Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Sci Technol Adv Mater ; 22(1): 345-362, 2021 May 28.
Article in English | MEDLINE | ID: mdl-34104115

ABSTRACT

This study examined the effect of a mixture of octacalcium phosphate (OCP) and autologous bone on bone regeneration in rat calvaria critical-sized defect (CSD). Mechanically mixed OCP and autologous bone granules (OCP+Auto), approximately 500 to 1000 µm in diameter, and each individual material were implanted in rat CSD for 8 weeks, and subjected to X-ray micro-computed tomography (micro-CT), histology, tartrate-resistant acid phosphatase (TRAP) staining, and histomorphometry for bone regeneration. Osteoblastic differentiation from mesenchymal stem cells (D1 cells) was examined in the presence of non-contacting materials by alkaline phosphatase (ALP) activity for 21 days. The material properties and medium composition before and after the incubation were determined by selected area electron diffraction (SAED) under transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), and chemical analysis. The results showed that while bone formation coupled with TRAP-positive osteoclastic resorption and cellular ALP activity were the highest in the Auto group, a positive effect per OCP weight or per autologous bone weight on ALP activity was found. Although the OCP structure was maintained even after the incubation (SAED), micro-deposits were grown on OCP surfaces (TEM). Fibrous tissue was also exposed on the autologous bone surfaces (SEM). Through FT-IR absorption, it was determined that bone mineral-like characteristics of the phosphate group increased in the OCP + Auto group. These findings were interpreted as a structural change from OCP to the apatitic phase, a conclusion supported by the medium degree of saturation changes. The results demonstrate the mutual chemical effect of mixing OCP with autologous bone as an active bone substitute material.

2.
Clin Oral Investig ; 22(4): 1675-1680, 2018 May.
Article in English | MEDLINE | ID: mdl-29288401

ABSTRACT

OBJECTIVES: The aim of this study was to evaluate the effect of various mixing techniques as well as the effect of ultrasonic placement on hydration of mineral trioxide aggregate (MTA) using X-ray diffraction (XRD) analysis. MATERIALS AND METHODS: One gram of ProRoot MTA and MTA Angelus powder was mixed with a 0.34-g of distilled water. Specimens were mixed either by mechanical mixing of capsules for 30 s at 4500 rpm or by manual mixing followed by application of a compaction pressure of 3.22 MPa for 1 min. The mixtures were transferred into the XRD sample holder with minimum pressure. Indirect ultrasonic activation was applied to half of the specimens. All specimens were incubated at 37 °C and 100% humidity for 4 days. Samples were analyzed by XRD. Phase identification was accomplished by use of search-match software utilizing International Centre for Diffraction Data (ICDD). RESULTS: All specimens comprised tricalcium silicate, calcium carbonate, and bismuth oxide. A calcium hydroxide phase was formed in all ProRoot specimens whereas among MTA Angelus groups, it was found only in the sample mixed mechanically and placed by ultrasonication. CONCLUSIONS: Mechanical mixing followed by ultrasonication did not confer a significant disadvantage in terms of hydration characteristics of MTA. CLINICAL RELEVANCE: Clinicians vary in the way they mix and place MTA. These variations might affect their physical characteristics and clinical performance. For ProRoot MTA, the mixing and placement methods did not affect its rheological properties, whereas for MTA Angelus, mechanical mixing combined with ultrasonic placement enhanced the calcium hydroxide phase formation.


Subject(s)
Aluminum Compounds/chemistry , Calcium Compounds/chemistry , Oxides/chemistry , Root Canal Filling Materials/chemistry , Silicates/chemistry , Ultrasonics , X-Ray Diffraction , Drug Combinations , Materials Testing , Surface Properties
3.
Chemistry ; 23(16): 3931-3937, 2017 Mar 17.
Article in English | MEDLINE | ID: mdl-28120461

ABSTRACT

A 3D metal-organic framework (ADA-Cd=[Cd2 L2 (DMF)2 ]⋅3 H2 O where H2 L is (2E,2'E)-3,3'-(anthracene-9,10-diyl)diacrylic acid) constructed from diacrylate substituted anthracene, sharing structural characteristics with some frequently employed anthraquinone-type dye sensitizers, was introduced as an effective sensitizer for anatase TiO2 to achieve enhanced visible light photocatalytic performance. A facile mechanical mixing procedure was adopted to prepare the co-catalyst denoted as ADA-Cd/TiO2 , which showed enhanced photodegradation ability, as well as sustainability, towards several dyes under visible light irradiation. Mechanistic studies revealed that ADA-Cd acted as the antenna to harvest visible light energy, generating excited electrons, which were injected to the conduction band (CB) of TiO2 , facilitating the separation efficiency of charge carriers. As suggested by the results of control experiments, combined with the corresponding redox potential of possible oxidative species, . O2- , generated from the oxygen of ambient air at the CB of TiO2 was believed to play a dominant role over . OH and h+ . UV/Vis and photoluminescence technologies were adopted to monitor the generation of . O2- and . OH, respectively. This work presents a facile strategy to achieve a visible light photocatalyst with enhanced catalytic activity and sustainability; the simplicity, efficiency, and stability of this strategy may provide a promising way to achieve environmental remediation.

4.
Chemistry ; 22(34): 11943-8, 2016 Aug 16.
Article in English | MEDLINE | ID: mdl-27339820

ABSTRACT

Over the past decade, TiO2 /graphene composites as electrodes for lithium ion batteries have attracted a great deal of attention for reasons of safety and environmental friendliness. However, most of the TiO2 /graphene electrodes have large graphene content (9-40 %), which is bound to increase the cost of the battery. Logically, reducing the amount of graphene is a necessary part to achieve a green battery. The synthesis of TiO2 nanosheets under solvothermal conditions without additives is now demonstrated. Through mechanical mixing TiO2 nanosheets with different amount of reduced graphene (rGO), a series of TiO2 @graphene composites was prepared with low graphene content (rGO content 1, 2, 3, and 5 wt %). When these composites were evaluated as anodes for lithium ion batteries, it was found that TiO2 +3 wt % rGO manifested excellent cycling stability and a high specific capacity (243.7 mAh g(-1) at 1 C; 1 C=167.5 mA g(-1) ), and demonstrated superior high-rate discharge/charge capability at 20 C.

5.
J Dairy Sci ; 99(2): 1242-1246, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26627863

ABSTRACT

Two independent studies were conducted to determine whether mechanical mixing of total mixed ration (TMR) or TMR dry matter alters Lys release from 6 rumen-protected Lys (RPL) products (A, B, C, D, E, and F). In the first study, routine mixing procedures were simulated to determine if inclusion of RPL products in TMR altered in situ release of Lys. Following mixing, Dacron bags containing RPL products were ruminally incubated for 0, 6, 12, or 24 h to determine Lys release. The second study occurred independently of the first, in which Lys release from RPL products was evaluated when incorporated into a TMR that differed in dry matter (DM) content. Bags containing TMR and RPL product mixture were stored at room temperature for 0, 6, 18, and 24 h to simulate RPL product exposure to TMR when mixed and delivered once per day. Concentration of free Lys in both studies was determined using ultra-performance liquid chromatography. Following mechanical mixing, ruminal Lys release was significantly greater for C and tended to increase for F. Mechanical mixing did not alter ruminal Lys release from other RPL products evaluated. Hours of ruminal incubation significantly altered Lys release for all products evaluated, and a significant interaction of mechanical mixing and hours of ruminal incubation was observed for A and C. Exposure to lower TMR DM (40.5 versus 51.8%) significantly increased Lys release from B but did not alter Lys release from the other RPL products evaluated. Moreover, time of exposure to TMR significantly increased Lys release from all RPL products evaluated, and a significant interaction of TMR DM and time of exposure to TMR was observed for B and E. These data suggest mechanical mixing and variation in TMR DM may compromise the rumen protection of RPL products; therefore, on-farm feeding practices may alter efficacy of RPL products in dairy rations.


Subject(s)
Animal Feed , Cattle/metabolism , Dairying/methods , Lysine/metabolism , Rumen/metabolism , Animals , Diet/veterinary , Feeding Methods/veterinary , Female , Food Handling/methods
6.
Bioprocess Biosyst Eng ; 39(3): 473-83, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26739143

ABSTRACT

This study aims to investigate the mixing characteristics of a transparent sludge simulant in a mechanically agitated model digester using flow visualisation technique. Video images of the flow patterns were obtained by recording the progress of an acid-base reaction and analysed to determine the active and inactive volumes as a function of time. The doughnut-shaped inactive region formed above and below the impeller in low concentration simulant decreases in size with time and disappears finally. The 'cavern' shaped active mixing region formed around the impeller in simulant solutions with higher concentrations increases with increasing agitation time and reaches a steady state equilibrium size, which is a function of specific power input. These results indicate that the active volume is jointly determined by simulant rheology and specific power input. A mathematical correlation is proposed to estimate the active volume as a function of simulant concentration in terms of yield Reynolds number.


Subject(s)
Models, Chemical , Sewage/chemistry
7.
Chemosphere ; 352: 141299, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38296209

ABSTRACT

Previous research on anaerobic digestion of food waste has primarily focused on either wet or dry anaerobic digestion (AD), typically accompanied by continuous mechanical mixing. However, the necessary dilution rates and the extent of mixing required have yet to be addressed. In this study, we investigated switching from wet to dry AD of food waste without mechanical mixing, employing different dilution rates. Lab-scale anaerobic reactors were operated with dilution rates of 10, 5, and 2 times during Phases I (0-56 days), II (57-121 days), and III (122-209 days), respectively. The methane production rates were not significantly different (p > 0.05) across the dilution rates decreased from 10 to 2 times. Remarkably, the methane production in the anaerobic reactors exhibited fluctuations due to variations in feeding, with the methane production rate ranging from 2.0 to 2.7 g CH4-COD/(L d), without mechanical mixing, as the solids content transitioned from wet to near-dry digestion conditions (15 %, food waste). The distribution of sludge volatile solids concentrations remained uniform in the reactor, even at high solids concentrations of up to 15 %. A dynamic microbial community response to changes in dilution rates, with a shift from aceticlastic to hydrogenotrophic methanogenesis pathways. Syntrophic acetate oxidization bacteria (the genus Syner-01 (4.2-8.9 %) and f_Synergistaceae (3.6-4.2 %)) were highly enriched as switching from wet AD to dry AD. The study's findings provide crucial operational insights for anaerobic food waste treatment, potentially resulting in decreased water usage and operational costs, particularly in scenarios with low dilution rates and without mechanical mixing.


Subject(s)
Refuse Disposal , Anaerobiosis , Food Loss and Waste , Food , Bioreactors/microbiology , Methane , Bacteria , Sewage/microbiology
8.
Int J Biol Macromol ; 194: 377-383, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34800523

ABSTRACT

Nanocomposites of chitosan and cerium oxide­cadmium oxide (CeO2-CdO) nanopowder were developed to fabricate impedimetric humidity sensors. The low temperature-stirring was used to synthesize CeO2-CdO nanopowder. Average particle size of synthesized nanopowder was 100 ± 20 nm. Various composition of chitosan-CeO2-CdO nanocomposites were developed using echo-friendly (mechanical mixing) technique. Pellets of 13.0 mm diameter and 1.0 ± 0.1 mm thickness were prepared using hydraulic press under the pressure of 375 MPa. Silver paste was used to deposit the electrodes; the length of each electrode was 12.0 mm and the gap between two electrodes was 2.0 ± 0.5 mm. The mechanism of sensing is based on impedimetric change in response to humidity variation. Fabricated sensors showed high sensitivities ranging from -930.0 kΩ/%RH to -2091.1 kΩ/%RH. Response and recovery times are up to 1 s, while the humidity sensing range is 5 to 95%RH. The fabricated sensors are very attractive to use in several devices for environmental monitoring and biomedical applications.


Subject(s)
Cadmium Compounds/chemistry , Cerium/chemistry , Chitosan/chemistry , Humidity , Nanocomposites/chemistry , Oxides/chemistry , Chemical Phenomena , Chemistry Techniques, Synthetic , Nanocomposites/ultrastructure , Spectrum Analysis
9.
Bioresour Technol ; 338: 125554, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34274589

ABSTRACT

This study simultaneously examines the effect of mixing rate on power consumption and methane production in a stirrer anaerobic reactor. The numerical simulation is carried out using the finite volume approach and validated against available experimental data. The methane production rate is determined using governing equations in the anaerobic digestion (AD) process. The results showed that a 60% increase in the mixing rate of the system (from 50% to 80%) in the wastewater with concentration of 14,549 (mgl-1) increased the methane production rate by about 35% and increased the power consumption of the system by about 13 times. Among the 144 cases studied, the best stirrer model is figured out as the optimal model by applying an index of performance coefficient and also this model is investigated with scale-up criteria in larger sizes. A novel equation for evaluating the power production value is suggested in real digesters.


Subject(s)
Bioreactors , Wastewater , Anaerobiosis , Methane
10.
Ultrason Sonochem ; 72: 105412, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33316732

ABSTRACT

This study investigated the degradation of ibuprofen (IBP), an activated persulfate (PS), when subjected to ultrasonic (US) irradiation and mechanical mixing (M). The effects of several critical factors were evaluated, including the effect of rpm on M, PS concentration, and initial pH, and that of temperature on IBP degradation kinetics and the PS activation mechanism. The resulting IBP oxidation rate constant was significantly higher at 400 rpm. As the PS load increased, the IBP oxidation rate constant increased. The value of the IBP reaction rate increased with decreasing pH; below pH 4.9, there was no significant difference in the IBP oxidation rate constant. The IBP oxidation activation energy when using the US/M-PS system was 18.84 kJ mol-1. In the US/M-PS system, PS activation was the primary effect of temperature at the interface during the explosion of cavitation bubbles. These encouraging results suggest that the US-PS/M process is a promising strategy for the treatment of IBP-based water pollutants.

11.
Ultrason Sonochem ; 70: 105334, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32932226

ABSTRACT

The effects of air sparging (0-16 L min-1) and mechanical mixing (0-400 rpm) on enhancing the sonochemical degradation of rhodamine B (RhB) was investigated using a 28 kHz sonoreactor. The degradation of RhB followed pseudo first-order kinetics, where sparging or mixing induced a large sonochemical enhancement. The kinetic constant varied in three stages (gradually increased â†’ increased exponentially â†’ decreased slightly) as the rate of sparging or mixing increased, where the stages were similar for both processes. The highest sonochemical activity was obtained with sparging at 8 L min-1 or mixing at 200 rpm, where the standing wave field was significantly deformed by sparging and mixing, respectively. The cavitational oxidation activity was concentrated at the bottom of the sonicator when higher sparging or mixing rates were employed. Therefore, the large enhancement in the sonochemical oxidation was attributed mainly to the direct disturbance of the ultrasound transmission and the resulting change in the cavitation-active zone in this study. The effect of the position of air sparging and mixing was investigated. The indirect inhibition of the ultrasound transmission resulted in less enhancement of the sonochemical activity. Moreover, the effect of various sparging gases including air, N2, O2, Ar, CO2, and an Ar/O2 (8:2) mixture was compared, where all gases except CO2 induced an enhancement in the sonochemical activity, irrespective of the concentration of dissolved oxygen. The highest activity was obtained with the Ar/O2 (8:2) mixture. Therefore, it was revealed that the sonochemical oxidation activity could be further enhanced by applying gas sparging using the optimal gas.

12.
Talanta ; 196: 337-344, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30683373

ABSTRACT

The humidity sensing performance of Polyaniline/Water soluble graphene oxide [PWGO] composites have been presented in this work. Various mass ratios of Water soluble graphene oxide [WGO] were mechanically mixed with Polyaniline [PANI] prepared by in-situ polymerization process to form PANI / WGO composites. For the purpose of humidity sensing studies, the samples were structurally characterized by FTIR, Raman, XRD, SEM and TEM techniques and comparatively analyzed. The film of the samples prepared by deposition on ordinary glass substrate using cost effective spin coating technique were tested for their humidity sensing performance in the relative humidity (RH) range of 11-97%. Of the four composites studied, the PWGO-4 composite recorded a good response time of 8 s and a recovery time of 9 s and a very low humidity hysteresis. The mechanism for sensing has been explained on the basis of three sequential steps: chemisorption, physisorption and condensation process. The humidity sensing stability of the composites were tested over a period of 2 months.

13.
Carbohydr Polym ; 157: 669-676, 2017 Feb 10.
Article in English | MEDLINE | ID: mdl-27987977

ABSTRACT

Plasticized alginate films with different biobased polyols (glycerol and sorbitol) and their mixtures were successfully prepared by thermo-mechanical mixing instead of the usual casting-evaporation procedure. The microstructure and properties of the different plasticized alginate formulations were investigated by SEM, FTIR, XRD, DMTA and uniaxial tensile tests. SEM and XRD results showed that native alginate particles were largely destructured with the plasticizers (polyols and water), under a thermo-mechanical input. With increasing amount of plasticizers, the samples showed enhanced homogeneity while their thermal and mechanical properties decreased. Compared to sorbitol, glycerol resulted in alginate films with a higher flexibility due to its better plasticization efficiency resulting from its smaller size and higher hydrophilic character. Glycerol and sorbitol mixtures seemed to be an optimum to obtain the best properties. This work showed that thermo-mechanical mixing is a promising method to produce, at large scale, plasticized alginate-based films with improved properties.


Subject(s)
Alginates/chemistry , Glycerol/chemistry , Plasticizers/chemistry , Sorbitol/chemistry , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Polymers , Water
14.
Chemosphere ; 155: 479-487, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27145422

ABSTRACT

Microbial remediation is preferred as a clean and cost-effective method for restoring environments polluted by organics. But the biodegradation rates of hydrophobic organic contaminants (HOCs) are usually extremely restricted by their low bioavailability, especially in soil. Here, a physical method (mechanical mixing) and a chemical method (randomly methylated-ß-cyclodextrins, RAMEB) were adopted to improve the bioavailability and biodegradation of polychlorinated biphenyls (PCBs) of an aged soil. The bioavailability of tri-CBs was increased by adding RAMEB in soil/slurry or assisting mechanical mixing in slurry, but these methods had no effects on the bioavailability of tetra-CBs and high chlorinated PCBs (Cl > 4). The degradation rate of tri-CBs could be obviously enhanced by adding RAMEB in soil or assisting mechanical mixing in slurry. The highest removal amount of tri-CBs reached 43.8% in 100 d with a first-order decay kinetics constant of 0.0059 d(-1). But the removal of tetra-CBs and high chlorinated PCBs (Cl > 4) were not significant in all mesocosms, possibly due to the lack or weakness of the native degrading microflora. Based on the analysis of the richness and diversity of bacterial communities, the characteristics of the heatmap and the variation of bphC copy numbers in the soil/slurry mesocosms, it could be inferred that there was no obvious corresponding relationship between the variation of the bacterial communities and the physical/chemical measures.


Subject(s)
Bacteria, Aerobic/drug effects , Polychlorinated Biphenyls/metabolism , Soil Pollutants/metabolism , Soil/chemistry , beta-Cyclodextrins/pharmacology , Bacteria, Aerobic/growth & development , Bacteria, Aerobic/metabolism , Biodegradation, Environmental , Biological Availability , Halogenation , Mechanical Phenomena , Methylation
15.
J Endod ; 40(3): 441-5, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24565668

ABSTRACT

INTRODUCTION: The aim of this study was to evaluate the effect of mechanical and manual mixing as well as the effect of ultrasonic agitation during placement on the flexural strength and porosity of mineral trioxide aggregate (MTA). METHODS: White ProRoot MTA and white MTA Angelus were used. One gram of each powder was mixed with a 0.34-g aliquot of distilled water. Specimens were mixed either by mechanical mixing of capsules for 30 seconds at 4500 rpm or by a saturation technique and application of a condensation pressure of 3.22 MPa for 1 minute. The mixed slurries of all materials were loaded into 2 × 2 × 25 mm molds for testing flexural strength and 3 × 4 mm molds for evaluation of porosity. Half of the specimens were placed in the stainless steel molds by using indirect ultrasonic activation. All specimens were incubated for 4 days. Micro-computed tomography was used to determine the porosity of each specimen, and a 3-point bending test was used to evaluate flexural strength. Tukey honestly significant difference and independent t tests were carried out to compare the means at a significance level of P < .05. RESULTS: Irrespective of mixing and placement techniques applied, the flexural strength values of ProRoot MTA were significantly greater than those of MTA Angelus (P < .05). A medium negative correlation was found between flexural strength values and total porosity percentage. CONCLUSIONS: Although mechanical mixing of encapsulated cements was quicker and provided more consistent mixes, this technique along with ultrasonic agitation was not associated with a significant advantage in terms of flexural strength and total porosity over manual mixing.


Subject(s)
Aluminum Compounds/chemistry , Calcium Compounds/chemistry , Oxides/chemistry , Root Canal Filling Materials/chemistry , Silicates/chemistry , Bismuth/chemistry , Dental Cements/chemistry , Dental Stress Analysis/instrumentation , Drug Combinations , Humans , Materials Testing , Pliability , Porosity , Pressure , Rotation , Stress, Mechanical , Time Factors , Ultrasonics , X-Ray Microtomography/methods
SELECTION OF CITATIONS
SEARCH DETAIL