLY inhibitor isorhamnetin further contributed to decrease the formation of bacterial biofilms without affecting the expression of PLY. In vivo S. pneumoniae infection confirmed that the pathological injury of lung tissue evoked by S. pneumoniae was ameliorated by isorhamnetin treatment. Collectively, these results presented that isorhamnetin could inhibit the biological activity of PLY, thus reducing the pathogenicity of S. pneumoniae. In summary, our study laid a foundation for the feasible anti-virulence strategy targeting PLY, and provided a promising PLY inhibitor for the treatment of S. pneumoniae infection.


Subject(s)
Pneumococcal Infections , Humans , Pneumococcal Infections/drug therapy , Streptococcus pneumoniae/metabolism , Streptolysins , Bacterial Proteins/metabolism , Cytotoxins/metabolism
11.
J Nanobiotechnology ; 21(1): 208, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37408047

ABSTRACT

BACKGROUND: The immune checkpoint inhibitor (ICI) anti-PD-L1 monoclonal antibody can inhibit the progress of hepatocellular carcinoma (HCC). Epithelial-mesenchymal transformation (EMT) can promote tumor migration and the formation of immune-suppression microenvironment, which affects the therapeutic effect of ICI. Yin-yang-1 (YY1) is an important transcription factor regulating proliferation, migration and EMT of tumor cells. This work proposed a drug-development strategy that combined the regulation of YY1-mediated tumor progression with ICIs for the treatment of HCC. METHODS: We first studied the proteins that regulated YY1 expression by using pull-down, co-immunoprecipitation, and duo-link assay. The active compound regulating YY1 content was screened by virtual screening and cell-function assay. Isorhamnetin (ISO) and anti-PD-L1 antibody dual-functional mesoporous silica nanoparticles (HMSN-ISO@ProA-PD-L1 Ab) were prepared as an antitumor drug to play a synergistic anti-tumor role. RESULTS: YY1 can specifically bind with the deubiquitination enzyme USP7. USP7 can prevent YY1 from ubiquitin-dependent degradation and stabilize YY1 expression, which can promote the proliferation, migration and EMT of HCC cells. Isorhamnetin (ISO) were screened out, which can target USP7 and promote YY1 ubiquitin-dependent degradation. The cell experiments revealed that the HMSN-ISO@ProA-PD-L1 Ab nanoparticles can specifically target tumor cells and play a role in the controlled release of ISO. HMSN-ISO@ProA-PD-L1 Ab nanoparticles inhibited the growth of Hepa1-6 transplanted tumors and the effect was better than that of PD-L1 Ab treatment group and ISO treatment group. HMSN-ISO@ProA-PD-L1 Ab nanoparticles also exerted a promising effect on reducing MDSC content in the tumor microenvironment and promoting T-cell infiltration in tumors. CONCLUSIONS: The isorhamnetin and anti-PD-L1 antibody dual-functional nanoparticles can improve tumor immune microenvironment and inhibit YY1-mediated tumor progression. This study demonstrated the possibility of HCC treatment strategies based on inhibiting USP7-mediated YY1 deubiquitination combined with anti-PD-L1 monoclonal Ab.


Subject(s)
Carcinoma, Hepatocellular , Hereditary Sensory and Motor Neuropathy , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Tumor Microenvironment , Ubiquitin-Specific Peptidase 7 , Ubiquitins/pharmacology , Cell Line, Tumor , YY1 Transcription Factor/metabolism
12.
Zygote ; 31(1): 14-24, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36683392

ABSTRACT

This study investigated the effect of the flavonoid-based compound isorhamnetin (ISO) on maturation and developmental competence in oxidative stress-exposed porcine oocytes in vitro. Treatment with 2 µM ISO (2 ISO) increases the developmental rate of oxidative stress-exposed porcine oocytes during in vitro maturation (IVM). The glutathione level and mRNA expression of antioxidant-related genes (NFE2L2 and SOD2) were increased in the 2 ISO-treated group, whereas the reactive oxygen species level was decreased. Treatment with 2 ISO increased mRNA expression of a cumulus cell expansion-related gene (SHAS2) and improved chromosomal alignment. mRNA expression of maternal genes (CCNB1, MOS, BMP15 and GDF9) and mitogen activated protein kinase (MAPK) activity were increased in the 2 ISO-treated group. The total cell number per blastocyst and percentage of apoptotic cells were increased and decreased in the 2 ISO-treated group, respectively. Treatment with 2 ISO increased mRNA expression of development-related genes (SOX2, NANOG, and POU5F1) and anti-apoptotic genes (BCL2L1 and BIRC5) and decreased that of pro-apoptotic genes (CASP3 and FAS). These results demonstrate that 2 ISO improves the quality of porcine oocytes by protecting them against oxidative stress during IVM and enhances subsequent embryo development in vitro. Therefore, we propose that ISO is a useful supplement for IVM of porcine oocytes.


