Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 35: 119-147, 2017 04 26.
Article in English | MEDLINE | ID: mdl-28125357

ABSTRACT

The intestinal epithelial barrier includes columnar epithelial, Paneth, goblet, enteroendocrine, and tuft cells as well as other cell populations, all of which contribute properties essential for gastrointestinal homeostasis. The intestinal mucosa is covered by mucin, which contains antimicrobial peptides and secretory IgA and prevents luminal bacteria, fungi, and viruses from stimulating intestinal immune responses. Conversely, the transport of luminal microorganisms-mediated by M, dendritic, and goblet cells-into intestinal tissues facilitates the harmonization of active and quiescent mucosal immune responses. The bacterial population within gut-associated lymphoid tissues creates the intratissue cohabitations for harmonized mucosal immunity. Intermolecular and intercellular communication among epithelial, immune, and mesenchymal cells creates an environment conducive for epithelial regeneration and mucosal healing. This review summarizes the so-called intestinal mucosal ecological network-the complex but vital molecular and cellular interactions of epithelial mesenchymal cells, immune cells, and commensal microbiota that achieve intestinal homeostasis, regeneration, and healing.


Subject(s)
Epithelial Cells/physiology , Gastrointestinal Microbiome/immunology , Intestinal Mucosa/immunology , Animals , Cell Communication , Homeostasis , Humans , Immunity, Innate , Immunoglobulin A/metabolism , Intestinal Mucosa/pathology , Wound Healing
2.
Nanomedicine ; 50: 102680, 2023 06.
Article in English | MEDLINE | ID: mdl-37105344

ABSTRACT

Micro- and nano-plastics (MPs and NPs) released from plastics in the environment can enter the food chain and target the human intestine. However, knowledge about the effects of these particles on the human intestine is still limited due to the lack of relevant human intestinal models to validate data obtained from animal studies or tissue models employing cancer cells. In this study, human intestinal organoids were used to develop epithelia to mimic the cell complexity and functions of native tissue. Microfold cells (M cells) were induced to distinguish their role when exposure to MPs and NPs. During the exposure, the M cells acted as sensors, capturers and transporters of larger sized particles. The epithelial cells internalized the particles in a size-, concentration-, and time-dependent manner. Importantly, high concentrations of particles significantly triggered the secretion of a panel of inflammatory cytokines linked to human inflammatory bowel disease (IBD).


Subject(s)
Microplastics , Polystyrenes , Animals , Humans , Microplastics/pharmacology , Polystyrenes/pharmacology , M Cells , Organoids , Epithelium
3.
Traffic ; 21(1): 34-44, 2020 01.
Article in English | MEDLINE | ID: mdl-31647148

ABSTRACT

Mucosal immune responses in the inductive lymphoid tissues of the intestine begin with uptake of particulate antigens, including components of the gut microbiota by specialized antigen sampling M cells. M cells represent a distinct lineage of enterocytes that arise from crypt stem cells in response to the cytokine receptor of NF-κB ligand (RANKL). Full differentiation of M cells requires the transcription factor Spi-B to yield mature M cells that express multiple receptors for bacteria including glycoprotein 2. M cell differentiation can be recapitulated in vitro using three-dimensional enteroid cultures of primary intestinal stem cells supplemented with RANKL. This article summarizes the current knowledge about the genesis of intestinal M cells and highlights some of the remaining unanswered questions about this enigmatic cell type.


Subject(s)
Microbiota , RANK Ligand , Cell Differentiation , Humans , Immunity, Mucosal , Intestinal Mucosa
4.
Wiad Lek ; 75(5 pt 2): 1309-1312, 2022.
Article in English | MEDLINE | ID: mdl-35758449

