Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Sensors (Basel) ; 23(7)2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37050788

ABSTRACT

Accurate hyperspectral remote sensing information is essential for feature identification and detection. Nevertheless, the hyperspectral imaging mechanism poses challenges in balancing the trade-off between spatial and spectral resolution. Hardware improvements are cost-intensive and depend on strict environmental conditions and extra equipment. Recent spectral imaging methods have attempted to directly reconstruct hyperspectral information from widely available multispectral images. However, fixed mapping approaches used in previous spectral reconstruction models limit their reconstruction quality and generalizability, especially dealing with missing or contaminated bands. Moreover, data-hungry issues plague increasingly complex data-driven spectral reconstruction methods. This paper proposes SpectralMAE, a novel spectral reconstruction model that can take arbitrary combinations of bands as input and improve the utilization of data sources. In contrast to previous spectral reconstruction techniques, SpectralMAE explores the application of a self-supervised learning paradigm and proposes a masked autoencoder architecture for spectral dimensions. To further enhance the performance for specific sensor inputs, we propose a training strategy by combining random masking pre-training and fixed masking fine-tuning. Empirical evaluations on five remote sensing datasets demonstrate that SpectralMAE outperforms state-of-the-art methods in both qualitative and quantitative metrics.

2.
Sensors (Basel) ; 22(21)2022 Oct 30.
Article in English | MEDLINE | ID: mdl-36366027

ABSTRACT

Solid developments have been seen in deep-learning-based pose estimation, but few works have explored performance in dense crowds, such as a classroom scene; furthermore, no specific knowledge is considered in the design of image augmentation for pose estimation. A masked autoencoder was shown to have a non-negligible capability in image reconstruction, where the masking mechanism that randomly drops patches forces the model to build unknown pixels from known pixels. Inspired by this self-supervised learning method, where the restoration of the feature loss induced by the mask is consistent with tackling the occlusion problem in classroom scenarios, we discovered that the transfer performance of the pre-trained weights could be used as a model-based augmentation to overcome the intractable occlusion in classroom pose estimation. In this study, we proposed a top-down pose estimation method that utilized the natural reconstruction capability of missing information of the MAE as an effective occluded image augmentation in a pose estimation task. The difference with the original MAE was that instead of using a 75% random mask ratio, we regarded the keypoint distribution probabilistic heatmap as a reference for masking, which we named Pose Mask. To test the performance of our method in heavily occluded classroom scenes, we collected a new dataset for pose estimation in classroom scenes named Class Pose and conducted many experiments, the results of which showed promising performance.

3.
Comput Biol Med ; 176: 108554, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744013

ABSTRACT

One of the most common diseases affecting society around the world is kidney tumor. The risk of kidney disease increases due to reasons such as consumption of ready-made food and bad habits. Early diagnosis of kidney tumors is essential for effective treatment, reducing side effects, and reducing the number of deaths. With the development of computer-aided diagnostic methods, the need for accurate renal tumor classification is also increasing. Because traditional methods based on manual detection are time-consuming, boring, and costly, high-accuracy tests can be performed faster and at a lower cost with deep learning (DL) methods in kidney tumor detection (KTD). Among the current challenges regarding artificial intelligence-assisted KTD, obtaining more precise programming information and the capacity to group with high accuracy make clinical determination more vital and bring it to an important point for current treatment in KTD prediction. This encourages us to propose a more effective DL model that can effectively assist specialist physicians in the diagnosis of kidney tumors. In this way, the workload of radiologists can be alleviated and errors in clinical diagnoses that may occur due to the complex structure of the kidney can be prevented. A large amount of data is needed during the training of the developed methods. Although various studies have been conducted to reduce the amount of data with feature selection techniques, these techniques provide little improvement in the classification accuracy rate. In this paper, a masked autoencoder (MAE) is proposed for KTD, which can produce effective results on datasets containing some samples and can be directly fine-tuned and pre-trained. Self-supervised learning (SSL) is achieved through self-distillation (SD), which can be reintroduced into the configuration loss calculation using masked patches. The SD loss on the decoder and encoder outputs' latent representation is calculated operating SSLSD-KTD. The encoder obtains local attention, while the decoder transfers its global attention to calculate losses. The SSLSD-KTD method reached 98.04 % classification accuracy on the KAUH-kidney dataset, including 8400 samples, and 82.14 % on the CT-kidney dataset, containing 840 samples. By adding more external information to the SSLSD-KTD method with transfer learning, accuracy results of 99.82 % and 95.24 % were obtained on the same datasets. Experimental results have shown that the SSLSD-KTD method can effectively extract kidney tumor features with limited data and can be an aid or even an alternative for radiologists in decision-making in the diagnosis of the disease.


Subject(s)
Kidney Neoplasms , Tomography, X-Ray Computed , Humans , Kidney Neoplasms/diagnostic imaging , Kidney Neoplasms/classification , Tomography, X-Ray Computed/methods , Supervised Machine Learning , Deep Learning , Kidney/diagnostic imaging , Male , Female , Radiographic Image Interpretation, Computer-Assisted/methods
4.
ArXiv ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38699171

ABSTRACT

Cryo-electron microscopy (cryo-EM) emerges as a pivotal technology for determining the architecture of cells, viruses, and protein assemblies at near-atomic resolution. Traditional particle picking, a key step in cryo-EM, struggles with manual effort and automated methods' sensitivity to low signal-to-noise ratio (SNR) and varied particle orientations. Furthermore, existing neural network (NN)-based approaches often require extensive labeled datasets, limiting their practicality. To overcome these obstacles, we introduce cryoMAE, a novel approach based on few-shot learning that harnesses the capabilities of Masked Autoencoders (MAE) to enable efficient selection of single particles in cryo-EM images. Contrary to conventional NN-based techniques, cryoMAE requires only a minimal set of positive particle images for training yet demonstrates high performance in particle detection. Furthermore, the implementation of a self-cross similarity loss ensures distinct features for particle and background regions, thereby enhancing the discrimination capability of cryoMAE. Experiments on large-scale cryo-EM datasets show that cryoMAE outperforms existing state-of-the-art (SOTA) methods, improving 3D reconstruction resolution by up to 22.4%.

5.
Mol Ther Nucleic Acids ; 35(1): 102103, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38261851

ABSTRACT

Inferring small molecule-miRNA associations (MMAs) is crucial for revealing the intricacies of biological processes and disease mechanisms. Deep learning, renowned for its exceptional speed and accuracy, is extensively used for predicting MMAs. However, given their heavy reliance on data, inaccuracies during data collection can make these methods susceptible to noise interference. To address this challenge, we introduce the joint masking and self-supervised (JMSS)-MMA model. This model synergizes graph autoencoders with a probability distribution-based masking strategy, effectively countering the impact of noisy data and enabling precise predictions of unknown MMAs. Operating in a self-supervised manner, it deeply encodes the relationship data of small molecules and miRNA through the graph autoencoder, delving into its latent information. Our masking strategy has successfully reduced data noise, enhancing prediction accuracy. To our knowledge, this is the pioneering integration of a masking strategy with graph autoencoders for MMA prediction. Furthermore, the JMSS-MMA model incorporates a node-degree-based decoder, deepening the understanding of the network's structure. Experiments on two mainstream datasets confirm the model's efficiency and precision, and ablation studies further attest to its robustness. We firmly believe that this model will revolutionize drug development, personalized medicine, and biomedical research.

6.
MethodsX ; 12: 102738, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38715952

ABSTRACT

Sharing medical images securely is very important towards keeping patients' data confidential. In this paper we propose MAN-C: a Masked Autoencoder Neural Cryptography based encryption scheme for sharing medical images. The proposed technique builds upon recently proposed masked autoencoders. In the original paper, the masked autoencoders are used as scalable self-supervised learners for computer vision which reconstruct portions of originally patched images. Here, the facility to obfuscate portions of input image and the ability to reconstruct original images is used an encryption-decryption scheme. In the final form, masked autoencoders are combined with neural cryptography consisting of a tree parity machine and Shamir Scheme for secret image sharing. The proposed technique MAN-C helps to recover the loss in image due to noise during secret sharing of image.•Uses recently proposed masked autoencoders, originally designed as scalable self-supervised learners for computer vision, in an encryption-decryption setup.•Combines autoencoders with neural cryptography - the advantage our proposed approach offers over existing technique is that (i) Neural cryptography is a new type of public key cryptography that is not based on number theory, requires less computing time and memory and is non-deterministic in nature, (ii) masked auto-encoders provide additional level of obfuscation through their deep learning architecture.•The proposed scheme was evaluated on dataset consisting of CT scans made public by The Cancer Imaging Archive (TCIA). The proposed method produces better RMSE values between the input the encrypted image and comparable correlation values between the input and the output image with respect to the existing techniques.

7.
Comput Biol Med ; 161: 107037, 2023 07.
Article in English | MEDLINE | ID: mdl-37230020

ABSTRACT

The development of deep learning models in medical image analysis is majorly limited by the lack of large-sized and well-annotated datasets. Unsupervised learning does not require labels and is more suitable for solving medical image analysis problems. However, most unsupervised learning methods must be applied to large datasets. To make unsupervised learning applicable to small datasets, we proposed Swin MAE, a masked autoencoder with Swin Transformer as its backbone. Even on a dataset of only a few thousand medical images, Swin MAE can still learn useful semantic features purely from images without using any pre-trained models. It can equal or even slightly outperform the supervised model obtained by Swin Transformer trained on ImageNet in the transfer learning results of downstream tasks. Compared to MAE, Swin MAE brought a performance improvement of twice and five times for downstream tasks on BTCV and our parotid dataset, respectively. The code is publicly available at https://github.com/Zian-Xu/Swin-MAE.


Subject(s)
Parotid Gland , Problem Solving , Semantics
8.
Front Neuroinform ; 17: 1118419, 2023.
Article in English | MEDLINE | ID: mdl-37360945

ABSTRACT

Introduction: The exorbitant cost of accurately annotating the large-scale serial scanning electron microscope (SEM) images as the ground truth for training has always been a great challenge for brain map reconstruction by deep learning methods in neural connectome studies. The representation ability of the model is strongly correlated with the number of such high-quality labels. Recently, the masked autoencoder (MAE) has been shown to effectively pre-train Vision Transformers (ViT) to improve their representational capabilities. Methods: In this paper, we investigated a self-pre-training paradigm for serial SEM images with MAE to implement downstream segmentation tasks. We randomly masked voxels in three-dimensional brain image patches and trained an autoencoder to reconstruct the neuronal structures. Results and discussion: We tested different pre-training and fine-tuning configurations on three different serial SEM datasets of mouse brains, including two public ones, SNEMI3D and MitoEM-R, and one acquired in our lab. A series of masking ratios were examined and the optimal ratio for pre-training efficiency was spotted for 3D segmentation. The MAE pre-training strategy significantly outperformed the supervised learning from scratch. Our work shows that the general framework of can be a unified approach for effective learning of the representation of heterogeneous neural structural features in serial SEM images to greatly facilitate brain connectome reconstruction.

9.
Front Neuroinform ; 17: 1337766, 2023.
Article in English | MEDLINE | ID: mdl-38088986

ABSTRACT

[This corrects the article DOI: 10.3389/fninf.2023.1118419.].

10.
Front Med (Lausanne) ; 10: 1114571, 2023.
Article in English | MEDLINE | ID: mdl-36968818

ABSTRACT

The heart is a relatively complex non-rigid motion organ in the human body. Quantitative motion analysis of the heart takes on a critical significance to help doctors with accurate diagnosis and treatment. Moreover, cardiovascular magnetic resonance imaging (CMRI) can be used to perform a more detailed quantitative analysis evaluation for cardiac diagnosis. Deformable image registration (DIR) has become a vital task in biomedical image analysis since tissue structures have variability in medical images. Recently, the model based on masked autoencoder (MAE) has recently been shown to be effective in computer vision tasks. Vision Transformer has the context aggregation ability to restore the semantic information in the original image regions by using a low proportion of visible image patches to predict the masked image patches. A novel Transformer-ConvNet architecture is proposed in this study based on MAE for medical image registration. The core of the Transformer is designed as a masked autoencoder (MAE) and a lightweight decoder structure, and feature extraction before the downstream registration task is transformed into the self-supervised learning task. This study also rethinks the calculation method of the multi-head self-attention mechanism in the Transformer encoder. We improve the query-key-value-based dot product attention by introducing both depthwise separable convolution (DWSC) and squeeze and excitation (SE) modules into the self-attention module to reduce the amount of parameter computation to highlight image details and maintain high spatial resolution image features. In addition, concurrent spatial and channel squeeze and excitation (scSE) module is embedded into the CNN structure, which also proves to be effective for extracting robust feature representations. The proposed method, called MAE-TransRNet, has better generalization. The proposed model is evaluated on the cardiac short-axis public dataset (with images and labels) at the 2017 Automated Cardiac Diagnosis Challenge (ACDC). The relevant qualitative and quantitative results (e.g., dice performance and Hausdorff distance) suggest that the proposed model can achieve superior results over those achieved by the state-of-the-art methods, thus proving that MAE and improved self-attention are more effective and promising for medical image registration tasks. Codes and models are available at https://github.com/XinXiao101/MAE-TransRNet.

11.
Front Med (Lausanne) ; 10: 1211800, 2023.
Article in English | MEDLINE | ID: mdl-37771979

ABSTRACT

Introduction: Precise delineation of glioblastoma in multi-parameter magnetic resonance images is pivotal for neurosurgery and subsequent treatment monitoring. Transformer models have shown promise in brain tumor segmentation, but their efficacy heavily depends on a substantial amount of annotated data. To address the scarcity of annotated data and improve model robustness, self-supervised learning methods using masked autoencoders have been devised. Nevertheless, these methods have not incorporated the anatomical priors of brain structures. Methods: This study proposed an anatomical prior-informed masking strategy to enhance the pre-training of masked autoencoders, which combines data-driven reconstruction with anatomical knowledge. We investigate the likelihood of tumor presence in various brain structures, and this information is then utilized to guide the masking procedure. Results: Compared with random masking, our method enables the pre-training to concentrate on regions that are more pertinent to downstream segmentation. Experiments conducted on the BraTS21 dataset demonstrate that our proposed method surpasses the performance of state-of-the-art self-supervised learning techniques. It enhances brain tumor segmentation in terms of both accuracy and data efficiency. Discussion: Tailored mechanisms designed to extract valuable information from extensive data could enhance computational efficiency and performance, resulting in increased precision. It's still promising to integrate anatomical priors and vision approaches.

SELECTION OF CITATIONS
SEARCH DETAIL