Subject(s)
Embryonic Development , In Vitro Oocyte Maturation Techniques , Oocytes , Oxidative Stress , Animals , Blastocyst/metabolism , Embryonic Development/drug effects , In Vitro Oocyte Maturation Techniques/methods , Oocytes/drug effects , Oocytes/physiology , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Swine
13.
Drug Chem Toxicol ; 46(3): 566-574, 2023 May.
Article in English | MEDLINE | ID: mdl-35502492

ABSTRACT

Isorhamnetin is a hepatoprotective flavonoid molecule derived from the leaves and fruits of Hippophae rhamnoides L. However, the protective effect of isorhamnetin on acetaminophen (APAP) induced hepatotoxicity is still unknown. Thus, we aimed to investigate the lipid-lowering, anti-inflammatory, and hepatoprotective effects of isorhamnetin on APAP-induced hepatotoxicity in mice. Hepatotoxicity was induced by a single injection of APAP (300 mg/kg, intraperitoneally). Isorhamnetin (50 or 100 mg/kg, orally) and N-acetylcysteine (NAC) (200 mg/kg, orally), or vehicle control, were administered 1 h before the administration of APAP. Total antioxidant status (TAS) and total oxidative status (TOS) of liver tissue and levels of inflammatory factors (TNF-α, IL-1ß, and IL-6) were analyzed by ELISA. Lipid profiles and liver function parameters were measured using an autoanalyzer. In addition, liver tissue was examined histopathologically. Isorhamnetin treatment significantly reduced the APAP-induced increase in the liver weight and liver index; it also reduced the APAP-induced increase in serum liver parameters (ALT, AST, ALP, and LDH) (p < 0.05). Isorhamnetin significantly reduced APAP-induced oxidative stress and inflammation by increasing TAS levels and decreasing TOS, TNF-α, IL-1ß, and IL-6 levels (p < 0.05). Moreover, isorhamnetin treatment significantly regulated lipid profiles (TG, T-C, LDL-C, and HDL-C levels) that changed in response to APAP administration (p < 0.05). In histopathological examination, liver degeneration observed in the APAP group was significantly reduced in the NAC and isorhamnetin-treated groups (p < 0.05). This study suggests that isorhamnetin has a significant protective effect on APAP-induced hepatotoxicity in mice through its lipid-lowering, antioxidant, and anti-inflammatory effects.


Subject(s)
Acetaminophen , Chemical and Drug Induced Liver Injury , Mice , Animals , Acetaminophen/toxicity , Antioxidants/pharmacology , Antioxidants/metabolism , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6 , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/prevention & control , Chemical and Drug Induced Liver Injury/metabolism , Anti-Inflammatory Agents/pharmacology , Liver , Oxidative Stress , Acetylcysteine/pharmacology , Mice, Inbred C57BL , Lipids
14.
Molecules ; 28(2)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36677559

ABSTRACT

Background: Isorhamnetin is a flavonoid that is found in medical plants. Several studies showed that isorhamnetin has anti-inflammatory and anti-obesity effects. This study aims to investigate the anti-diabetic effects of isorhamnetin in a high-fat diet and Streptozotocin-(HFD/STZ)-induced mice model of type 2 diabetes. Materials and Methods: Mice were fed with HFD followed by two consecutive low doses of STZ (40 mg/kg). HFD/STZ diabetic mice were treated orally with isorhamnetin (10 mg/kg) or (200 mg/kg) metformin for 10 days before sacrificing the mice and collecting plasma and soleus muscle for further analysis. Results: Isorhamnetin reduced the elevated levels of serum glucose compared to the vehicle control group (p < 0.001). Isorhamnetin abrogated the increase in serum insulin in the treated diabetic group compared to the vehicle control mice (p < 0.001). The homeostasis model assessment of insulin resistance (HOMA-IR) was decreased in diabetic mice treated with isorhamnetin compared to the vehicle controls. Fasting glucose level was significantly lower in diabetic mice treated with isorhamnetin during the intraperitoneal glucose tolerance test (IPGTT) (p < 0.001). The skeletal muscle protein contents of GLUT4 and p-AMPK-α were upregulated following treatment with isorhamnetin (p > 0.01). LDL, triglyceride, and cholesterol were reduced in diabetic mice treated with isorhamnetin compared to vehicle control (p < 0.001). Isorhamnetin reduced MDA, and IL-6 levels (p < 0.001), increased GSH levels (p < 0.001), and reduced GSSG levels (p < 0.05) in diabetic mice compared to vehicle control. Conclusions: Isorhamnetin ameliorates insulin resistance, oxidative stress, and inflammation. Isorhamnetin could represent a promising therapeutic agent to treat T2D.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Insulin Resistance , Mice , Animals , Diabetes Mellitus, Type 2/metabolism , Insulin Resistance/physiology , Diet, High-Fat/adverse effects , Streptozocin/pharmacology , Diabetes Mellitus, Experimental/metabolism , Inflammation/drug therapy , Disease Models, Animal , Oxidative Stress , Glucose/pharmacology , Blood Glucose , Hypoglycemic Agents/therapeutic use
15.
Clin Sci (Lond) ; 136(24): 1831-1849, 2022 12 22.
Article in English | MEDLINE | ID: mdl-36540030

ABSTRACT

Isorhamnetin, a natural flavonoid, has strong antioxidant and antifibrotic effects, and a regulatory effect against Ca2+-handling. Atrial remodeling due to fibrosis and abnormal intracellular Ca2+ activities contributes to initiation and persistence of atrial fibrillation (AF). The present study investigated the effect of isorhamnetin on angiotensin II (AngII)-induced AF in mice. Wild-type male mice (C57BL/6J, 8 weeks old) were assigned to three groups: (1) control group, (2) AngII-treated group, and (3) AngII- and isorhamnetin-treated group. AngII (1000 ng/kg/min) and isorhamnetin (5 mg/kg) were administered continuously via an implantable osmotic pump for two weeks and intraperitoneally one week before initiating AngII administration, respectively. AF induction and electrophysiological studies, Ca2+ imaging with isolated atrial myocytes and HL-1 cells, and action potential duration (APD) measurements using atrial tissue and HL-1 cells were performed. AF-related molecule expression was assessed and histopathological examination was performed. Isorhamnetin decreased AF inducibility compared with the AngII group and restored AngII-induced atrial effective refractory period prolongation. Isorhamnetin eliminated abnormal diastolic intracellular Ca2+ activities induced by AngII. Isorhamnetin also abrogated AngII-induced APD prolongation and abnormal Ca2+ loading in HL-1 cells. Furthermore, isorhamnetin strongly attenuated AngII-induced left atrial enlargement and atrial fibrosis. AngII-induced elevated expression of AF-associated molecules, such as ox-CaMKII, p-RyR2, p-JNK, p-ERK, and TRPC3/6, was improved by isorhamnetin treatment. The findings of the present study suggest that isorhamnetin prevents AngII-induced AF vulnerability and arrhythmogenic atrial remodeling, highlighting its therapeutic potential as an anti-arrhythmogenic pharmaceutical or dietary supplement.


Subject(s)
Atrial Fibrillation , Atrial Remodeling , Male , Mice , Animals , Atrial Fibrillation/drug therapy , Atrial Fibrillation/prevention & control , Calcium/metabolism , Mice, Inbred C57BL , Heart Atria/pathology , Myocytes, Cardiac/metabolism , Angiotensin II/metabolism
16.
Pharmacol Res ; 180: 106231, 2022 06.
Article in English | MEDLINE | ID: mdl-35462011

ABSTRACT

Several studies demonstrate the beneficial effects of dietary flavonoids on the cardiovascular system. Since perivascular adipose tissue (PVAT) plays an active role in the regulation of vascular tone in both health and diseases, the present study aimed to assess the functional interaction between PVAT and flavonoids in vitro on rat aorta rings. Several flavonoids proved to display both antispasmodic and spasmolytic activities towards noradrenaline-induced contraction of rings deprived of PVAT (-PVAT). However, on PVAT-intact (+PVAT) rings, both actions of some flavonoids were lost and/or much decreased. In rings-PVAT, the superoxide donor pyrogallol mimicked the effect of PVAT, while in rings+PVAT the antioxidant mito-tempol restored both activities of the two most representative flavonoids, namely apigenin and chrysin. The Rho-kinase inhibitor fasudil, or apigenin and chrysin concentration-dependently relaxed the vessel active tone induced by the Rho-kinase activator NaF; the presence of PVAT counteracted apigenin spasmolytic activity, though only in the absence of mito-tempol. Similar results were obtained in rings pre-contracted by phenylephrine. Finally, when ß3 receptors were blocked by SR59230A, vasorelaxation caused by both flavonoids was unaffected by PVAT. These data are consistent with the hypothesis that both noradrenaline and apigenin activated adipocyte ß3 receptors with the ensuing release of mitochondrial superoxide anion, which once diffused toward myocytes, counteracted flavonoid vasorelaxant activity. This phenomenon might limit the beneficial health effects of dietary flavonoids in patients affected by either obesity and/or other pathological conditions characterized by sympathetic nerve overactivity.


Subject(s)
Superoxides , rho-Associated Kinases , Adipose Tissue , Animals , Aorta , Apigenin , Flavonoids/pharmacology , Humans , Norepinephrine/pharmacology , Parasympatholytics , Rats
17.
Immunopharmacol Immunotoxicol ; 44(3): 387-399, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35306954

ABSTRACT

Aim: Acute Lung Injury (ALI) is an acute hypoxic respiratory insufficiency caused by various traumatic factors, manifested as progressive hypoxemia and respiratory distress, and lung imaging shows a heterogeneous osmotic outbreak. Isorhamnetin (ISO) is a flavonoid compound isolated and purified from medicinal plants, such as Hippophae rhamnoides L. and Ginkgo, and has multiple pharmacological functions, such as anti-tumor, anti-myocardial hypoxia, and cardiovascular protection. Our previous study has shown that ISO could attenuate lipopolysaccharide (LPS)-induced acute lung injury in mice, but its mechanism is not clear.Methods: In this study, we used LPS-induced mouse and cell models to research the mechanism of ISO alleviating acute lung injury.Results: The results showed that ISO could attenuate the injury of type II alveolar epithelial cells by inhibiting the TLR4/NF-κB pathway. Further studies showed that ISO could inhibit the activation of mTOR signal in vivo and in vitro and promote autophagy in alveolar epithelial cells to reduce lung injury caused by LPS. In addition, ISO could inhibit LPS-induced epithelial cell apoptosis.Conclusion: Overall, ISO could suppress injury and apoptosis of epithelial cells and activate autophagy to protect epithelial cells via inhibiting mTOR signal and attenuating LPS-induced acute lung injury in mice.


Subject(s)
Acute Lung Injury , Lipopolysaccharides , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Animals , Lipopolysaccharides/toxicity , Lung/pathology , Mice , NF-kappa B/metabolism , Quercetin/analogs & derivatives , Signal Transduction , TOR Serine-Threonine Kinases , Toll-Like Receptor 4/metabolism
18.
Int J Mol Sci ; 24(1)2022 Dec 24.
Article in English | MEDLINE | ID: mdl-36613743

ABSTRACT

Isorhamnetin is a plant-derived secondary metabolite which belongs to the family of flavonoids. This review summarises the main outcomes described in the literature to date, regarding the effects of isorhamnetin on obesity from in vitro and in vivo studies. The studies carried out in pre-adipocytes show that isorhamnetin is able to reduce adipogenesis at 10 µM or higher doses and that these effects are mediated by Pparγ and by Wnt signalling pathway. Very few studies addressed in rodents are available so far. It seems that treatment periods longer than two weeks are needed by isorhamnetin and its glycosides to be effective as anti-obesity agents. Nevertheless, improvements in glycaemic control can be observed even in short treatments. Regarding the underlying mechanisms of action, although some contradictory results have been found, reductions in de novo lipogenesis and fatty acid uptake could be proposed. Further research is needed to increase the scientific evidence referring to this topic; studies in animal models are essential, as well as randomised clinical trials to determine whether the positive results observed in animals could also be found in humans, in order to determine if isorhamnetin and its glycosides can represent a real tool against obesity.