ABSTRACT

OBJECTIVE: The aim: Based on the above cytological signs of M-cells, we set the goal of more detailed clarification of some of their topological relationships with other enterocytes in the follicle-associated epithelium of Peyer's patches of albino rat small intestine. PATIENTS AND METHODS: Materials and methods: 10 mature albino male rats weighted 200,0±20,0 g were involved into the study. Anatomical dissection with the sampling of the sections of the small intestine containing Peyer's patches was carried out with subsequent embedment of the latter into paraffin blocks and making of serial histological sections of 4 µm thick in the cross-section of the small intestine, followed with hematoxylin-eosin staining. The specimens were studied and documented on the "Konus" light microscope equipped. Morphometric characteristics of the specimen tissue structures were studied using the Sigeta X 1 mm/100 Div.x0.01mm stage micrometer. RESULTS: Results: The findings of the study revealed enterocytes with phagocytic properties found in the lymphoid-associated epithelium of Peyer's patches of the small intestine of albino rats. Moreover, if they are clearly visualized at the light-optical level, then M-cells are poorly recognizable, which is consistent with a similar assessment made by other authors. CONCLUSION: Conclusions: Given this, the issue on the topology and functional purpose of M-cells remains uncertain to date and, thereby, the prospect of further research is being outlined, which, in our opinion, can be successful using the method of stereomorphological analysis. For this purpose, multilayer plastic reconstruction methods can be used for serial semi-thin sections of Peyer's patches embedded in epoxy resin, according to the requirements of transmission electron microscopy.


Subject(s)
Intestine, Small , Peyer's Patches , Epithelium , Humans , Peyer's Patches/chemistry , Peyer's Patches/pathology , Rats , Staining and Labeling
5.
Ter Arkh ; 94(2): 194-199, 2022 Feb 15.
Article in Russian | MEDLINE | ID: mdl-36286744

ABSTRACT

AIM: To establish the role of the main risk factors and endocrine cells of the antrum of the stomach producing motilin (M-cells) in the occurrence of cholelithiasis. MATERIALS AND METHODS: The first group included 122 patients with cholelithiasis. The second group consisted of 30 healthy individuals who underwent medical examination. The groups were matched for gender and age. The work analyzed anamnestic, biochemical and anthropometric data. All patients underwent esophagogastroduodenoscopy with targeted biopsy of the mucous membrane from the antrum. Biopsies were subjected to cytological and immunohistochemical studies in order to verify Helicobacter pylori and estimate the number of M-cells. RESULTS: Patients with cholelithiasis more often belonged to the group of people of mental labor, had low physical activity, were committed to inappropriate nutrition and more often indicated the presence of aggravated heredity for cholelithiasis. Patients with gallstone disease had higher body mass index, waist volume, total cholesterol, low-density lipoprotein cholesterol, triglycerides, glucose, lower high-density lipoprotein cholesterol, H. pylori infection was more often verified and M-cell hypoplasia in the mucous membrane was established. stomach in comparison with the representatives of the second group. CONCLUSION: Our results suggest that certain external factors, nutritional characteristics of the metabolic syndrome components, hypoplasia of M-cells in the gastric mucosa are important factors in the formation of calculi in the gallbladder.


Subject(s)
Cholelithiasis , Endocrine Cells , Helicobacter Infections , Helicobacter pylori , Humans , Motilin , Helicobacter Infections/complications , Helicobacter Infections/epidemiology , Stomach , Gastric Mucosa , Cholelithiasis/epidemiology , Risk Factors , Triglycerides , Endocrine Cells/pathology , Cholesterol , Glucose , Lipoproteins, HDL , Lipoproteins, LDL
6.
Eur J Immunol ; 50(4): 537-547, 2020 04.
Article in English | MEDLINE | ID: mdl-31856298

ABSTRACT

The small intestine hosts specialized lymphoid structures, the Peyer's patches, that face the gut lumen and are overlaid with unique epithelial cells, called microfold (M) cells. M cells are considered to constitute an important route for antigen uptake in the mucosal immune system. Here, we used intravital microscopy to define immune cell populations, which are in close contact with M cells and potentially sample antigen. We present live evidence that DCs enter M cell pockets and highlight the abundance of mononuclear phagocytes in these structures. Taking advantage of the respective reporter animals, we focused on classical DCs that express Zbtb46 and analyzed how these cells interact with M cells in steady state and sample antigen for T cell activation in the Peyer's patches following challenge.


