Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Small ; 20(25): e2311639, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38204283

ABSTRACT

The development of ultraviolet circularly polarized light (UVCPL) sources has the potential to benefit plenty of practical applications but remains a challenge due to limitations in available material systems and a limited understanding of the excited state chirality transfer. Herein, by constructing hybrid structures of the chiral perovskite CsPbBr3 nanoplatelets and organic molecules, excited state chirality transfer is achieved, either via direct binding or triplet energy transfer, leading to efficient UVCPL emission. The underlying photophysical mechanisms of these two scenarios are clarified by comprehensive optical studies. Intriguingly, UVCPL realized via the triple energy transfer, followed by the triplet-triplet annihilation upconversion processes, demonstrates a 50-fold enhanced dissymmetry factor glum. Furthermore, stereoselective photopolymerization of diacetylene monomer is demonstrated by using such efficient UVCPL. This study provides both novel insights and a practical approach for realizing UVCPL, which can also be extended to other material systems and spectral regions, such as visible and near-infrared.

2.
Chem Biodivers ; 21(5): e202301260, 2024 May.
Article in English | MEDLINE | ID: mdl-38513005

ABSTRACT

Microglia are key immune cells in the brain that maintain homeostasis and defend against immune threats. Targeting the dysfunctional microglia is one of the most promising approaches to inhibit neuroinflammation. In the current study, a diverse series of molecular hybrids were designed and screened through molecular docking against two neuroinflammatory targets, namely HMGB1 (2LY4) and HMGB1 Box A (4QR9) proteins. Based on the outcomes of docking scores fifteen compounds; ten furanyl-pyrazolyl acetamides 11(a-j), and five 2,4-thiazolidinyl-furan-3-carboxamide 15(a-e) derivatives were selected for further synthesis, followed by biological evaluation. The selected compounds, 11(a-j) and 15(a-e) were successfully synthesized with moderate to good yields, and structures were confirmed by IR, NMR, and mass spectra. The in-vitro cytotoxicity was evaluated on microglial cells namely BV-2, N-9, HMO6, leukemic HAP1, and human fibroblast cells. Further western-blot analysis revealed that 11h, 11f, 11c, 11j, 15d, 15c, 15e, and 15b compounds significantly suppressed anti-inflammatory markers such as TNF-α, IL-1, IL-6, and Bcl-2. All derivatives were moderate in potency compared to reference doxorubicin and could potentially act as novel anti-neuroinflammatory agents. This study can act as a beacon for further research in the application of furan-pyrazole and furan-2,4-thiazolidinediones as lead moieties for anti-neuroinflammatory and related diseases.


Subject(s)
Acetamides , Furans , Molecular Docking Simulation , Humans , Furans/chemistry , Furans/pharmacology , Furans/chemical synthesis , Acetamides/pharmacology , Acetamides/chemistry , Acetamides/chemical synthesis , Structure-Activity Relationship , Microglia/drug effects , Microglia/metabolism , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemical synthesis , Molecular Structure , Animals , Mice , Cell Survival/drug effects , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Cell Line , Dose-Response Relationship, Drug , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/chemistry
3.
Mol Divers ; 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37733243

ABSTRACT

Diabetes Mellitus (DM) is the globe's common leading disease which is caused by high consumption of glucose. DM compiles groups of metabolic disorders which are characterized by inadequate secretion of insulin from pancreas, resulting in hyperglycemia condition. Many enzymes play a vital role in the metabolism of carbohydrate known as α-amylase and α-glucosidase which is calcium metalloenzyme that leads to breakdown of complex polysaccharides into glucose. To tackle this problem, search for newer antidiabetic drugs is the utmost need for the treatment and/or management of increasing diabetic burden. The inhibition of α-amylase and α-glucosidase is one of the effective therapeutic approaches for the development of antidiabetic therapeutics. The exhaustive literature survey has shown the importance of medicinally privileged triazole specifically 1,2,3-triazol and 1,2,4-triazoles scaffold tethered, fused and/or clubbed with other heterocyclic rings structures as promising agents for designing and development of novel antidiabetic therapeutics. Molecular hybrids namely pyridazine-triazole, pyrazoline-triazole, benzothiazole-triazole, benzimidazole-triazole, curcumin-triazole, (bis)coumarin-triazole, acridine-9-carboxamide linked triazole, quinazolinone-triazole, xanthone-triazole, thiazolo-triazole, thiosemicarbazide-triazole, and indole clubbed-triazole are few examples which have shown promising antidiabetic activity by inhibiting α-amylase and/or α-glucosidase. The present review summarizes the structure-activity relationship (SAR), enzyme inhibitory activity including IC50 values, percentage inhibition, kinetic studies, molecular docking studies, and patents filed of the both scaffolds as alpha-amylase and alpha-glucosidase inhibitors, which may be used for further development of potent inhibitors against both enzymes.