Subject(s)
Anti-Obesity Agents , Quercetin , Humans , Animals , Quercetin/pharmacology , Quercetin/therapeutic use , Obesity/drug therapy , Obesity/metabolism , Lipogenesis , Adipogenesis , Anti-Obesity Agents/pharmacology , Anti-Obesity Agents/therapeutic use , Glycosides/pharmacology
19.
Int J Mol Sci ; 23(2)2022 Jan 09.
Article in English | MEDLINE | ID: mdl-35054888

ABSTRACT

Diabetes mellitus, especially type 2 (T2DM), is a major public health problem globally. DM is characterized by high levels of glycemia and insulinemia due to impaired insulin secretion and insulin sensitivity of the cells, known as insulin resistance. T2DM causes multiple and severe complications such as nephropathy, neuropathy, and retinopathy causing cell oxidative damages in different internal tissues, particularly the pancreas, heart, adipose tissue, liver, and kidneys. Plant extracts and their bioactive phytochemicals are gaining interest as new therapeutic and preventive alternatives for T2DM and its associated complications. In this regard, isorhamnetin, a plant flavonoid, has long been studied for its potential anti-diabetic effects. This review describes its impact on reducing diabetes-related disorders by decreasing glucose levels, ameliorating the oxidative status, alleviating inflammation, and modulating lipid metabolism and adipocyte differentiation by regulating involved signaling pathways reported in the in vitro and in vivo studies. Additionally, we include a post hoc whole-genome transcriptome analysis of biological activities of isorhamnetin using a stem cell-based tool.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Quercetin/analogs & derivatives , Animals , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/physiopathology , Gene Expression Profiling , Humans , Inflammation , Lipid Metabolism , Oxidative Stress , Quercetin/pharmacology , Quercetin/therapeutic use
20.
Molecules ; 27(14)2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35889302

ABSTRACT

Blood platelets play a crucial role in hemostasis, the process responsible for keeping blood flowing in the circulatory system. However, unnecessary platelet activation can lead to aggregation at the site of atherosclerotic plaque rapture and the formation of a thrombus, which promotes atherothrombotic diseases. Various dietary components, such as phenolic compounds, are known to demonstrate antiplatelet and anticoagulant properties, and it is possible that these could form an important element in the prophylaxis and therapy of cardiovascular diseases. Our present study examined the biological activity of isorhamnetin (1) and two isorhamnetin derivatives, (2): 3-O-beta-glucoside-7-O-alpha-rhamnoside and (3): 3-O-beta-glucoside-7-O-alpha-(3″'-isovaleryl)-rhamnoside, isolated from the phenolic fraction of sea buckthorn fruit, against human washed blood platelets and human whole blood in vitro. The anti-platelet and anticoagulant potential was determined using (A) flow cytometry, (B) the thrombus-formation analysis system (T-TAS) and (C) colorimetry. The results of the T-TAS test indicate that the AUC10 (Area Under the Curve) of the tested phenolic compounds (compounds 1, 2 and 3; 50 µg/mL) was markedly reduced compared to the control values. Moreover, flavonol demonstrated anti-platelet potential, including anti-adhesive activity, with these effects being more intense in compound 2 than isorhamnetin. Different actions of flavonol on platelet activation may depend on their binding ability to various receptors on blood platelets. However, the mechanism of their anti-platelet potential requires further additional studies, including in vitro and in vivo experiments.


Subject(s)
Hippophae , Anticoagulants/analysis , Anticoagulants/pharmacology , Flavonols/analysis , Fruit/chemistry , Glucosides/analysis , Hippophae/chemistry , Humans , Phenols/chemistry , Quercetin/analogs & derivatives
SELECTION OF CITATIONS
SEARCH DETAIL