Subject(s)
Dendritic Cells/immunology , Epithelial Cells/immunology , Intestinal Mucosa/immunology , Intestine, Small/immunology , Peyer's Patches/immunology , T-Lymphocytes/immunology , Transcription Factors/metabolism , Animals , Intravital Microscopy , Lymphocyte Activation , Mice , Mice, Transgenic , Phagocytosis , Transcription Factors/genetics
7.
Curr Top Microbiol Immunol ; 426: 45-63, 2020.
Article in English | MEDLINE | ID: mdl-32385533

ABSTRACT

An interesting phenomenon of chronic inflammation is that the associated cytokines can simultaneously promote inflammatory cell recruitment and tissue pathology as well as tissue regeneration and development of inducible organized lymphoid tissues (tertiary lymphoid organs or TLO), demonstrating the remarkable dynamics of the immune interactions with host tissues. In mucosal tissues, chronic immune-mediated inflammation can present a mixed inflammatory pathology including neutrophil infiltrates along with the lymphocytic aggregates. The factors driving this pattern may involve effects on barrier function as well as inducible mechanisms associated with immune surveillance. The relative contribution of these factors may be important in determining the outcome, from resolution to inflammatory stalemate to progressive tissue pathology and destruction. Here, we focus on the specific impact of cytokine-driven inducible lymphoid cells and tissues on immune surveillance at mucosal surfaces, including the induction of epithelial M cells. We propose a model of chronic intestinal inflammation to assess the relative contributions of mucosal barrier integrity, M cell transcytosis of luminal microbes, and inducible lymphoid tissues.


Subject(s)
Inflammation/immunology , Inflammation/pathology , Lymphoid Tissue/immunology , Mucous Membrane/immunology , Mucous Membrane/pathology , Epithelial Cells , Humans , Lymphocytes/cytology , Lymphocytes/immunology
8.
Bioorg Med Chem Lett ; 46: 128174, 2021 08 15.
Article in English | MEDLINE | ID: mdl-34098082

ABSTRACT

Podophyllotoxin (PPT) has been reported to have many pharmacological activities, especially its anti-tumor effects. To improve the cytotoxicity and selective effect of PPT, in this study, we have designed and synthesized 20 ester derivatives by introducing Boc-amino acids or organic acids at the C-4 position of PPT. The cytotoxicity of these compounds was evaluated with PC-3M, HemECs, A549, MCF-7 and HepG2 cells. We observed that the proliferation of PC-3M cells was inhibited by all 20 ester derivatives in the largest degree, comparing to the other cell lines. Comparing to PPT (IC50 = 234.90 ± 20.7 nM), eight derivatives had better performance in inhabiting proliferation of PC-3M cells, six of them belong to Boc-amino acid ester derivatives, and the derivative named V-05 (IC50 = 1.28 ± 0.1 nM) had the strongest inhibitation effect. Changes in cell proliferation and apoptotic signaling pathways were studied by DAPI staining, colony formation assay, migration assay, flow cytometry and western blot analysis. We found that V-05 were able to inhibit PC-3M cells proliferation and migration, and induced apoptosis by downregualting p-PI3K, p-Akt and Bcl-2, and upregulating Cleaved caspase-3 and Bax. Our research provides the first insight for the application of PPT derivatives in PC-3M cells, which may offer information to the effective medicine development for human prostate cancer treatment.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Enzyme Inhibitors/pharmacology , Esters/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Podophyllotoxin/pharmacology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Down-Regulation/drug effects , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Esters/chemical synthesis , Esters/chemistry , Humans , Molecular Structure , Podophyllotoxin/chemical synthesis , Podophyllotoxin/chemistry , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Structure-Activity Relationship
9.
Int J Mol Sci ; 22(17)2021 Aug 28.
Article in English | MEDLINE | ID: mdl-34502262