4.
Molecules ; 28(13)2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37446846

ABSTRACT

Malaria and schistosomiasis are two of the neglected tropical diseases that persistently wreak havoc worldwide. Although many antimalarial drugs such as chloroquine are readily available, the emergence of drug resistance necessitates the development of new therapies to combat this disease. Conversely, Praziquantel (PZQ) remains the sole effective drug against schistosomiasis, but its extensive use raises concerns about the potential for drug resistance to develop. In this project, the concept of molecular hybridization was used as a strategy to design the synthesis of new molecular hybrids with potential antimalarial and antischistosomal activity. A total of seventeen molecular hybrids and two PZQ analogues were prepared by coupling 6-alkylpraziquanamines with cinnamic acids and cyclohexane carboxylic acid, respectively. The synthesised compounds were evaluated for their antimalarial and antischistosomal activity; while all of the above compounds were inactive against Plasmodium falciparum (IC50 > 6 µM), many were active against schistosomiasis with four particular compounds exhibiting up to 100% activity against newly transformed schistosomula and adult worms at 50 µM. Compared to PZQ, the reference drug, the activity of which is 91.7% at 1 µM, one particular molecular hybrid, compound 32, which bears a para-isopropyl group on the cinnamic acid moiety, exhibited a notable activity at 10 µM (78.2% activity). This compound has emerged as the front runner candidate that might, after further optimization, hold promise as a potential lead compound in the fight against schistosomiasis.


Subject(s)
Antimalarials , Schistosomiasis , Schistosomicides , Animals , Praziquantel/pharmacology , Praziquantel/therapeutic use , Antimalarials/pharmacology , Antimalarials/therapeutic use , Schistosoma mansoni , Schistosomicides/pharmacology , Schistosomicides/therapeutic use , Schistosomiasis/drug therapy
5.
Int J Mol Sci ; 23(20)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36293443

ABSTRACT

A new series of sulfonamides, 8a-b, 10, 12, and 14a-b, were synthesized by N-sulfonation reaction with sulfonyl chlorides 6a-b. Five new series of chalcone-sulfonamide hybrids (16-20)a-f were prepared via Claisen-Schmidt condensation of the newly obtained sulfonamides with aromatic aldehydes 15a-f in basic medium. Chalcones substituted with chlorine at position 4 of each series were used as precursors for the generation of their five-membered heterocyclic pyrazoline (22-23)a-d, (24-25)a-b and carbothioamide 27a-f derivatives. The synthesized compounds were evaluated for their anticancer and antituberculosis activities. To determine their anticancer activity, compounds were screened against sixty human cancer cell lines at a single dose (10 µM). Compounds 17a-c were highly active against LOX IMVI (melanoma), with IC50 values of 0.34, 0.73 and 0.54 µM, respectively. Chalcone 18e showed remarkable results against the entire panel of leukemia cell lines with IC50 values between 0.99-2.52 µM. Moreover, compounds 20e and 20f displayed growth inhibition of Mycobacterium tuberculosis H37Rv at concentrations below 10 µM. Although they showed low selectivity in cytotoxicity tests against the Vero cell line, further optimization could advance the potential biological activity of the selected compounds.


Subject(s)
Antineoplastic Agents , Chalcone , Chalcones , Humans , Chalcones/pharmacology , Chalcone/pharmacology , Nitrogen , Chlorine , Chlorides , Structure-Activity Relationship , Antitubercular Agents/pharmacology , Sulfonamides/pharmacology , Sulfanilamide , Aldehydes , Antineoplastic Agents/pharmacology , Molecular Structure , Cell Line, Tumor , Drug Screening Assays, Antitumor
6.
Int J Mol Sci ; 23(22)2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36430281

ABSTRACT

Glaucoma is a group of eye diseases consisting of optic nerve damage with corresponding loss of field vision and blindness. Hydrogen sulfide (H2S) is a gaseous neurotransmitter implicated in various pathophysiological processes. It is involved in the pathological mechanism of glaucomatous neuropathy and exerts promising effects in the treatment of this disease. In this work, we designed and synthetized new molecular hybrids between antiglaucoma drugs and H2S donors to combine the pharmacological effect of both moieties, providing a heightened therapy. Brinzolamide, betaxolol and brimonidine were linked to different H2S donors. The H2S-releasing properties of the new compounds were evaluated in a phosphate buffer solution by the amperometric approach, and evaluated in human primary corneal epithelial cells (HCEs) by spectrofluorometric measurements. Experimental data showed that compounds 1c, 1d and 3d were the hybrids with the best properties, characterized by a significant and long-lasting production of the gasotransmitter both in the aqueous solution (in the presence of L-cysteine) and in the intracellular environment. Because, to date, the donation of H2S by antiglaucoma H2S donor hybrids using non-immortalized corneal cells has never been reported, these results pave the way to further investigation of the potential efficacy of the newly synthesized compounds.


Subject(s)
Gasotransmitters , Glaucoma , Hydrogen Sulfide , Humans , Antiglaucoma Agents , Betaxolol/pharmacology , Betaxolol/therapeutic use , Gasotransmitters/therapeutic use , Glaucoma/drug therapy , Hydrogen Sulfide/pharmacology , Hydrogen Sulfide/therapeutic use
7.
Molecules ; 26(13)2021 Jul 05.
Article in English | MEDLINE | ID: mdl-34279438

ABSTRACT

Molecular hybridization is a drug discovery strategy that involves the rational design of new chemical entities by the fusion (usually via a covalent linker) of two or more drugs, both active compounds and/or pharmacophoric units recognized and derived from known bioactive molecules. The expected outcome of this chemical modification is to produce a new hybrid compound with improved affinity and efficacy compared to the parent drugs. Additionally, this strategy can result in compounds presenting modified selectivity profiles, different and/or dual modes of action, reduced undesired side effects and ultimately lead to new therapies. In this study, molecular hybridization was used to generate new molecular hybrids which were tested against the chloroquine sensitive (NF54) strain of P. falciparum. To prepare the new molecular hybrids, the quinoline nucleus, one of the privileged scaffolds, was coupled with various chalcone derivatives via an appropriate linker to produce a total of twenty-two molecular hybrids in 11%-96% yield. The synthesized compounds displayed good antiplasmodial activity with IC50 values ranging at 0.10-4.45 µM.


Subject(s)
Antimalarials/chemical synthesis , Antimalarials/pharmacology , Chalcones/chemistry , Drug Discovery , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Quinolines/chemistry , Humans , Malaria, Falciparum/parasitology , Structure-Activity Relationship
8.
Bioorg Chem ; 104: 104240, 2020 11.
Article in English | MEDLINE | ID: mdl-32906036

ABSTRACT

With the increasing risk of invasive and life threating fungal infections, there is now a great concern regarding the lower discovery rate of antifungal drugs in comparison to antimicrobial agents. Drugs conventionally used in clinics are not adequate enough to combat the increasing fungal infections, especially fungal forms resistant to fluconazole. Among the limited antifungal agents in clinics, azoles have the largest number of drug candidates in clinical trials and are partly marketed due to the particular focus of pharmaceutical companies and medicinal scientific centers. With the rise in the number of papers on azole antifungal design and discovery, a more in-depth understanding the most recent and authentic information about this class of drugs might be beneficial. To this end, we for the first time summarized the state-of-the-art information about azole drugs, with a specific focus on those in the pipelines of pharmaceutical companies, into four generations with regard to their structural similarity. More importantly, this review highlights information on the structure activity relationship (SAR), target description, hybrid antifungal agents as possible future generation, and other useful issues to streamline research towards designing new efficient azole antifungal structures in future.


Subject(s)
Antifungal Agents/pharmacology , Azoles/pharmacology , Fungi/drug effects , Antifungal Agents/chemistry , Azoles/chemistry , Dose-Response Relationship, Drug , Humans , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship
9.
Molecules ; 25(21)2020 Nov 04.
Article in English | MEDLINE | ID: mdl-33158247

ABSTRACT

The rapid growth of serious infections caused by antibiotic resistant bacteria, especially the nosocomial ESKAPE pathogens, has been acknowledged by Governments and scientists and is one of the world's major health problems. Various strategies have been and are currently investigated and developed to reduce and/or delay the bacterial resistance. One of these strategies regards the design and development of antimicrobial hybrids and conjugates. This unprecedented critical review, in which our continuing interest in the synthesis and evaluation of the bioactivity of imidazole derivatives is testified, aims to summarise and comment on the results obtained from the end of the 1900s until February 2020 in studies conducted by numerous international research groups on the synthesis and evaluation of the antibacterial properties of imidazole-based molecular hybrids and conjugates in which the pharmacophoric constituents of these compounds are directly covalently linked or connected through a linker or spacer. In this review, significant attention was paid to summarise the strategies used to overcome the antibiotic resistance of pathogens whose infections are difficult to treat with conventional antibiotics. However, it does not include literature data on the synthesis and evaluation of the bioactivity of hybrids and conjugates in which an imidazole moiety is fused with a carbo- or heterocyclic subunit.


Subject(s)
Anti-Bacterial Agents , Bacteria/growth & development , Bacterial Infections/drug therapy , Drug Resistance, Bacterial/drug effects , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/therapeutic use , Bacterial Infections/microbiology , Imidazoles/chemical synthesis , Imidazoles/chemistry , Imidazoles/therapeutic use , Microbial Sensitivity Tests
10.
Mol Divers ; 23(1): 183-193, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30099688

ABSTRACT

A novel and highly efficient synthetic approach for the expedite construction of new octahydroacridine-isoxazole- and octahydroacridine-1,2,3-triazole-based molecular hybrids is first reported. Rapid access to the octahydroacridine core was achieved in a highly diastereoselective fashion via cationic Povarov reaction of N-propargyl anilines and citronella essential oil (Cymbopogon nardus). The subsequent 1,3-dipolar and Cu (I) catalyzed alkyne-azide cycloaddition reaction of the terminal alkyne fragment with the corresponding oxime or azide affords the desired 3,5-isoxazoles and 1,2,3-triazoles, respectively, as interesting molecular hybrid models for pharmacological studies.


Subject(s)
Acridines/chemistry , Cymbopogon , Isoxazoles/chemistry , Oils, Volatile/chemistry , Triazoles/chemistry , Alkynes/chemistry , Catalysis , Copper/chemistry , Cycloaddition Reaction
11.
Curr Drug Discov Technol ; 21(6): e120324227917, 2024.
Article in English | MEDLINE | ID: mdl-38482620

ABSTRACT

BACKGROUND: Indole-triazole conjugates have emerged as promising candidates for new drug development. Their distinctive structural characteristics, coupled with a wide array of biological activities, render them a captivating and promising field of research for the creation of novel pharmaceutical agents. OBJECTIVE: This study aimed to synthesize indole-triazole conjugates to investigate the influence of various substituents on the functional characteristics of indole-triazole hybrids. It also aimed to study the binding modes of new hybrids with the DNA Gyrase using molecular docking studies. METHODS: A new set of indole-triazole hybrids was synthesized and characterized using various physicochemical and spectral analyses. All hybrids underwent in-silico pharmacokinetic prediction studies. The antimicrobial efficacy of the hybrids was assessed using tube dilution and agar diffusion methods. Additionally, the in-vitro antioxidant activity of synthesized compounds was determined using the 1,1-diphenyl-2-picryl-hydrazyl free radical scavenging assay. Furthermore, in silico molecular docking studies were performed to enhance our comprehension of how the synthesized compounds interact at the molecular level with DNA gyrase. RESULTS: Pharmacokinetic predictions of synthesized hybrids indicated favourable pharmacokinetic profiles, and none of the compounds violated the Lipinski rule of five. Notably, compound 6, featuring a cyclohexanol substituent, demonstrated superior antimicrobial and antioxidant activity (EC50 value = 14.23 µmol). Molecular docking studies further supported the in vitro antioxidant and antimicrobial findings, revealing that all compounds adeptly fit into the binding pocket of DNA Gyrase and engaged in interactions with crucial amino acid residues. CONCLUSION: In summary, our research underscores the efficacy of molecular hybridization in shaping the physicochemical, pharmacokinetic, and biological characteristics of novel indole-triazole derivatives.


Subject(s)
Anti-Bacterial Agents , Antioxidants , DNA Gyrase , Indoles , Molecular Docking Simulation , Triazoles , Triazoles/pharmacology , Triazoles/chemistry , Triazoles/chemical synthesis , Triazoles/pharmacokinetics , Indoles/pharmacology , Indoles/chemistry , Indoles/chemical synthesis , Indoles/pharmacokinetics , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/chemical synthesis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacokinetics , DNA Gyrase/metabolism , Microbial Sensitivity Tests , Structure-Activity Relationship
12.
Curr Top Med Chem ; 24(18): 1557-1588, 2024.
Article in English | MEDLINE | ID: mdl-38766822

ABSTRACT

Molecular hybridization is a rational design strategy used to create new ligands or prototypes by identifying and combining specific pharmacophoric subunits from the molecular structures of two or more known bioactive derivatives. Molecular hybridization is a valuable technique in drug discovery, enabling the modulation of unwanted side effects and the creation of potential dual-acting drugs that combine the effects of multiple therapeutic agents. Indole-triazole conjugates have emerged as promising candidates for new drug development. The indole and triazole moieties can be linked through various synthetic strategies, such as click chemistry or other coupling reactions, to generate a library of diverse compounds for biological screening. The achievable structural diversity with indole-triazole conjugates offers avenues to optimize their pharmacokinetic and pharmacodynamic attributes, amplifying their therapeutic efficacy. Researchers have extensively tailored both indole and triazole frameworks with diverse modifications to comprehend their impact on the drug's pharmacokinetic and pharmacodynamic characteristics. The current review article endeavours to explore and discuss various research strategies to design indoletriazole hybrids and elucidate their significance in a variety of pathological conditions. The insights provided herein are anticipated to be beneficial for the researchers and will likely encourage further exploration in this field.


Subject(s)
Drug Discovery , Indoles , Triazoles , Triazoles/chemistry , Triazoles/pharmacology , Indoles/chemistry , Indoles/pharmacology , Indoles/chemical synthesis , Humans , Molecular Structure
13.
Mini Rev Med Chem ; 24(19): 1746-1783, 2024.
Article in English | MEDLINE | ID: mdl-38584547

ABSTRACT

Non-small cell Lung cancer (NSCLC) is the most common type of lung cancer, which is caused by high consumption of tobacco and smoking. It is an epithelial lung cancer that affects about 2.2 million people across the globe, according to International Agency for Research on Cancer (IARC). Non-small cell lung cancer is a malignant tumor caused by EGFR mutation that occurs in the in-frame deletion of exon 19 and L858R point mutation in exon 21. Presently, clinically available inhibitors of EGFR (including erlotinib, lapatinib, gefitinib, selumetinib, etc.) are not specific and responsible for undesirable adverse effects. Moreover, to solve this problem search for newer EGFR inhibitors is the utmost need for the treatment and/or management of increasing lung cancer burden. The discovery of therapeutic agents that inhibit the specific target in tumorous cells, such as EGFR, is one of the successful strategies in treating many cancer therapies, including lung cancer. The exhaustive literature survey (2018-2023) has shown the importance of medicinally privileged pyrimidine derivatives together, fused and/or clubbed with other heterocyclic rings to design and develop novel EGFR inhibitors. Pyrimidine derivatives substituted with phenylamine, indole, pyrrole, piperazine, pyrazole, thiophene, pyridine and quinazoline derivatives substituted with phenylamine, pyrimidine, morpholine, pyrrole, dioxane, acrylamide, indole, pyridine, furan, pyrimidine, pyrazole etc. are privileged heterocyclic rings shown promising activity by inhibiting EGFR and TKIs. The present review summarizes the structure-activity relationship (SAR) and enzyme inhibitory activity, including IC50 values, percentage inhibition, and kinetic studies of potential compounds from various literature. The review also includes various aspects of molecular docking studies with compounds under clinical trials and patents filed on pyrimidine-based EGFR inhibitors in treating non-small cell lung cancer. The present review may benefit the medicinal chemist for developing novel compounds such as EGFR inhibitors.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , ErbB Receptors , Lung Neoplasms , Protein Kinase Inhibitors , Humans , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Molecular Structure , Pyrimidines/chemistry , Pyrimidines/pharmacology , Drug Development
14.
Int J Biol Macromol ; 263(Pt 1): 130175, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38360242

ABSTRACT

Diabetes mellitus is a multifactorial disease and its effective therapy often demands several drugs with different modes of action. Herein, we report a rational design and synthesis of multi-targeting novel molecular hybrids comprised of EGCG and quinoxaline derivatives that can effectively inhibit α-glucosidase, α-amylase as well as control oxidative stress by scavenging ROS. The hybrids showed superior inhibition of α-glucosidase along with similar α-amylase inhibition as compared to standard drug, acarbose. Most potent compound, 15c showed an IC50 of 0.50 µM (IC50 of acarbose 190 µM) against α-glucosidase. Kinetics studies with 15c revealed a competitive inhibition against α-glucosidase. Binding affinity of 15c (-9.5 kcal/mol) towards α-glucosidase was significantly higher than acarbose (-7.7 kcal/mol). 15c exhibited remarkably high antioxidant activity (IC50 = 18.84 µM), much better than vitamin C (IC50 = 33.04 µM). Of note, acarbose shows no antioxidant activity. Furthermore, α-amylase activity was effectively inhibited by 15c with an IC50 value of 16.35 µM. No cytotoxicity was observed for 15c (up to 40 µM) in MCF-7 cells. Taken together, we report a series of multi-targeting molecular hybrids capable of inhibiting carbohydrate hydrolysing enzymes as well as reducing oxidative stress, thus representing an advancement towards effective and novel therapeutic approaches for diabetes.


Subject(s)
Diabetes Mellitus , Hypoglycemic Agents , Humans , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Acarbose/pharmacology , Acarbose/chemistry , alpha-Glucosidases/metabolism , alpha-Amylases/chemistry , Quinoxalines/pharmacology , Antioxidants/chemistry , Oxidative Stress , Molecular Docking Simulation , Glycoside Hydrolase Inhibitors/chemistry
15.
Pharmaceuticals (Basel) ; 16(3)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36986477

ABSTRACT

Mur enzymes serve as critical molecular devices for the synthesis of UDP-MurNAc-pentapeptide, the main building block of bacterial peptidoglycan polymer. These enzymes have been extensively studied for bacterial pathogens such as Escherichia coli and Staphylococcus aureus. Various selective and mixed Mur inhibitors have been designed and synthesized in the past few years. However, this class of enzymes remains relatively unexplored for Mycobacterium tuberculosis (Mtb), and thus offers a promising approach for drug design to overcome the challenges of battling this global pandemic. This review aims to explore the potential of Mur enzymes of Mtb by systematically scrutinizing the structural aspects of various reported bacterial inhibitors and implications concerning their activity. Diverse chemical scaffolds such as thiazolidinones, pyrazole, thiazole, etc., as well as natural compounds and repurposed compounds, have been reviewed to understand their in silico interactions with the receptor or their enzyme inhibition potential. The structural diversity and wide array of substituents indicate the scope of the research into developing varied analogs and providing valuable information for the purpose of modifying reported inhibitors of other multidrug-resistant microorganisms. Therefore, this provides an opportunity to expand the arsenal against Mtb and overcome multidrug-resistant tuberculosis.

16.
Pharmaceuticals (Basel) ; 16(6)2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37375827

ABSTRACT

Alzheimer's Disease (AD) is a neurodegenerative condition characterized by progressive memory loss and other affected cognitive functions. Pharmacological therapy of AD relies on inhibitors of the enzymes acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), offering only a palliative effect and being incapable of stopping or reversing the neurodegenerative process. However, recent studies have shown that inhibiting the enzyme ß-secretase 1 (BACE-1) may be able to stop neurodegeneration, making it a promising target. Considering these three enzymatic targets, it becomes feasible to apply computational techniques to guide the identification and planning of molecules capable of binding to all of them. After virtually screening 2119 molecules from a library, 13 hybrids were built and further screened by triple pharmacophoric model, molecular docking, and molecular dynamics (t = 200 ns). The selected hybrid G meets all stereo-electronic requirements to bind to AChE, BChE, and BACE-1 and offers a promising structure for future synthesis, enzymatic testing, and validation.

17.
Pharmaceuticals (Basel) ; 16(5)2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37242434

ABSTRACT

Ubiquitously present in plant life, coumarins, as a class of phenolic compounds, have multiple applications-in everyday life, in organic synthesis, in medicine and many others. Coumarins are well known for their broad spectrum of physiological effects. The specific structure of the coumarin scaffold involves a conjugated system with excellent charge and electron transport properties. The antioxidant activity of natural coumarins has been a subject of intense study for at least two decades. Significant research into the antioxidant behavior of natural/semi-synthetic coumarins and their complexes has been carried out and published in scientific literature. The authors of this review have noted that, during the past five years, research efforts seem to have been focused on the synthesis and examination of synthetic coumarin derivatives with the aim to produce potential drugs with enhanced, modified or entirely novel effects. As many pathologies are associated with oxidative stress, coumarin-based compounds could be excellent candidates for novel medicinal molecules. The present review aims to inform the reader on some prominent results from investigations into the antioxidant properties of novel coumarin compounds over the past five years.

18.
Curr Org Synth ; 20(5): 546-559, 2023.
Article in English | MEDLINE | ID: mdl-36043752

ABSTRACT

BACKGROUND: Quinoline and its derivatives have been shown to display a wide spectrum of biological properties, especially anticancer activity. Particularly, diverse potent anticancer drugs are based on the 4-phenoxyquinoline skeleton, acting as small-molecules VEGR2 and/or c-Met kinase inhibitors. However, the design of new drugs based on these quinoline derivatives remains a challenge. Up till now, all approaches to 4-phenoxyquinoline skeleton construction do not obey any green chemistry principles. AIMS AND OBJECTIVES: Developing a new, and efficient protocol for the synthesis of potentially bioactive 4-phenoxyquinoline derivatives and benzazole-quinoline-quinoline hybrids from commercially available 4,7-dichloroquinoline and phenol derivatives using microwave energy (MW) in the presence of 1-methyl 3-butylimidazolium hexafluorophosphate. METHODS: Neweco-efficient protocol for valuable 7-chloro-4-phenoxyquinolines and their hybrids, which is based on SNAr reaction of 4,7-dichloroquinoline with respective simple phenols and hydroxyaryl- benzazoles under MWenergy in green reaction media, is studied for the first time. RESULTS: We found that among various solvents tested, the ionic liquid 1-methyl 3-butylimidazolium hexafluorophosphate ([bmim][PF6]) favored the SNAr reaction affording phenoxyquinolines in excellent yields (72-82%) in 10 min. The developed protocol allowed to obtain quickly in good yields (48-60%) new diverse benzazole-quinoline hybrids, which are expected to be pharmacologically active. According to the calculated bioactivity scores, new hybrids are potential kinase inhibitors that could be useful in anticancer drug research. CONCLUSION: We developed for the first time a new green, efficient method to prepare potentially bioactive functionalized 7-chloro-4-phenoxyquinolines and benzazole-quinoline molecules. Good to excellent yields of the quinoline products, use of MW irradiation in ([bmim] [PF6] as a green solvent, and short times of reactions are some of the main advantages of this new protocol.

19.
ACS Chem Neurosci ; 14(11): 2217-2242, 2023 06 07.
Article in English | MEDLINE | ID: mdl-37216500

ABSTRACT

Our present work demonstrates the successful design and synthesis of a new class of compounds based upon a multitargeted directed ligand design approach to discover new agents for use in Alzheimer's disease (AD). All the compounds were tested for their in vitro inhibitory potential against human acetylcholinesterase (hAChE), human butylcholinesterase (hBChE), ß-secretase-1 (hBACE-1), and amyloid ß (Aß) aggregation. Compounds 5d and 5f have shown hAChE and hBACE-1 inhibition comparable to donepezil, while hBChE inhibition was comparable to rivastigmine. Compounds 5d and 5f also demonstrated a significant reduction in the formation of Aß aggregates through the thioflavin T assay and confocal, atomic force, and scanning electron microscopy studies and significantly displaced the total propidium iodide, that is, 54 and 51% at 50 µM concentrations, respectively. Compounds 5d and 5f were devoid of neurotoxic liabilities against RA/BDNF (RA = retinoic acid; BDNF = brain-derived neurotrophic factor)-differentiated SH-SY5Y neuroblastoma cell lines at 10-80 µM concentrations. In both the scopolamine- and Aß-induced mouse models for AD, compounds 5d and 5f demonstrated significant restoration of learning and memory behaviors. A series of ex vivo studies of hippocampal and cortex brain homogenates showed that 5d and 5f elicit decreases in AChE, malondialdehyde, and nitric oxide levels, an increase in glutathione level, and reduced levels of pro-inflammatory cytokines, tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) mRNA. The histopathological examination of mice revealed normal neuronal appearance in the hippocampal and cortex regions of the brain. Western blot analysis of the same tissue indicated a reduction in Aß, amyloid precursor protein (APP)/Aß, BACE-1, and tau protein levels, which were non-significant compared to the sham group. The immunohistochemical analysis also showed significantly lower expression of BACE-1 and Aß levels, which was comparable to donepezil-treated group. Compounds 5d and 5f represent new lead candidates for developing AD therapeutics.


Subject(s)
Alzheimer Disease , Neuroblastoma , Humans , Mice , Animals , Alzheimer Disease/metabolism , Donepezil/pharmacology , Amyloid beta-Peptides/metabolism , Ligands , Brain-Derived Neurotrophic Factor , Piperazine , Acetylcholinesterase/metabolism , Cholinesterase Inhibitors/chemistry , Structure-Activity Relationship
20.
Eur J Med Chem ; 233: 114242, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35276424

ABSTRACT

Neurodegenerative diseases (NDs) are characterized by gradual and progressive loss of selectively vulnerable populations of neurons, including death of neurons in different regions, leading to nervous system dysfunction. However, pharmacological treatments are only symptomatic, because the exact causes of the disease are not yet known. For this reason, in recent years, the research has been focused on the discovery of new molecules able to target neuropathological pathways involved in NDs. A great deal of attention has been paid to natural polyphenols due to their many biological effects and resveratrol has attracted special interest since its ability to interact simultaneously with the multiple targets implicated in NDs. Moreover, the structural simplicity of the stilbene core, the broad spectrum of possible modifications, and the improved synthetic strategies, made resveratrol an attractive chemical starting point for the search of new entities with extended therapeutic uses in NDs. In this review, a systematic update of the resveratrol-based compounds, and Structure-Activity Relationship analysis were provided as promising drug candidates for the treatment of NDs.


Subject(s)
Neurodegenerative Diseases , Stilbenes , Humans , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Polyphenols , Resveratrol/pharmacology , Resveratrol/therapeutic use , Stilbenes/chemistry , Stilbenes/pharmacology , Stilbenes/therapeutic use , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL