Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Int J Mol Sci ; 25(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38542307

ABSTRACT

Metagenomic sequencing has emerged as a transformative tool in infectious disease diagnosis, offering a comprehensive and unbiased approach to pathogen detection. Leveraging international standards and guidelines is essential for ensuring the quality and reliability of metagenomic sequencing in clinical practice. This review explores the implications of international standards and guidelines for the application of metagenomic sequencing in infectious disease diagnosis. By adhering to established standards, such as those outlined by regulatory bodies and expert consensus, healthcare providers can enhance the accuracy and clinical utility of metagenomic sequencing. The integration of international standards and guidelines into metagenomic sequencing workflows can streamline diagnostic processes, improve pathogen identification, and optimize patient care. Strategies in implementing these standards for infectious disease diagnosis using metagenomic sequencing are discussed, highlighting the importance of standardized approaches in advancing precision infectious disease diagnosis initiatives.


Subject(s)
Communicable Diseases , High-Throughput Nucleotide Sequencing , Humans , Reproducibility of Results , Metagenome , Reference Standards , Metagenomics , Communicable Diseases/diagnosis
2.
J Environ Manage ; 369: 122389, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39241602

ABSTRACT

Nitrate-dependent anaerobic methane oxidation (Nitrate-DAMO) is a novel and sustainable process that removes both nitrogen and methane. Previously, the metabolic pathway of Nitrate-DAMO has been intensively studied with some results. However, the production and consumption of nitrous oxide (N2O) in the Nitrate-DAMO system were widely disregarded. In this study, a Nitrate-DAMO system was used to investigate the effect of operational parameters (C/N ratio, pH, and temperature) on N2O accumulation, and the optimal operating conditions were determined (C/N = 3, pH = 6.5, and temperature = 20 °C). In this study, an enzyme kinetic model was used to fit the nitrate nitrogen degradation and the nitrous oxide production and elimination under different operating conditions. The thermodynamic model of N2O production and elimination in the system also has been constructed. Multiple linear regression analysis found that pH was the most important factor influencing N2O accumulation. The Metagenomics sequencing results showed that alkaline pH promoted the abundance of Nor genes and denitrifying bacteria, which were significantly and positively correlated with N2O emissions. And alkaline pH also promoted the production of Mdo genes related to the N2O-driven AOM reaction, indicating that part of the N2O was consumed by denitrifying bacteria and the other part was consumed by the N2O-driven AOM reaction. These findings reveal the mechanism of N2O production and consumption in DAMO systems and provide a theoretical basis for reducing N2O production and greenhouse gas emissions in actual operation.

3.
Brief Bioinform ; 22(5)2021 09 02.
Article in English | MEDLINE | ID: mdl-33822895

ABSTRACT

Metagenomics data provide rich information for the detection of foodborne pathogens from food and environmental samples that are mixed with complex background bacteria strains. While pathogen detection from metagenomic sequencing data has become an activity of increasing interest, shotgun sequencing of uncultured food samples typically produces data that contain reads from many different organisms, making accurate strain typing a challenging task. Particularly, as many pathogens may contain a common set of genes that are highly similar to those from normal bacteria in food samples, traditional strain-level abundance profiling approaches do not perform well at detecting pathogens of very low abundance levels. To overcome this limitation, we propose an abundance correction method based on species-specific genomic regions to achieve high sensitivity and high specificity in target pathogen detection at low abundance.


Subject(s)
Bacteria/genetics , Bacteria/pathogenicity , Bacterial Infections/diagnosis , Foodborne Diseases/microbiology , High-Throughput Nucleotide Sequencing/methods , Metagenome , Metagenomics/methods , Whole Genome Sequencing/methods , Bacterial Infections/microbiology , Data Accuracy , Genome, Bacterial , Humans , Sensitivity and Specificity , Species Specificity
4.
BMC Microbiol ; 23(1): 169, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37322412

ABSTRACT

BACKGROUND: Preterm birth is the leading cause of perinatal morbidity and mortality. Despite evidence shows that imbalances in the maternal microbiome associates to the risk of preterm birth, the mechanisms underlying the association between a perturbed microbiota and preterm birth remain poorly understood. METHOD: Applying shotgun metagenomic analysis on 80 gut microbiotas of 43 mothers, we analyzed the taxonomic composition and metabolic function in gut microbial communities between preterm and term mothers. RESULTS: Gut microbiome of mothers delivering prematurely showed decreased alpha diversity and underwent significant reorganization, especially during pregnancy. SFCA-producing microbiomes, particularly species of Lachnospiraceae, Ruminococcaceae, and Eubacteriaceae, were significantly depleted in preterm mothers. Lachnospiraceae and its species were the main bacteria contributing to species' differences and metabolic pathways. CONCLUSION: Gut microbiome of mothers delivering prematurely has altered and demonstrates the reduction of Lachnospiraceae.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Premature Birth , Infant, Newborn , Humans , Female , Pregnancy , Mothers , Bacteria/genetics , Clostridiales , RNA, Ribosomal, 16S/genetics
5.
Microb Pathog ; 175: 105970, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36621696

ABSTRACT

Recent studies have demonstrated that dysbiosis of the gut microbiota is associated with psoriasis, but these studies showed some conflicting results. Our study examined differences in microbiome composition associated in people with psoriasis and those without. Comparing individuals with their healthy partners was a second strategy. We explored the fecal microbiota among 32 nontreated plaque psoriasis patients, 15 healthy controls and 17 healthy couples by metagenomic gene sequencing. The relative levels of intestinal microbiota of the psoriasis cohort differed from those in healthy controls and these patients' partners. However, there was no microbial diversity among these three cohorts. On the level of the phylum, Firmicutes and Bacteroidetes' relative abundances were reversed. Escherichia coli was significantly enriched in the psoriasis group compared with the healthy people and the healthy spouses. Gene functional analysis indicated that Ribosome (ko03010) was upregulated, Flagellar assembly (ko02040) and Bacterial chemotaxis (ko02030) were downregulated in the psoriasis cohort compared with the healthy individuals and the healthy spouses. The microbiota in severe psoriasis patients differed from those with milder conditions. These findings strongly support the association between intestinal flora and psoriasis. It is necessary to perform more meaningful experiments to identify whether the differences of gut microbiota are the cause or consequences of psoriasis in future.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Psoriasis , Humans , Gastrointestinal Microbiome/genetics , Microbiota/genetics , Bacteria/genetics , Bacteroidetes , Feces/microbiology , Dysbiosis/microbiology , RNA, Ribosomal, 16S/genetics
6.
Int J Mol Sci ; 24(11)2023 May 25.
Article in English | MEDLINE | ID: mdl-37298198

ABSTRACT

Cow's milk allergy (CMA) is one of the most prevalent food allergies in children. Several studies have demonstrated that gut microbiota influences the acquisition of oral tolerance to food antigens at initial stages of life. Changes in the gut microbiota composition and/or functionality (i.e., dysbiosis) have been linked to inadequate immune system regulation and the emergence of pathologies. Moreover, omic sciences have become an essential tool for the analysis of the gut microbiota. On the other hand, the use of fecal biomarkers for the diagnosis of CMA has recently been reviewed, with fecal calprotectin, α-1 antitrypsin, and lactoferrin being the most relevant. This study aimed at evaluating functional changes in the gut microbiota in the feces of cow's milk allergic infants (AI) compared to control infants (CI) by metagenomic shotgun sequencing and at correlating these findings with the levels of fecal biomarkers (α-1 antitrypsin, lactoferrin, and calprotectin) by an integrative approach. We have observed differences between AI and CI groups in terms of fecal protein levels and metagenomic analysis. Our findings suggest that AI have altered glycerophospholipid metabolism as well as higher levels of lactoferrin and calprotectin that could be explained by their allergic status.


Subject(s)
Gastrointestinal Microbiome , Milk Hypersensitivity , Female , Animals , Cattle , Milk/chemistry , Lactoferrin/metabolism , Milk Hypersensitivity/diagnosis , Feces/chemistry , Biomarkers/analysis
7.
Microb Pathog ; 170: 105703, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35934204

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) frequently causes diarrhea outbreaks. However, whether newly discovered enteric viruses such as porcine kobuvirus (PKV) and porcine astroviruses (PAstVs) are also correlated with diarrhea is still unclear. Diarrhea outbreaks were reported in a PEDV-vaccinated pig farm in Xinjiang Uygur Autonomous Region of China from 2019 to 2020. PEDV was a common pathogen detected in fecal samples by routine RT-PCR assays. The PEDV positive fecal sample was used for pathogenic analysis due to the failure isolation of PEDV. The challenged neonatal piglets appeared watery diarrhea within one day post infection (dpi) and all died within 6 dpi. Histopathological and immunohistochemical examinations supported that PEDV is a major pathogen causing intestinal lesions. To further explore enteric viruses associated with neonatal piglet diarrhea, metagenomics sequencing was performed for the diarrheic piglets. Remarkably, PKV was the most abundant virus (58.33%) followed by PEDV (34.45%) and PAstVs (7.22%), which were also confirmed by real-time RT-PCR assays. Significant in vivo replications of PEDV and PKV could only be observed in challenged piglets whilst PAstVs maintained similar virus loads in both challenged and mock infected piglets. Overall, this study provides first pathogenic and metagenomic evidence that significant proliferations of PEDV and PKV are closely associated with severe diarrhea in neonatal piglets, while PAstVs likely play limited roles in neonatal piglet diarrhea.


Subject(s)
Coronavirus Infections , Kobuvirus , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Diarrhea/epidemiology , Kobuvirus/genetics , Mamastrovirus , Metagenomics , Porcine epidemic diarrhea virus/genetics , Swine
8.
BMC Cancer ; 21(1): 930, 2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34407780

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) screening reduces CRC incidence and mortality. However, current screening methods are either hampered by invasiveness or suboptimal performance, limiting their effectiveness as primary screening methods. To aid in the development of a non-invasive screening test with improved sensitivity and specificity, we have initiated a prospective biomarker study (CRCbiome), nested within a large randomized CRC screening trial in Norway. We aim to develop a microbiome-based classification algorithm to identify advanced colorectal lesions in screening participants testing positive for an immunochemical fecal occult blood test (FIT). We will also examine interactions with host factors, diet, lifestyle and prescription drugs. The prospective nature of the study also enables the analysis of changes in the gut microbiome following the removal of precancerous lesions. METHODS: The CRCbiome study recruits participants enrolled in the Bowel Cancer Screening in Norway (BCSN) study, a randomized trial initiated in 2012 comparing once-only sigmoidoscopy to repeated biennial FIT, where women and men aged 50-74 years at study entry are invited to participate. Since 2017, participants randomized to FIT screening with a positive test result have been invited to join the CRCbiome study. Self-reported diet, lifestyle and demographic data are collected prior to colonoscopy after the positive FIT-test (baseline). Screening data, including colonoscopy findings are obtained from the BCSN database. Fecal samples for gut microbiome analyses are collected both before and 2 and 12 months after colonoscopy. Samples are analyzed using metagenome sequencing, with taxonomy profiles, and gene and pathway content as primary measures. CRCbiome data will also be linked to national registries to obtain information on prescription histories and cancer relevant outcomes occurring during the 10 year follow-up period. DISCUSSION: The CRCbiome study will increase our understanding of how the gut microbiome, in combination with lifestyle and environmental factors, influences the early stages of colorectal carcinogenesis. This knowledge will be crucial to develop microbiome-based screening tools for CRC. By evaluating biomarker performance in a screening setting, using samples from the target population, the generalizability of the findings to future screening cohorts is likely to be high. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT01538550 .


Subject(s)
Colorectal Neoplasms/diagnosis , Early Detection of Cancer/methods , Gastrointestinal Microbiome , Life Style , Aged , Case-Control Studies , Colonoscopy , Colorectal Neoplasms/epidemiology , Colorectal Neoplasms/microbiology , Female , Follow-Up Studies , Humans , Incidence , Male , Middle Aged , Norway/epidemiology , Occult Blood , Prognosis , Prospective Studies , ROC Curve
9.
Psychol Med ; 51(1): 90-101, 2021 01.
Article in English | MEDLINE | ID: mdl-31685046

ABSTRACT

BACKGROUND: The microbiota-gut-brain axis, especially the microbial tryptophan (Trp) biosynthesis and metabolism pathway (MiTBamp), may play a critical role in the pathogenesis of major depressive disorder (MDD). However, studies on the MiTBamp in MDD are lacking. The aim of the present study was to analyze the gut microbiota composition and the MiTBamp in MDD patients. METHODS: We performed shotgun metagenomic sequencing of stool samples from 26 MDD patients and 29 healthy controls (HCs). In addition to the microbiota community and the MiTBamp analyses, we also built a classification based on the Random Forests (RF) and Boruta algorithm to identify the gut microbiota as biomarkers for MDD. RESULTS: The Bacteroidetes abundance was strongly reduced whereas that of Actinobacteria was significantly increased in the MDD patients compared with the abundance in the HCs. Most noteworthy, the MDD patients had increased levels of Bifidobacterium, which is commonly used as a probiotic. Four Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologies (KOs) (K01817, K11358, K01626, K01667) abundances in the MiTBamp were significantly lower in the MDD group. Furthermore, we found a negative correlation between the K01626 abundance and the HAMD scores in the MDD group. Finally, RF classification at the genus level can achieve an area under the receiver operating characteristic curve of 0.890. CONCLUSIONS: The present findings enabled a better understanding of the changes in gut microbiota and the related Trp pathway in MDD. Alterations of the gut microbiota may have the potential as biomarkers for distinguishing MDD patients form HCs.


Subject(s)
Depressive Disorder, Major/physiopathology , Gastrointestinal Microbiome , Tryptophan/metabolism , Adult , Aged , Female , Humans , Male , Metagenomics , Middle Aged
10.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 38(6): 1126-1133, 2021 Dec 25.
Article in Zh | MEDLINE | ID: mdl-34970896

ABSTRACT

Gut microbiota plays an important role in development of diabetes with frailty. Therefore, it is of great significance to study the structural and functional characteristics of gut microbiota in Chinese with frailty. Totally 30 middle-aged and the aged participants in communities with diabetes were enrolled in this study, and their feces were collected. At the same time, we developed a metagenome analysis to explore the different of the structural and functional characteristics between diabetes with frailty and diabetes without frailty. The results showed the alpha diversity of intestinal microbiota in diabetes with frailty was lower. Collinsella and Butyricimonas were more abundant in diabetes with frailty. The functional characteristics showed that histidine metabolism, Epstein-Barr virus infection, sulfur metabolism, and biosynthesis of type Ⅱ polyketide products were upregulated in diabetes with frailty. Otherwise, butanoate metabolism and phenylalanine metabolism were down-regulated in diabetes with frailty. This research provides theoretical basic for exploring the mechanism of the gut microbiota on the occurrence and development of diabetes with frailty, and provides a basic for prevention and intervention of it.


Subject(s)
Diabetes Mellitus , Epstein-Barr Virus Infections , Frailty , Gastrointestinal Microbiome , Aged , Herpesvirus 4, Human , Humans , Middle Aged
11.
Respir Res ; 20(1): 265, 2019 Nov 27.
Article in English | MEDLINE | ID: mdl-31775777

ABSTRACT

BACKGROUND: Metagenomic sequencing of respiratory microbial communities for pathogen identification in pneumonia may help overcome the limitations of culture-based methods. We examined the feasibility and clinical validity of rapid-turnaround metagenomics with Nanopore™ sequencing of clinical respiratory specimens. METHODS: We conducted a case-control study of mechanically-ventilated patients with pneumonia (nine culture-positive and five culture-negative) and without pneumonia (eight controls). We collected endotracheal aspirates and applied a microbial DNA enrichment method prior to metagenomic sequencing with the Oxford Nanopore MinION device. For reference, we compared Nanopore results against clinical microbiologic cultures and bacterial 16S rRNA gene sequencing. RESULTS: Human DNA depletion enabled in depth sequencing of microbial communities. In culture-positive cases, Nanopore revealed communities with high abundance of the bacterial or fungal species isolated by cultures. In four cases with resistant clinical isolates, Nanopore detected antibiotic resistance genes corresponding to the phenotypic resistance in antibiograms. In culture-negative pneumonia, Nanopore revealed probable bacterial pathogens in 1/5 cases and Candida colonization in 3/5 cases. In controls, Nanopore showed high abundance of oral bacteria in 5/8 subjects, and identified colonizing respiratory pathogens in other subjects. Nanopore and 16S sequencing showed excellent concordance for the most abundant bacterial taxa. CONCLUSIONS: We demonstrated technical feasibility and proof-of-concept clinical validity of Nanopore metagenomics for severe pneumonia diagnosis, with striking concordance with positive microbiologic cultures, and clinically actionable information obtained from sequencing in culture-negative samples. Prospective studies with real-time metagenomics are warranted to examine the impact on antimicrobial decision-making and clinical outcomes.


Subject(s)
DNA, Bacterial/genetics , Microbiota/genetics , Nanopores , Pneumonia/genetics , Pneumonia/therapy , Anti-Bacterial Agents/administration & dosage , Case-Control Studies , Feasibility Studies , Female , High-Throughput Nucleotide Sequencing/methods , Humans , Male , Metagenomics/methods , Pneumonia/diagnosis , Reference Values , Respiration, Artificial/methods , Respiratory Insufficiency/diagnosis , Respiratory Insufficiency/genetics , Respiratory Insufficiency/therapy , Risk Factors , Sensitivity and Specificity , Severity of Illness Index , Virulence Factors/genetics
12.
Environ Sci Pollut Res Int ; 31(5): 7853-7871, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38170354

ABSTRACT

Vermifiltration (VF) and a conventional biofilter (BF, no earthworm) were investigated by metagenomics to evaluate the removal rates of antibiotic-resistant bacteria (ARB), antibiotic resistance genes (ARGs), and class 1 integron-integrase (intI1), as well as the impact mechanism in combination with the microbial community. According to the findings of qPCR and metagenomics, the VF facilitated greater removal rates of ARGs (78.83% ± 17.37%) and ARB (48.23% ± 2.69%) than the BF (56.33% ± 14.93%, 20.21% ± 6.27%). Compared to the control, the higher biological activity of the VF induced an increase of over 60% in the inhibitory effect of earthworm coelomic fluid on ARB. The removal rates of ARGs by earthworm guts also reached over 22%. In addition, earthworms enhanced the decomposition of refractory organics, toxic, and harmful organics, which led to a lower selective pressure on ARGs and ARB. It provides a strategy for reducing resistant pollution in sewage treatment plants and recognizing the harmless stability of sludge.


Subject(s)
Oligochaeta , Sewage , Animals , Sewage/microbiology , Bacteria , Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors , Genes, Bacterial , Anti-Bacterial Agents/pharmacology
13.
Braz J Microbiol ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652444

ABSTRACT

To investigate the impact of Poa alpigena Lindm on rhizosphere and bulk soil microorganisms in Haixin Mountain, Qinghai Lake, this study employed metagenomics technology to analyze the microbial communities of the samples. Results showed that 65 phyla, 139 classes, 278 orders, 596 families, 2376 genera, and 5545 species of soil microorganisms were identified from rhizosphere and bulk soil samples. Additionally, a microbial gene library specific to Poa alpigena Lindm was established for Qinghai Lake. Through α-diversity analysis, the richness and diversity of bulk microorganisms both significantly had a higher value than that in rhizosphere soil. The indicator microorganisms of rhizosphere and bulk soil at class level were Actinobacteria and Alphaproteobacteria, respectively. KEGG pathway analysis indicated that Carotenoid biosynthesis, Starch and sucrose metabolism, Bacterial chemotaxis, MAPK signaling pathway, Terpenoid backbone biosynthesis, and vancomycin resistance were the key differential metabolic pathways of rhizosphere soil microorganisms; in contrast, in bulk soil, the key differential metabolic were Benzoate degradation, Glycolysis gluconeogenesis, Aminobenzoate degradation, ABC transporters, Glyoxylate and dicarboxylate metabolism, oxidative phosphorylation, Degradation of aromatic compounds, Methane metabolism, Pyruvate metabolism and Microbial metabolism diverse environments. Our results indicated that Poa alpigena Lindm rhizosphere soil possessed selectivity for microorganisms in Qinghai Lake Haixin Mountain, and the rhizosphere soil also provided a suitable survival environment for microorganisms.

14.
Res Sq ; 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38343829

ABSTRACT

Background: Most respiratory microbiome studies have focused on amplicon rather than metagenomics sequencing due to high host DNA content. We evaluated efficacy of five host DNA depletion methods on previously frozen human bronchoalveolar lavage (BAL), nasal swabs, and sputum prior to metagenomic sequencing. Results: Median sequencing depth was 76.4 million reads per sample. Untreated nasal, sputum and BAL samples had 94.1%, 99.2%, and 99.7% host-reads. The effect of host depletion differed by sample type. Most treatment methods increased microbial reads, species richness and predicted functional richness; the increase in species and predicted functional richness was mediated by higher effective sequencing depth. For BAL and nasal samples, most methods did not change Morisita-Horn dissimilarity suggesting limited bias introduced by host depletion. Conclusions: Metagenomics sequencing without host depletion will underestimate microbial diversity of most respiratory samples due to shallow effective sequencing depth and is not recommended. Optimal host depletion methods vary by sample type.

15.
Sci Total Environ ; 928: 172575, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38641105

ABSTRACT

Phosphorus (P) plays an important role in regulating primary production in estuarine environments. However, knowledge of the P-functional gene composition of microbial communities and the mechanisms of microbial adaptation to changes in available P in estuaries remain limited. This study coupling 16 s rDNA and metagenomics sequencing was conducted to reveal the relationship between P cycling functional genes, microbial interactions, and P availability in the Jiulong River Estuary. The results showed that the relative abundance of P cycling functions genes was highest in winter, and lowest in summer. Spatially, the total relative abundance of P cycling functions genes was higher in the riverward than that in the seaward. P cycling functional microbial interactions and P cycling gene coupling were strongest in summer and in the seaward. Changes in both temperature and salinity had significant direct and indirect effects on P cycling function, and the influence of salinity on P cycling function was greater than that on the microbial community in the estuary. Salinity had significant direct negative effects on inorganic P-solubilization (IP), organic P-mineralization (OP), and P uptake and transport functions (PT). Whereas, salinity had a significant positive effect on P-starvation response regulation (PR) function. Thus, salinity and microbial communities regulate the soluble reactive phosphate concentrations in estuarine environments by strengthening internal coupling among P cycling functions, promoting PR function, and facilitating PT gene expression. PR is the most important predictors, PR, PT, and PR-PT together explained 38.56 % of the overall soluble reactive phosphorus (SRP) variation. Over 66 % of the explained SRP variations can be predicted by the PR, PT, and PR-PT functional genes. This finding improves the knowledge base of the microbial processes for P cycling and provides a foundation for eutrophication management strategies in the estuary.


Subject(s)
Estuaries , Phosphorus , Phosphorus/metabolism , Phosphorus/analysis , Salinity , Environmental Monitoring , Microbiota , Water Pollutants, Chemical/analysis , China
16.
Animals (Basel) ; 13(14)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37508080

ABSTRACT

Diarrhea in piglets is one of the most common diseases leading to high mortality and, as a result, to economic losses. Shotgun metagenomic sequencing was performed on the DNBSEQ-G50, MGI system to study the role of the fecal microbiome in the development of diarrhea in newborn piglets. Analysis of the study data showed that the composition of the fecal microbiome at the level of bacteria and fungi did not differ in piglets with diarrhea from the healthy group. Bacteria belonging to the phyla Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, and Fusobacteria were the most abundant. However, a higher level of bacterial alpha diversity was observed in the group of piglets with diarrhea, which may be due to dysbacteriosis and inflammation. The study of the virome showed the difference between the two types of phages: Bacteroides B40-8 prevailed in diseased piglets, while Escherichia virus BP4 was found in greater numbers in healthy piglets. The results of our study suggest that the association between the fecal microbiome and susceptibility to diarrhea in suckling piglets may have been previously overestimated.

17.
Pest Manag Sci ; 79(10): 3548-3558, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37183345

ABSTRACT

BACKGROUND: The rice moth, Corcyra cephalonica (Stainton) (Lepidoptera: Pyralidae) is a pest of stored grains and widely used as a factitious host during the mass rearing of several natural enemies of crop pests. Hormesis is well-documented in pest insects, to some extent in natural enemies of pests. RESULTS: We report transgenerational stimulatory effects of the widely used fumigant, phosphine. The study reports the consequences of sublethal, low lethal and median lethal concentrations (LC5 , LC25 and LC50 ) and untreated control for two sequential generations of the species (G1 to G2 ). In this study, we investigated the life-history traits, nutrient reserves (protein, lipid and carbohydrate) and larval gut microbiome (using 16 s rRNA V3-V4 metagenomics sequencing) of C. cephalonica. Stimulatory effects were observed for various biological traits of C. cephalonica, notably adult longevity, emergence and increased egg hatchability when exposed to LC5 of phosphine. The total protein, lipid and carbohydrate contents of C. cephalonica also were found to be significantly increased by LC5 in both generations. The microbial diversity of LC5 treated larval gut was higher and found to be different from the rest of the treatments. This is the first report showing hormesis to a fumigant insecticide. CONCLUSION: Our findings increase knowledge on the interaction between hormesis, nutrient reserves and gut bacteria in C. cephalonica exposed to insecticides. Overall, the present study establishes phosphine-induced hormesis at LC5 in the host C. cephalonica, which might help improve the quality of mass rearing of various natural enemies. © 2023 Society of Chemical Industry.


Subject(s)
Insecticides , Moths , Animals , Hormesis , Fumigation , Larva , Insecticides/pharmacology , Lipids
18.
Gene ; 869: 147383, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37001571

ABSTRACT

Diosgenin (DIO) is an aglycone of steroid saponins acquired from plants, including Dioscorea alata, Smilax China, and Trigonella foenum graecum, acting as an anti-osteoporosis, anti-diabetic, anti-hyperlipidemic, anti-inflammatory. Recent studies have demonstrated that DIO reduces bone loss. This study aimed to investigate the effects of DIO on the gut microbiota (GM) of ovariectomized (OVX) osteoporotic rats. Female Sprague-Dawley rats were randomly divided into sham operation (sham + vehicle group) or ovariectomy. For 12 weeks, OVX rats were treated using a vehicle (OVX + vehicle group) and DIO (OVX + DIO group). Subsequently, ELISA was conducted to determine serum estradiol levels, micro-CT scanning was performed to evaluate bone quality, and feces were collected for metagenomics sequencing to examine the structure and function of GM. Raw reads were filtered to remove chimera sequences. Operational taxonomic units (OTUs) were clustered in the filtered reads. A Venn diagram analysis was conducted to study the common and unique OTUs in the sham + vehicle, OVX + vehicle, and OVX + DIO groups. LEfSe analysis was conducted to evaluate the specific GM of the three groups. The GM functions were analyzed using the KEGG and CAZy databases. After a 12-week treatment, DIO administration prevented OVX-induced weight gain and increased the estradiol levels. DIO treatment improved the bone microstructure and structural parameters of rat tibias. Metagenomics sequencing results identified 1139, 1207, and 1235 operational taxonomic units (OTUs) in the sham + vehicle, OVX + vehicle, and OVX + DIO groups, respectively. The percentage of common OTUs was 41.2%. Treatment with DIO restored the composition of GM in OVX rats by increasing the abundance of Coriobacteriia Adlercreutzia, Romboutsia, and Romboutsia_idealis and reducing the abundance of Betaproteobacteria, Gammaproteobacteria, Methanobacteria, Bacteroides, Phocaeicola, Alistipes, Bacteroids_uniformis, Bacteroids_xylanisolvens. The anti-osteoporosis effect of DIO can be regulated through environmental information processing, organismal Systems, Cellular Processes, human diseases, metabolism, and genetic information processing. Meanwhile, treatment with DIO improved GM homeostasis by increasing the metabolism of carbohydrates, other amino acids, and glycans and reducing translation, energy metabolism, and nucleotide metabolism. DIO can reduce bone loss by regulating the structural composition and function of GM, a novel strategy for preventing osteoporosis.


Subject(s)
Bone Diseases, Metabolic , Diosgenin , Gastrointestinal Microbiome , Osteoporosis , Female , Rats , Animals , Humans , Rats, Sprague-Dawley , Bone Density , Diosgenin/pharmacology , Diosgenin/therapeutic use , Osteoporosis/drug therapy , Osteoporosis/metabolism , Estradiol/pharmacology , Ovariectomy
19.
Viruses ; 15(3)2023 03 14.
Article in English | MEDLINE | ID: mdl-36992458

ABSTRACT

Most zoonotic pathogens originate from mammals and avians, but viral diversity and related biosafety risk assessment in lower vertebrates also need to be explored. Amphibians are an important group of lower vertebrates that played a momentous role in animal evolution. To elucidate the diversity of RNA viruses in one important species of amphibians, the Asiatic toad (Bufo gargarizans), we obtained 44 samples including lung, gut, liver, and kidney tissues from Asiatic toads in Sichuan and Jilin provinces, China, for viral metagenomics sequencing. More than 20 novel RNA viruses derived from the order Bunyavirales and 7 families of Astroviridae, Dicistroviridae, Leviviridae, Partitiviridae, Picornaviridae, Rhabdoviridae, and Virgaviridae were discovered, which were distinct from previously described viruses and formed new clusters, as revealed by phylogenetic analyses. Notably, a novel bastrovirus, AtBastV/GCCDC11/2022, of the family Astroviridae was identified from the gut library, the genome of which contains three open reading frames, with the RNA-dependent RNA polymerase (RdRp) coded by ORF1 closely related to that of hepeviruses, and ORF2 encoding an astrovirus-related capsid protein. Notably, phenuiviruses were discovered for the first time in amphibians. AtPhenV1/GCCDC12/2022 and AtPhenV2/GCCDC13/2022 clustered together and formed a clade with the group of phenuiviruses identified from rodents. Picornaviruses and several invertebrate RNA viruses were also detected. These findings improve our understanding of the high RNA viral diversity in the Asiatic toad and provide new insights in the evolution of RNA viruses in amphibians.


Subject(s)
Astroviridae , Picornaviridae , RNA Viruses , Animals , RNA , Metagenomics , Phylogeny , Virome , RNA Viruses/genetics , Bufonidae/genetics , Picornaviridae/genetics , Mammals , Astroviridae/genetics , Rodentia , Genome, Viral
20.
Virology ; 585: 215-221, 2023 08.
Article in English | MEDLINE | ID: mdl-37384968

ABSTRACT

Aichi virus C, a species in the genus Kobuvirus, causes diarrhea diseases in pigs and goats and pose health threat and economic loss for stock farming. A nearly complete genome sequence of caprine kobuvirus GCCDC14 was obtained from an anal swab of a black goat died from diarrhea collected in Hubei, China in 2019. Phylogenetic analyses suggested that GCCDC14 is a novel genotype of Aichi virus C, forming a sister branch to other caprine kobuviruses, with P1 and VP0 genes more closely related to porcine kobuviruses and VP3 in an independent branch. Compared to previous caprine kobuviruses, unique amino acid changes in the poly-l-proline type II helix structure of VP0 and VP1 were found, which may affect the cellular machinery of host and pathogenicity. This study indicates the presence of the kobuvirus with continuously evolving features and emphasizes the surveillance and genetic evolution investigation of kobuviruses for safety of husbandry.


Subject(s)
Kobuvirus , Picornaviridae Infections , Animals , Swine , Kobuvirus/genetics , Goats , Phylogeny , Picornaviridae Infections/epidemiology , Genotype , Diarrhea , Feces
SELECTION OF CITATIONS
SEARCH DETAIL