ABSTRACT

Intestinal microfold cells (M cells) are a dynamic lineage of epithelial cells that initiate mucosal immunity in the intestine. They are responsible for the uptake and transcytosis of microorganisms, pathogens, and other antigens in the gastrointestinal tract. A mature M cell expresses a receptor Gp2 which binds to pathogens and aids in the uptake. Due to the rarity of these cells in the intestine, their development and differentiation remain yet to be fully understood. We recently demonstrated that polycomb repressive complex 2 (PRC2) is an epigenetic regulator of M cell development, and 12 novel transcription factors including Atoh8 were revealed to be regulated by the PRC2. Here, we show that Atoh8 acts as a regulator of M cell differentiation; the absence of Atoh8 led to a significant increase in the number of Gp2+ mature M cells and other M cell-associated markers such as Spi-B and Sox8. In vitro organoid analysis of RankL treated organoid showed an increase of mature marker GP2 expression and other M cell-associated markers. Atoh8 null mice showed an increase in transcytosis capacity of luminal antigens. An increase in M cell population has been previously reported to be detrimental to mucosal immunity because some pathogens like orally acquired prions have been able to exploit the transcytosis capacity of M cells to infect the host; mice with an increased population of M cells are also susceptible to Salmonella infections. Our study here demonstrates that PRC2 regulated Atoh8 is one of the factors that regulate the population density of intestinal M cell in the Peyer's patch.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Differentiation/genetics , Epithelial Cells/metabolism , Intestinal Mucosa/metabolism , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Animals , B-Lymphocytes/metabolism , Basic Helix-Loop-Helix Transcription Factors/deficiency , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Differentiation/immunology , Epithelial Cells/drug effects , Epithelial Cells/immunology , Immunity, Mucosal/genetics , Intestinal Mucosa/drug effects , Intestinal Mucosa/immunology , Mice , Mice, Knockout , Peyer's Patches/drug effects , Peyer's Patches/metabolism , Primary Cell Culture , RANK Ligand/pharmacology , Receptor Activator of Nuclear Factor-kappa B/pharmacology , T-Lymphocytes/metabolism , Transcytosis/genetics
10.
Cell Tissue Res ; 380(3): 539-546, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31970486

ABSTRACT

In the Peyer's patches of the small intestine, specialized epithelial cells, the membranous (M) cells, sample antigenic matter from the gut lumen and bring it into contact with cells of the immune system, which are then capable of initiating specific immune reactions. Using autofluorescence 2-photon (A2P) microscopy, we imaged living intestinal mucosa at a 0.5-µm resolution. We identified individual M cells without the aid of a marker and in vivo analyzed their sampling function over hours. Time-lapse recordings revealed that lymphocytes associated with M cells display a remarkable degree of motility with average speed rates of 8.2 µm/min, to form new M cell-associated lymphocyte clusters within less than 15 min. The lymphocytes drastically deform the M cells' cytoplasm and laterally move from one lymphocyte cluster to the next. This implies that the micro-compartment beneath M cells is a highly efficient container to bring potentially harmful antigens into contact with large numbers of immunocompetent cells. Our setup opens a new window for high-resolution 3D imaging of functional processes occurring in lymphoid and mucosal tissues.


Subject(s)
Epithelial Cells/cytology , Intestinal Mucosa/cytology , Lymphocytes/cytology , Peyer's Patches/cytology , Animals , Cell Movement , Mice , Mice, Inbred BALB C
11.
Microb Pathog ; 142: 104040, 2020 Feb 04.
Article in English | MEDLINE | ID: mdl-32032767

ABSTRACT

Drug delivery by the nasal or oral route is considered the preferred route of administration because it can induce systemic mucosal immunity. However, few studies have examined the immunogenicity and transport of antigen at the level of the microfold (M) cell, the epithelial cell that specializes in antigen sampling at mucosal surfaces. In our previous study, Brucella abortus malate dehydrogenase (Mdh) was loaded in chitosan nanoparticles (CNs), and it induced high production of proinflammatory cytokines in THP-1 cells and systemic IgA in BALB/C mice. In the present study, an in vitro M cell model was used in which Caco-2 cells and Raji B cells were co-cultured to investigate the impact of the uptake and immunogenicity of B. abortus Mdh on nanoparticle transport in human M cells. Our results showed that loaded CNs induced enhanced transport of Mdh in the M cell model. ELISAs showed significantly higher production of IL-1ß and IL-6 in the CN-Mdh stimulation group than that seen in the Mdh stimulation group. The observed increase of gene expression of TLR2, MyD88, TRAF6, IRF4 and CD14 implied that MyD88-dependent TLR2 signaling was activated by stimulation with CNs-Mdh. These results suggest that Mdh and CNs may function synergistically to enhance Th2-related responses triggered by the MyD88-dependent TLR2 signaling pathway and could induce an inflammatory response in M cells as an M cell-targeted delivery system. This study will contribute to the development of not only effective antigens for intracellular bacteria, including B. abortus, but also vaccine delivery systems that target M cells.

12.
Infect Immun ; 87(4)2019 04.
Article in English | MEDLINE | ID: mdl-30642900

ABSTRACT

The enteric pathogen Shigella is one of the leading causes of moderate-to-severe diarrhea and death in young children in developing countries. Transformed cell lines and animal models have been widely used to study Shigella pathogenesis. In addition to altered physiology, transformed cell lines are composed of a single cell type that does not sufficiently represent the complex multicellular environment of the human colon. Most available animal models do not accurately mimic human disease. The human intestinal enteroid model, derived from LGR5+ stem cell-containing intestinal crypts from healthy subjects, represents a technological leap in human gastrointestinal system modeling and provides a more physiologically relevant system that includes multiple cell types and features of the human intestine. We established the utility of this model for studying basic aspects of Shigella pathogenesis and host responses. In this study, we show that Shigellaflexneri is capable of infecting and replicating intracellularly in human enteroids derived from different segments of the intestine. Apical invasion by S. flexneri is very limited but increases ∼10-fold when enteroids are differentiated to include M cells. Invasion via the basolateral surface was at least 2-log10 units more efficient than apical infection. Increased secretion of interleukin-8 and higher expression levels of the mucin glycoprotein Muc2 were observed in the enteroids following S. flexneri infection. The human enteroid model promises to bridge some of the gaps between traditional cell culture, animal models, and human infection.


Subject(s)
Dysentery, Bacillary/microbiology , Intestines/cytology , Organoids/microbiology , Shigella flexneri/physiology , Cells, Cultured , Humans , Intestines/microbiology , Models, Biological , Organoids/growth & development , Organoids/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Shigella flexneri/genetics , Shigella flexneri/growth & development , Shigella flexneri/pathogenicity , Stem Cells/cytology , Stem Cells/metabolism , Virulence
13.
Cell Immunol ; 330: 159-167, 2018 08.
Article in English | MEDLINE | ID: mdl-29395860

ABSTRACT

In mammals, macrophages (MF) are present in virtually all tissues where they serve many different functions linked primarily to the maintenance of homeostasis, innate defense against pathogens, tissue repair and metabolism. Although some of these functions appear common to all tissues, others are specific to the homing tissue. Thus, MF become adapted to perform particular functions in a given tissue. Accordingly, MF express common markers but also sets of tissue-specific markers linked to dedicated functions. One of the largest pool of MF in the body lines up the wall of the gut. Located in the small intestine, Peyer's patches (PP) are primary antigen sampling and mucosal immune response inductive sites. Surprisingly, although markers of intestinal MF, such as F4/80, have been identified more than 30 years ago, MF of PP escaped any kind of phenotypic description and remained "unknown" for decades. In absence of MF identification, the characterization of the PP mononuclear phagocyte system (MPS) functions has been impaired. However, taking into account that PP are privileged sites of entry for pathogens, it is important to understand how the latter are handled by and/or escape the PP MPS, especially MF, which role in killing invaders is well known. This review focuses on recent advances on the PP MPS, which have allowed, through new criteria of PP phagocyte subset identification, the characterization of PP MF origin, diversity, specificity, location and functions.


Subject(s)
Intestinal Mucosa/immunology , Intestine, Small/immunology , Macrophages/immunology , Mononuclear Phagocyte System/immunology , Peyer's Patches/immunology , Adaptive Immunity/immunology , Animals , Immunity, Mucosal/immunology , Mononuclear Phagocyte System/cytology , Peyer's Patches/cytology , Phagocytes/immunology
14.
Infect Immun ; 85(9)2017 09.
Article in English | MEDLINE | ID: mdl-28630073

ABSTRACT

Salmonella enterica serovar Typhi causes the systemic disease typhoid fever. After ingestion, it adheres to and invades the host epithelium while evading the host innate immune response, causing little if any inflammation. Conversely, Salmonella enterica serovar Typhimurium causes gastroenteritis in humans and thrives in the inflamed gut. Upon entering the host, S Typhimurium preferentially colonizes Peyer's patches, a lymphoid organ in which microfold cells (M cells) overlay an arrangement of B cells, T cells, and antigen-presenting cells. Both serovars can adhere to and invade M cells and enterocytes, and it has been assumed that S Typhi also preferentially targets M cells. In this study, we present data supporting the alternative hypothesis that S Typhi preferentially targets enterocytes. Using a tissue culture M cell model, we examined S Typhi strains with a deletion in the stg fimbriae. The stg deletion resulted in increased adherence to M cells and, as expected, decreased adherence to Caco-2 cells. Adherence to M cells could be further enhanced by introduction of the long polar fimbriae (Lpf), which facilitate adherence of S Typhimurium to M cells. Deletion of stg and/or introduction of lpf enhanced M cell invasion as well, leading to significant increases in secretion of interleukin 8. These results suggest that S Typhi may preferentially target enterocytes in vivo.


Subject(s)
Bacterial Adhesion , Enterocytes/microbiology , Fimbriae, Bacterial/metabolism , Salmonella typhi/physiology , Caco-2 Cells , Humans
15.
Am J Physiol Cell Physiol ; 311(3): C498-507, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27413168

ABSTRACT

Microfold (M) cells are phagocytic intestinal epithelial cells in the follicle-associated epithelium of Peyer's patches that transport particulate antigens from the gut lumen into the subepithelial dome. Differentiation of M cells from epithelial stem cells in intestinal crypts requires the cytokine receptor activator of NF-κB ligand (RANKL) and the transcription factor Spi-B. We used three-dimensional enteroid cultures established with small intestinal crypts from mice as a model system to investigate signaling pathways involved in M cell differentiation and the influence of other cytokines on RANKL-induced M cell differentiation. Addition of RANKL to enteroids induced expression of multiple M cell-associated genes, including Spib, Ccl9 [chemokine (C-C motif) ligand 9], Tnfaip2 (TNF-α-induced protein 2), Anxa5 (annexin A5), and Marcksl1 (myristoylated alanine-rich protein kinase C substrate) in 1 day. The mature M cell marker glycoprotein 2 (Gp2) was strongly induced by 3 days and expressed by 11% of cells in enteroids. The noncanonical NF-κB pathway was required for RANKL-induced M cell differentiation in enteroids, as addition of RANKL to enteroids from mice with a null mutation in the mitogen-activated protein kinase kinase kinase 14 (Map3k14) gene encoding NF-κB-inducing kinase failed to induce M cell-associated genes. While the cytokine TNF-α alone had little, if any, effect on expression of M cell-associated genes, addition of TNF-α to RANKL consistently resulted in three- to sixfold higher levels of multiple M cell-associated genes than RANKL alone. One contributing mechanism is the rapid induction by TNF-α of Relb and Nfkb2 (NF-κB subunit 2), genes encoding the two subunits of the noncanonical NF-κB heterodimer. We conclude that endogenous activators of canonical NF-κB signaling present in the gut-associated lymphoid tissue microenvironment, including TNF-α, can play a supportive role in the RANKL-dependent differentiation of M cells in the follicle-associated epithelium.


Subject(s)
Cell Differentiation/physiology , Epithelial Cells/physiology , Intestinal Mucosa/metabolism , Intestinal Mucosa/physiology , Intestines/physiology , RANK Ligand/metabolism , Tumor Necrosis Factor-alpha/metabolism , Animals , Biomarkers/metabolism , Cell Line , Epithelial Cells/metabolism , Female , MAP Kinase Kinase Kinases/metabolism , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Signal Transduction/physiology , Stem Cells/metabolism , Stem Cells/physiology
16.
Cell Tissue Res ; 364(1): 175-84, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26553655

ABSTRACT

Murine nasopharynx-associated lymphoid tissue (NALT), located at the base of the nasal cavity, serves as a major site for the induction of mucosal immune responses against airway antigens. The follicle-associated epithelium (FAE) covering the luminal surface of NALT is characterized by the presence of microfold cells (M cells), which take up and transport luminal antigens to lymphocytes. Glycoprotein 2 (GP2) has recently been identified as a reliable marker for M cells in Peyer's patches of the intestine. However, the expression of GP2 and other functional molecules in the M cells of NALT has not yet been examined. We have immunohistochemically detected GP2-expressing cells in the FAE of NALT and the simultaneous expression of other intestinal M-cell markers, namely Tnfaip2, CCL9, and Spi-B. These cells have been further identified as M cells because of their higher uptake capacity of luminal microbeads. Electron microscopic observations have shown that GP2-expressing cells on the FAE display morphological features typical of M cells: they possess short microvilli and microfolds on the luminal surface and are closely associated with intraepithelial lymphocytes. We have also found that the receptor activator of nuclear factor kappa-B ligand (RANKL) is expressed by stromal cells underneath the FAE, which provides its receptor RANK. The administration of RANKL markedly increases the number of GP2(+)Tnfaip2(+) cells on the NALT FAE and that of intestinal M cells. These results suggest that GP2(+)Tnfaip2(+) cells in NALT are equivalent to intestinal M cells, and that RANKL-RANK signaling induces their differentiation.


Subject(s)
Cell Differentiation/drug effects , Gene Expression Regulation/drug effects , Lymphoid Tissue/immunology , Pharynx/immunology , RANK Ligand/pharmacology , Signal Transduction/drug effects , Animals , Antigens, Differentiation/immunology , Cell Differentiation/immunology , GPI-Linked Proteins/immunology , Gene Expression Regulation/immunology , Lymphoid Tissue/cytology , Mice , Mice, Inbred BALB C , Pharynx/cytology , RANK Ligand/immunology , Signal Transduction/immunology
17.
Mol Pharm ; 12(11): 3816-28, 2015 Nov 02.
Article in English | MEDLINE | ID: mdl-26394158

ABSTRACT

Orally ingested pathogens or antigens are taken up by microfold cells (M cells) in Peyer's patches of intestine to initiate protective immunity against infections. However, the uptake of orally delivered protein antigens through M cells is very low due to lack of specificity of proteins toward M cells and degradation of proteins in the harsh environment of gastrointestinal (GI) tract. To overcome these limitations, here we developed a pH-sensitive and mucoadhesive vehicle of thiolated eudragit (TE) microparticles to transport an M cell-targeting peptide-fused model protein antigen. Particularly, TE prolonged the particles transit time through the GI tract and predominantly released the proteins in ileum where M cells are abundant. Thus, oral delivery of TE microparticulate antigens exhibited high transcytosis of antigens through M cells resulting in strong protective sIgA as well as systemic IgG antibody responses. Importantly, the delivery system not only induced CD4(+) T cell immune responses but also generated strong CD8(+) T cell responses with enhanced production of IFN-γ in spleen. Given that M cells are considered a promising target for oral vaccination, this study could provide a new combinatorial method for the development of M-cell-targeted mucosal vaccines.


Subject(s)
Bacterial Outer Membrane Proteins/immunology , Cell Adhesion/immunology , Drug Delivery Systems , Intestinal Mucosa/metabolism , Lipoproteins/immunology , Peptide Fragments/administration & dosage , Vaccines, Subunit/administration & dosage , Acrylic Resins , Administration, Oral , Animals , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cytokines/metabolism , Female , Flow Cytometry , Intestines/cytology , Materials Testing , Mice , Mice, Inbred BALB C , Microspheres , Peptide Fragments/immunology , Polymers/chemistry , Vaccines, Subunit/immunology
18.
J Electrocardiol ; 48(6): 927-32, 2015.
Article in English | MEDLINE | ID: mdl-26341648

ABSTRACT

Drugs that cause strong hERG potassium channel block (e.g., dofetilide, quinidine) cause T-wave notching. It has been suggested that this is due to prolongation of mid-myocardial (M) cells' action potential duration relative to endocardial and epicardial cells. However, the role of M cells in intact human hearts is debated. We simulated 2025 electrocardiograms representing changes in ventricular action potentials using the equivalent double layer mode that does not include M-cells. Action potential changes included prolongation, triangularization, squaring, and bumps in late repolarization, which have been observed experimentally and in single cell models with block of the hERG potassium channel. Changes were applied globally and spatially dispersed. Action potential bumps (slowing in late repolarization) produced T-wave notching similar to that observed clinically in healthy subjects receiving dofetilide or quinidine. Conversely, all other action potential changes (i.e., prolongation, triangularization, squaring), either global or spatially dispersed, resulted in T-wave changes, but did not cause T-wave notching. This study demonstrates that M-cells are not required to simulate T-wave notching.


Subject(s)
Action Potentials/physiology , Electrocardiography/methods , Heart Conduction System/physiopathology , Long QT Syndrome/physiopathology , Models, Cardiovascular , Myocytes, Cardiac/physiology , Computer Simulation , Heart Conduction System/pathology , Humans , Long QT Syndrome/diagnosis
19.
Mol Pharm ; 11(3): 808-18, 2014 Mar 03.
Article in English | MEDLINE | ID: mdl-24502507

ABSTRACT

Intestinal epithelial cell culture models, such as Caco-2 cells, are commonly used to assess absorption of drug molecules and transcytosis of nanoparticles across the intestinal mucosa. However, it is known that mucus strongly impacts nanoparticle mobility and that specialized M cells are involved in particulate uptake. Thus, to get a clear understanding of how nanoparticles interact with the intestinal mucosa, in vitro models are necessary that integrate the main cell types. This work aimed at developing an alternative in vitro permeability model based on a triple culture: Caco-2 cells, mucus-secreting goblet cells and M cells. Therefore, Caco-2 cells and mucus-secreting goblet cells were cocultured on Transwells and Raji B cells were added to stimulate differentiation of M cells. The in vitro triple culture model was characterized regarding confluence, integrity, differentiation/expression of M cells and cell surface architecture. Permeability of model drugs and of 50 and 200 nm polystyrene nanoparticles was studied. Data from the in vitro model were compared with ex vivo permeability results (Ussing chambers and porcine intestine) and correlated well. Nanoparticle uptake was size-dependent and strongly impacted by the mucus layer. Moreover, nanoparticle permeability studies clearly demonstrated that particles were capable of penetrating the intestinal barrier mainly via specialized M cells. It can be concluded that goblet cells and M cells strongly impact nanoparticle uptake in the intestine and should thus be integrated in an in vitro permeability model. The presented model will be an efficient tool to study intestinal transcellular uptake of particulate systems.


Subject(s)
B-Lymphocytes/metabolism , Enterocytes/metabolism , Goblet Cells/metabolism , Intestinal Mucosa/metabolism , Mucus/metabolism , Nanoparticles/chemistry , Animals , Biological Transport , Caco-2 Cells , Cell Membrane Permeability , Coculture Techniques , HT29 Cells , Humans , In Vitro Techniques , Polystyrenes/chemistry , Swine
20.
Curr Protoc ; 4(4): e1027, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38588063

ABSTRACT

The development of patient-derived intestinal organoids represents an invaluable model for simulating the native human intestinal epithelium. These stem cell-rich cultures outperform commonly used cell lines like Caco-2 and HT29-MTX in reflecting the cellular diversity of the native intestinal epithelium after differentiation. In our recent study examining the effects of polystyrene (PS), microplastics (MPs), and nanoplastics (NPs), widespread pollutants in our environment and food chain, on the human intestinal epithelium, these organoids have been instrumental in elucidating the absorption mechanisms and potential biological impacts of plastic particles. Building on previously established protocols in human intestinal organoid culture, we herein detail a streamlined protocol for the cultivation, differentiation, and generation of organoid-derived monolayers. This protocol is tailored to generate monolayers incorporating microfold cells (M cells), key for intestinal particle uptake but often absent in current in vitro models. We provide validated protocols for the characterization of MPs/NPs via scanning electron microscopy (SEM) for detailed imaging and their introduction to intestinal epithelial monolayer cells via confocal immunostaining. Additionally, protocols to test the impacts of MP/NP exposure on the functions of the intestinal barrier using transendothelial electrical resistance (TEER) measurements and assessing inflammatory responses using cytokine profiling are detailed. Overall, our protocols enable the generation of human intestinal organoid monolayers, complete with the option of including or excluding M cells, offering crucial techniques for observing particle uptake and identifying inflammatory responses in intestinal epithelial cells to advance our knowledge of the potential effects of plastic pollution on human gut health. These approaches are also amendable to the study of other gut-related chemical and biological exposures and physiological responses due to the robust nature of the systems. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Human intestinal organoid culture and generation of monolayers with and without M cells Support Protocol 1: Culture of L-WRN and production of WRN-conditioned medium Support Protocol 2: Neuronal cell culture and integration into intestinal epithelium Support Protocol 3: Immune cell culture and integration into intestinal epithelium Basic Protocol 2: Scanning electron microscopy: sample preparation and imaging Basic Protocol 3: Immunostaining and confocal imaging of MP/NP uptake in organoid-derived monolayers Basic Protocol 4: Assessment of intestinal barrier function via TEER measurements Basic Protocol 5: Cytokine profiling using ELISA post-MP/NP exposure.


Subject(s)
Microplastics , Plastics , Humans , Microplastics/metabolism , Caco-2 Cells , Plastics/metabolism , Intestinal Mucosa/metabolism , Organoids , Epithelium , Cytokines/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL