Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 314
Filter
Add more filters

Publication year range
1.
BMC Genomics ; 25(1): 270, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38475739

ABSTRACT

BACKGROUND: Mung bean (Vigna radiata (L.) Wilczek), is an important pulse crop in the global south. Early flowering and maturation are advantageous traits for adaptation to northern and southern latitudes. This study investigates the genetic basis of the Days-to-Flowering trait (DTF) in mung bean, combining genome-wide association studies (GWAS) in mung bean and comparisons with orthologous genes involved with control of DTF responses in soybean (Glycine max (L) Merr) and Arabidopsis (Arabidopsis thaliana). RESULTS: The most significant associations for DTF were on mung bean chromosomes 1, 2, and 4. Only the SNPs on chromosomes 1 and 4 were heavily investigated using downstream analysis. The chromosome 1 DTF association is tightly linked with a cluster of locally duplicated FERONIA (FER) receptor-like protein kinase genes, and the SNP occurs within one of the FERONIA genes. In Arabidopsis, an orthologous FERONIA gene (AT3G51550), has been reported to regulate the expression of the FLOWERING LOCUS C (FLC). For the chromosome 4 DTF locus, the strongest candidates are Vradi04g00002773 and Vradi04g00002778, orthologous to the Arabidopsis PhyA and PIF3 genes, encoding phytochrome A (a photoreceptor protein sensitive to red to far-red light) and phytochrome-interacting factor 3, respectively. The soybean PhyA orthologs include the classical loci E3 and E4 (genes GmPhyA3, Glyma.19G224200, and GmPhyA2, Glyma.20G090000). The mung bean PhyA ortholog has been previously reported as a candidate for DTF in studies conducted in South Korea. CONCLUSION: The top two identified SNPs accounted for a significant proportion (~ 65%) of the phenotypic variability in mung bean DTF by the six significant SNPs (39.61%), with a broad-sense heritability of 0.93. The strong associations of DTF with genes that have orthologs with analogous functions in soybean and Arabidopsis provide strong circumstantial evidence that these genes are causal for this trait. The three reported loci and candidate genes provide useful targets for marker-assisted breeding in mung beans.


Subject(s)
Arabidopsis , Fabaceae , Vigna , Vigna/genetics , Genome-Wide Association Study , Arabidopsis/genetics , Plant Breeding , Fabaceae/genetics , Glycine max , Genomics
2.
BMC Plant Biol ; 24(1): 532, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38862892

ABSTRACT

BACKGROUND: Mung bean (Vigna radiata L.) is an important warm-season grain legume. Adaptation to extreme environmental conditions, supported by evolution, makes mung bean a rich gene pool for stress tolerance traits. The exploration of resistance genes will provide important genetic resources and a theoretical basis for strengthening mung bean breeding. B-box (BBX) proteins play a major role in developmental processes and stress responses. However, the identification and analysis of the mung bean BBX gene family are still lacking. RESULTS: In this study, 23 VrBBX genes were identified through comprehensive bioinformatics analysis and named based on their physical locations on chromosomes. All the VrBBXs were divided into five groups based on their phylogenetic relationships, the number of B-box they contained and whether there was an additional CONSTANS, CO-like and TOC1 (CCT) domain. Homology and collinearity analysis indicated that the BBX genes in mung bean and other species had undergone a relatively conservative evolution. Gene duplication analysis showed that only chromosomal segmental duplication contributed to the expansion of VrBBX genes and that most of the duplicated gene pairs experienced purifying selection pressure during evolution. Gene structure and motif analysis revealed that VrBBX genes clustered in the same group shared similar structural characteristics. An analysis of cis-acting elements indicated that elements related to stress and hormone responses were prevalent in the promoters of most VrBBXs. The RNA-seq data analysis and qRT-PCR of nine VrBBX genes demonstrated that VrBBX genes may play a role in response to environmental stress. Moreover, VrBBX5, VrBBX10 and VrBBX12 are important candidate genes for plant stress response. CONCLUSIONS: In this study, we systematically analyzed the genomic characteristics and expression patterns of the BBX gene family under ABA, PEG and NaCl treatments. The results will help us better understand the complexity of the BBX gene family and provide valuable information for future functional characteristics of specific genes in this family.


Subject(s)
Evolution, Molecular , Multigene Family , Phylogeny , Plant Proteins , Vigna , Vigna/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Genome, Plant , Gene Duplication , Stress, Physiological/genetics
3.
Mol Biol Rep ; 51(1): 51, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38165511

ABSTRACT

BACKGROUND: Reactive Red (RR) 141 dye is widely used in various industrial applications, but its environmental impact remains a growing concern. In this study, the phytotoxic and genotoxic effects of RR 141 dye on mung bean seedlings (Vigna radiata (L.) Wilczek) were investigated, serving as a model for potential harm to plant systems. METHODS AND RESULTS: Short-term (14 days) and long-term (60 days) experiments in paddy soil pot culture exposed mung bean seedlings to RR 141 dye. The dye delayed germination and hindered growth, significantly reducing germination percentage and seedling vigor index (SVI) at concentrations of 50 and 100 ml/L. In short-term exposure, plumule and radical lengths dose-dependently decreased, while long-term exposure affected plant length and grain weight, leaving pod-related parameters unaffected. To evaluate genotoxicity, high annealing temperature-random amplified polymorphic DNA (HAT-RAPD) analysis was employed with five RAPD primers having 58-75% GC content. It detected polymorphic band patterns, generating 116 bands (433 to 2857 bp) in plant leaves exposed to the dye. Polymorphisms indicated the appearance/disappearance of DNA bands in both concentrations, with decreased genomic template stability (GTS) values suggesting DNA damage and mutation. CONCLUSION: These findings demonstrate that RR 141 dye has a significant impact on genomic template stability (GTS) and exhibits phytotoxic and genotoxic responses in mung bean seedlings. This research underscores the potential of RR 141 dye to act as a harmful agent within plant model systems, highlighting the need for further assessment of its environmental implications.


Subject(s)
Alkaloids , Vigna , Vigna/genetics , Seedlings , Random Amplified Polymorphic DNA Technique , DNA Damage , DNA
4.
J Sci Food Agric ; 104(3): 1656-1667, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37851693

ABSTRACT

BACKGROUND: The effects of exogenous brassinolide (BR) treatment (3.0 µmol L-1 ) on phenolic biosynthesis in mung bean sprouts were investigated. This investigation included the analysis of sugar content, substrates within the phenylpropane pathway, energy substances, enzymatic activity within the phenylpropane pathway, sugar metabolism and energy metabolism. RESULTS: Results showed that BR treatment significantly increased the levels of total phenolics, p-hydroxybenzoic acid, p-coumaric acid, gallic acid, fumalic acid and caffeic acid. This enhancement was accomplished through the elevation of l-phenylalanine levels and the activation of enzymes associated with the phenylpropane pathway in mung bean sprouts, including phenylalanine ammonia-lyase, cinnamate 4-hydroxylase and 4-coumarate CoA ligase. Furthermore, BR treatment induced alterations in sugar metabolism in mung bean sprouts as evidenced by the increased levels of glucose, fructose, sucrose and phosphoenolpyruvate. Moreover, increased activity was observed for enzymes linked to sucrose metabolism and glycolysis in the BR-treated group. Concurrently, BR treatment bolstered the levels of adenosine triphosphate and energy charge in mung bean sprouts, which was attributed to the activation of H+ -adenosine triphosphatase, Ca2+ -adenosine triphosphatase and succinic dehydrogenase. CONCLUSION: These results suggest that BR treatment can accelerate the accumulation of phenolic compounds in mung bean sprouts. This effect is achieved not only through the activation of the phenylpropane pathway, but also through the modulation of sugar and energy metabolism. The modulation provides ample energy and a substrate for the biosynthesis of phenolics. © 2023 Society of Chemical Industry.


Subject(s)
Vigna , Vigna/chemistry , Sugars/metabolism , Energy Metabolism , Sucrose/metabolism , Adenosine Triphosphatases/metabolism
5.
J Sci Food Agric ; 104(5): 2561-2573, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-37935642

ABSTRACT

Plant protein is rapidly becoming more of a prime interest to consumers for its nutritional and functional properties, as well as the potential to replace animal protein. In the frame of alternative protein new sources, mung bean is becoming another legume crop that could provide high quality plant protein after soybean and pea. In particular, the 8S globulins in mung bean protein have high structural similarity and homology with soybean ß-conglycinin (7S globulin), with 68% sequence identity. Currently, mung bean protein has gained popularity in food industry because of its high nutritional value and peculiar functional properties. In that regard, various modification technologies have been applied to further broaden its application. Here, we provide a review of the composition, nutritional value, production methods, functional properties and modification technologies of mung bean protein. Furthermore, its potential applications in the new plant-based products, meat products, noodles, edible packaging films and bioactive compound carriers are highlighted to facilitate its utilization as an alternative plant protein, thus meeting consumer demands for high quality plant protein resources. © 2023 Society of Chemical Industry.


Subject(s)
Fabaceae , Vigna , Animals , Vigna/chemistry , Plant Proteins/metabolism , Fabaceae/chemistry , Glycine max
6.
J Sci Food Agric ; 104(12): 7238-7248, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38625751

ABSTRACT

BACKGROUND: Mung beans are highly nutritious but their leguminous flavor limits their development. Lactic acid bacteria (LAB) fermentation can decrease unwanted bean flavors in legumes and enhance their flavor. This study examined the influence of Lactobacillus fermentation on the flavor characteristics of mung bean flour (MBF) using volatile compounds and non-targeted metabolomics. RESULTS: Lactobacillus plantarum LP90, Lactobacillus casei LC89, and Lactobacillus acidophilus LA85 eliminated 61.37%, 48.29%, and 43.73%, respectively, of the primary bean odor aldehydes from MBF. The relative odor activity value (ROAV) results showed that fermented mung bean flour (FMBF) included volatile chemicals that contributed to fruity, flowery, and milky aromas. These compounds included ethyl acetate, hexyl formate, 3-hydroxy-2-butanone, and 2,3-butanedione. The levels of amino acids with a fresh sweet flavor increased significantly by 93.89, 49.40, and 35.27% in LP90, LC89, and LA85, respectively. A total of 49 up-regulated and 13 down-regulated significantly differential metabolites were annotated, and ten metabolic pathways were screened for contributing to the flavor. The correlation between important volatile compounds and non-volatile substances relies on two primary metabolic pathways: the citric acid cycle pathway and the amino acid metabolic system. CONCLUSION: The flavor of MBF was enhanced strongly by the process of Lactobacillus fermentation, with LP90 having the most notable impact. These results serve as a reference for identifying the flavor of FMBF. © 2024 Society of Chemical Industry.


Subject(s)
Fermentation , Flavoring Agents , Flour , Lactobacillus , Metabolomics , Odorants , Taste , Vigna , Volatile Organic Compounds , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/analysis , Flour/analysis , Flour/microbiology , Vigna/metabolism , Vigna/chemistry , Vigna/microbiology , Vigna/growth & development , Flavoring Agents/metabolism , Flavoring Agents/chemistry , Odorants/analysis , Lactobacillus/metabolism , Humans , Seeds/chemistry , Seeds/metabolism , Seeds/microbiology , Lactobacillus plantarum/metabolism
7.
J Sci Food Agric ; 104(6): 3665-3675, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38158728

ABSTRACT

BACKGROUND: The limited physicochemical properties (such as low foaming and emulsifying capacity) of mung bean protein hydrolysate restrict its application in the food industry. Ultrasound treatment could change the structures of protein hydrolysate to accordingly affect its physicochemical properties. The aim of this study was to investigate the effects of ultrasound treatment on the structural and physicochemical properties of mung bean protein hydrolysate of protamex (MBHP). The structural characteristics of MBHP were evaluated using tricine sodium dodecylsulfate-polyacrylamide gel electrophoresis, laser scattering, fluorescence spectrometry, etc. Solubility, fat absorption capacity and foaming, emulsifying and thermal properties were determined to characterize the physicochemical properties of MBHP. RESULTS: MBHP and ultrasonicated-MBHPs (UT-MBHPs) all contained five main bands of 25.8, 12.1, 5.6, 4.8 and 3.9 kDa, illustrating that ultrasound did not change the subunits of MBHP. Ultrasound treatment increased the contents of α-helix, ß-sheet and random coil and enhanced the intrinsic fluorescence intensity of MBHP, but decreased the content of ß-turn, which demonstrated that ultrasound modified the secondary and tertiary structures of MBHP. UT-MBHPs exhibited higher solubility, foaming capacity and emulsifying properties than MBHP, among which MBHP-330 W had the highest solubility (97.32%), foaming capacity (200%), emulsification activity index (306.96 m2 g-1 ) and emulsion stability index (94.80%) at pH 9.0. CONCLUSION: Ultrasound treatment enhanced the physicochemical properties of MBHP, which could broaden its application as a vital ingredient in the food industry. © 2023 Society of Chemical Industry.


Subject(s)
Fabaceae , Vigna , Vigna/chemistry , Protein Hydrolysates/chemistry , Plant Proteins/chemistry , Solubility
8.
J Sci Food Agric ; 104(11): 6966-6976, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38619073

ABSTRACT

BACKGROUND: High internal phase emulsions (HIPEs) are unique emulsion systems that transform liquid oil into solid-like fats, thus avoiding the use of saturated fat and leading to a healthier and more sustainable food system for consumers. HIPEs with oil volume fraction (ϕ) of 75-85% were fabricated with mung bean protein isolate (MPI) under different pH shift treatments at 1.0% concentration through the one-step method. In the present study, we investigated the physical properties, microstructures, processing properties, storage stability and rheological properties of HIPEs. RESULTS: The results suggested that the properties of MPI under different pH shift treatments were improved to different degrees, stabilizing HIPEs (ϕ = 75-85%) with various processability to meet food processing needs. Under alkali shift treatment conditions, the particle size of MPI was significantly reduced with better solubility. Moreover, the exposure of hydrophobic groups increased the surface hydrophobicity of MPI, awarding MPI better emulsifying properties, which could stabilize the HIPEs with higher oil phase fraction. In addition, the MPI under pH 12 shift treatment (MPI-12) had the best oil-carrying ability to form the stable HIPEs with oil volume fraction (ϕ) up to 85%, which was the highest oil phase in preparing the HIPEs using plant protein solely at a low concentration under neutral conditions. CONCLUSION: A series of stable HIPEs with different processing properties was simply and feasibly fabricated and these are of great potential in applying edible HIPEs. © 2024 Society of Chemical Industry.


Subject(s)
Emulsions , Food Handling , Hydrophobic and Hydrophilic Interactions , Particle Size , Plant Proteins , Vigna , Emulsions/chemistry , Hydrogen-Ion Concentration , Vigna/chemistry , Plant Proteins/chemistry , Food Handling/methods , Rheology , Solubility
9.
Plant Foods Hum Nutr ; 79(2): 460-467, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38642195

ABSTRACT

The concept of plant-based protein consumption has been increasing recently because of the growing health consciousness among people. Mung bean is one of the most consumed legumes with a dense nutrient profile. Hence, current research is aimed to study the effect of mung bean protein-based products including mung bean snack (MBS) and textured vegetable protein (TVP) for treatment groups against the control groups, commercial ingredients group consisting of mung bean powder (MBP) and pea powder (PP) and commercial products group include commercial pea texture (cPT) and commercial textured vegetable protein (cTVP) for their proximate composition, digestibility, gut microbial profile and fatty acid metabolite profiling. The MBS and TVP samples had significantly higher digestibility of 74.43% and 73.24% than the commercial products. The protein content of TVP was 0.8 times higher than its commercial control. Gut microbiome profiling showed that all the samples shared around 162 similar genera. Post-fermentation analysis provided promising results by reflecting the growth of beneficial bacteria (Parabacteroides, Bifidobacterium and Lactobacillus) and the suppression of pathogens (Escherichia-Shigella, Dorea and Klebsiella). The dual relationship between gut microbiota and nutrient interaction proved the production of abundant short- and branched-chain fatty acids. The MBS sample was able to produce SCFAs (41.27 mM) significantly and BCFAs (2.02 mM) than the TVP sample (27.58 mM and 2.14 mM, respectively). Hence, our research outcomes proved that the mung bean protein-based products might infer numerous health benefits to the host due to enriched probiotics in the gut and the production of their corresponding metabolites.


Subject(s)
Digestion , Feces , Fermentation , Gastrointestinal Microbiome , Vigna , Feces/microbiology , Humans , Fatty Acids, Volatile/metabolism , Fatty Acids, Volatile/analysis , Fatty Acids/analysis , Fatty Acids/metabolism , Pisum sativum/chemistry
10.
Plant Cell Physiol ; 64(2): 221-233, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36401878

ABSTRACT

Mung bean is an important grain-legume crop and its sprout is an economical and nutrient vegetable for the public, but the genetic regulation of anthocyanin production, which is an antioxidant in mung bean, remains elusive. In our study, we characterized a subgroup (SG) 6 R2R3-MYB anthocyanin activator VrMYB90 and a SG 4 R2R3-MYB anthocyanin repressor VrMYB3, which synergistically function in regulating anthocyanin synthesis with VrbHLHA transcription factor. The overexpressed VrMYB90 protein activates the expression of VrMYB3 and VrbHLHA in mung bean hair roots, and also promotes VrDFR and VrANS transcript levels by directly binding to the corresponding promoters at specific motifs (CAACTG and CCGTTG). VrMYB90 interacts with VrbHLHA to enhance its regulatory activities on VrDFR and VrANS. Furthermore, the interaction between VrMYB3 with VrMYB90 and VrbHLHA could result in the restriction of anthocyanin synthesis to prevent excessive anthocyanin accumulation. Our results demonstrate that the VrMYB90 protein, in conjunction with VrMYB3 and VrbHLHA, forms a key regulatory module to fine-tune anthocyanin synthesis in mung bean.


Subject(s)
Anthocyanins , Vigna , Vigna/metabolism , Plant Proteins/metabolism , Transcription Factors/metabolism , Gene Expression Regulation, Plant
11.
BMC Plant Biol ; 23(1): 535, 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37919670

ABSTRACT

BACKGROUND: Chromium (Cr) contamination in soil poses a serious hazard because it hinders plant growth, which eventually reduces crop yield and raises the possibility of a food shortage. Cr's harmful effects interfere with crucial plant functions like photosynthesis and respiration, reducing energy output, causing oxidative stress, and interfering with nutrient intake. In this study, the negative effects of Cr on mung beans are examined, as well as investigate the effectiveness of Azospirillum brasilense and salicylic acid in reducing Cr-induced stress. RESULTS: We investigated how different Cr levels (200, 300, and 400 mg/kg soil) affected the growth of mung bean seedlings with the use of Azospirillum brasilense and salicylic acid. Experiment was conducted with randomized complete block design with 13 treatments having three replications. Significant growth retardation was caused by Cr, as were important factors like shoot and root length, plant height, dry weight, and chlorophyll content significantly reduced. 37.15% plant height, 71.85% root length, 57.09% chlorophyll contents, 82.34% crop growth rate was decreased when Cr toxicity was @ 50 µM but this decrease was remain 27.80%, 44.70%, 38.97% and 63.42%, respectively when applied A. brasilense and Salicylic acid in combine form. Use of Azospirillum brasilense and salicylic acid significantly increased mung bean seedling growth (49%) and contributed to reducing the toxic effect of Cr stress (34% and 14% in plant height, respectively) due to their beneficial properties in promoting plant growth. CONCLUSIONS: Mung bean seedlings are severely damaged by Cr contamination, which limits their growth and physiological characteristics. Using Azospirillum brasilense and salicylic acid together appears to be a viable way to combat stress brought on by Cr and promote general plant growth. Greater nutrient intake, increased antioxidant enzyme activity, and greater root growth are examples of synergistic effects. This strategy has the ability to reduce oxidative stress brought on by chromium, enhancing plant resistance to adverse circumstances. The study offers new perspectives on sustainable practices that hold potential for increasing agricultural output and guaranteeing food security.


Subject(s)
Azospirillum brasilense , Fabaceae , Vigna , Antioxidants/pharmacology , Chlorophyll , Chromium/toxicity , Plant Leaves , Salicylic Acid/pharmacology , Soil
12.
Environ Res ; 231(Pt 3): 116212, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37244496

ABSTRACT

Anthracnose is a devastating disease caused by the fungus Colletotrichum lindemuthianum (CL) in Vigna radiata (L.) R. Wilczek (mung bean). In the present study, an eco-friendly approach to control anthracnose infection, growth promotion and enhancement of defense response in mung bean plants using endophytic actinomycetes was performed. Among the 24 actinomycetes isolates from the Cleome rutidosperma plant, the isolate SND-2 exhibited a broad spectrum of antagonistic activity with 63.27% of inhibition against CL in the dual culture method. Further, the isolate SND-2 was identified as Streptomyces sp. strain SND-2 (SND-2) through the 16S rRNA gene sequence. In-vitro screening of plant growth trials confirmed that SND-2 has the potential to produce indole acetic acid, hydrogen cyanide, ammonia, phosphate solubilization, and siderophore. The in-vivo biocontrol study was performed with exogenous application of wettable talcum-based formulation of SND-2 strain to mitigate CL infection in mung bean seedlings. The results displayed maximum seed germination, vigor index, increased growth parameters, and lowest disease severity (43.63 ± 0.73) in formulation treated and pathogen challenged mung bean plants. Further, the application of SND-2 formulation with pathogen witnessed increased cellular defense through the maximum accumulation of lignin, hydrogen peroxide and phenol deposition in mung bean leaves compared with control treatments. Biochemical defense response exhibited upregulation of antioxidant enzymes such as phenylalanine ammonia-lyase, ß-1,-3-Glucanase, and peroxidase enzymes activities with increased phenolic (3.64 ± 0.11 mg/g fresh weight) and flavonoid (1.14 ± 0.05 mg/g fresh weight) contents in comparison with other treatments at 0, 4, 12, 24, 36, and 72 h post pathogen inoculation. This study demonstrated that formulation of Streptomyces sp. strain SND-2 is a potential source as a suppressive agent and plant growth promoter in mung bean plants upon C. lindemuthianum infestation and witnesses the elevation in cellular and biochemical defense against anthracnose disease.


Subject(s)
Fabaceae , Streptomyces , Vigna , Vigna/chemistry , Vigna/genetics , Streptomyces/genetics , RNA, Ribosomal, 16S/genetics , Fabaceae/genetics , Antioxidants
13.
Biotechnol Appl Biochem ; 70(6): 2002-2016, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37574464

ABSTRACT

Cancer is still a major challenge for humans. In recent years, researchers have focused on plant-based metabolites as a safe, efficient, alternative or combinatorial, as well as cost-effective preventive strategy against carcinogenesis. Mung bean is an important nutritious legume, and known for providing various health benefits due to various bioactive phytochemicals and easily digestible proteins. Regular intake of mung bean helps to regulate metabolism by affecting the growth and survival of good microbes in the host gut. Mung bean has also been reported to have anti-inflammatory, antioxidant, antiproliferative, and immunomodulatory properties. These properties may possess the preventive potential of mung bean against carcinogenesis. Bibliographic databases for peer-reviewed research literature were searched through a structured conceptual approach using focused review questions on mung beans, anticancer, therapeutics, and functional foods along with inclusion/exclusion criteria. For the appraisal of the quality of retrieved articles, standard tools were employed. A deductive qualitative content analysis methodology further led us to analyze outcomes of the research and review articles. The present review provides recent updates on the anticancer potential of mung bean and the possible mechanism of action thereof to prevent carcinogenesis and metastasis. Extensive research on the active metabolites and mechanisms of action is required to establish the anticancer potential of mung bean. Keeping the above facts in view, mung bean should be investigated for its bioactive compounds, to be considered as functional food of the future.


Subject(s)
Fabaceae , Vigna , Humans , Vigna/chemistry , Vigna/metabolism , Functional Food , Antioxidants/chemistry , Carcinogenesis
14.
J Nanobiotechnology ; 21(1): 349, 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37759297

ABSTRACT

BACKGROUND: Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease characterized by hyperglycemia and insulin resistance. Mung bean sprouts are traditionally considered a "folk" hypoglycemic food and their pharmacological effects and underlying mechanisms warrant further investigation. PURPOSE: This study aimed to investigate the anti-diabetic effects of the exosomes-like nanoparticles in mung bean sprouts (MELNs) and explore the related molecular mechanisms. RESULTS: MELNs were isolated using a differential centrifugation-polyethylene glycol (PEG) method, and the identification of MELNs were confirmed by PAGE gel electrophoresis, agarose gel electrophoresis, thin-layer chromatography (TLC), and transmission electron microscopy (TEM). In the high-fat diet/streptozotocin (HFD/STZ) mouse model, MELNs ameliorated the progression of T2DM by increasing oral glucose tolerance test (OGTT) and insulin tolerance test (ITT) results, decreasing the fasting blood glucose level, and reducing the serum triglycerides (TG) and total cholesterol (TC). Histopathological examinations indicated MELNs diminished inflammatory infiltration of hepatocytes and amplified the area of islet B cells. In addition, MELNs decreased the oxidative stress levels in liver tissue and had good biocompatibility. In vitro experiments verified that MELNs improved the viability of glucosamine (GlcN) induced insulin-resistant hepatocytes. Furthermore, this study also revealed that MELNs upregulated GLUT4 & Nrf2 and down-regulated GSK-3ß via activating the PI3K/Akt signaling pathway, promoting the production of antioxidant enzymes, such as HO-1 and SOD, to reduce oxidative stress. CONCLUSION: MELNs mitigated the progression of type 2 diabetes in HFD/STZ mouse model. The underlying molecular mechanism is related to PI3K/Akt/GLUT4/GSK-3ß signaling pathway.


Subject(s)
Diabetes Mellitus, Type 2 , Exosomes , Nanoparticles , Vigna , Animals , Mice , Diabetes Mellitus, Type 2/drug therapy , Glycogen Synthase Kinase 3 beta , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Insulin , Disease Models, Animal , Signal Transduction
15.
Lett Appl Microbiol ; 76(2)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36794888

ABSTRACT

Zinc (Zn) is a crucial micronutrient required for optimum plant growth. Zn-solubilizing bacteria (ZSB) are potential alternatives for Zn supplementation and convert applied inorganic Zn to available forms. In this study, ZSB were isolated from the root nodules of wild legumes. From a set of 17 bacteria, the isolates SS9 and SS7 were found to be efficient in tolerating 1 g (w/v) Zn. The isolates were identified as Bacillus sp (SS9, MW642183) and Enterobacter sp (SS7, MW624528) based on morphology and 16S rRNA gene sequencing. The screening of PGP bacterial properties revealed that both isolates possessed production of indole acetic acid (50.9 and 70.8 µgmL-1), siderophore (40.2% and 28.0%), and solubilization of phosphate and potassium. The pot study experiment in the presence and absence of Zn revealed that the Bacillus sp and Enterobacter sp inoculated plants showed enhanced mung bean plant growth (45.0% to 61.0% increment in shoot length and 26.9 to 30.9% in root length) and biomass compared to the control. The isolates also enhanced photosynthetic pigments such as total chlorophyll (1.5 to 6.0-fold) and carotenoids (0.5 to 3.0-fold) and 1-2-fold increase in Zn, phosphorous (P), and nitrogen (N) uptake compared to the Zn-stressed control. The present results indicated that the inoculation of Bacillus sp (SS9) and Enterobacter sp(SS7) reduced the toxicity of Zn and, in turn, enhanced the plant growth and mobilization of Zn, N, and P to the plant parts.


Subject(s)
Bacillus , Vigna , Zinc/metabolism , Bacillus/metabolism , Enterobacter/genetics , RNA, Ribosomal, 16S/genetics , Nutrients
16.
Bull Entomol Res ; 113(1): 98-106, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35801579

ABSTRACT

Mung bean is highly susceptible to insect attack during storage. Hermetic storage is an effective technique to control insect damage. This study investigated the potential of the hermetic SuperGrain bag (SGB) for controlling bruchids during storage. The dry samples were packed in SGB infested with adult bruchids (SGB-I), SGB natural field infested (SGB-N), woven polypropylene bags (WPP-I and WPP-N) and kept at room temperature for 180 days. Oxygen (O2) and carbon dioxide (CO2) concentrations were measured at 15 days intervals. Moisture content, infestation level, seed damage and weight loss were determined at 60 days intervals. Seed colour, hardness, crude protein and fat contents were analysed before and after storage. The O2 level decreased to 10.09%, whereas the CO2 level increased to 8.87% in both SGB-I and SGB-N treatments. The moisture content of mung bean was maintained as onset storage in both SGB-N and SGB-I treatments, whereas reduced in WPP-N (9.26% db) and WPP-I (9.21% db). In SGB treatments, no significant bruchids were detected, but they increased drastically in WPP-N (52 ± 9) and WPP-I (377 ± 14). Seed damage (2-3%) and weight loss (0.8-1.0%) were recorded in both SGB-N and SGB-I. Conversely, seed damage reached 26.67 and 54.17%, corresponding to weight losses of 12.33 and 20.82% in WPP-N and WPP-I, respectively. Seed colour, hardness, crude protein and fat contents in SGBs showed no significant changes than in the WPP bags. The study illustrated that the SGB is an efficient hermetic device in protecting mung beans against bruchids attacks compared to the WPP bags.


Subject(s)
Coleoptera , Fabaceae , Vigna , Animals , Carbon Dioxide , Insecta
17.
Food Microbiol ; 111: 104188, 2023 May.
Article in English | MEDLINE | ID: mdl-36681389

ABSTRACT

The emergence of mobile colistin resistant gene (mcr-1) in Enterobacteriaceae has become a global public health concern. Dissemination of the mcr-1 gene through conjugation of bacteria associated with food may occur. This research investigated the transfer frequency of the mcr-1 gene among Escherichia coli in liquid media and during growth of mung bean sprouts. The donor strain E. coli NCTC 13846 (mcr-1 positive) and recipient strains of E. coli O157:H7 and E. coli O104:H4 were used. Mating experiments in vitro were conducted at 4, 25, and 37 °C for up to 36 h. The in vivo mating experiments (growing sprouts) were conducted in a sprout growth chamber with irrigation of 1 min/h over 6 days following inoculation of mung bean seeds with the donor and a recipient. The highest transfer frequencies in TSB media, 2.86E-07 and 3.24E-07, occurred at 37 °C after mating for 24 h for E. coli O104:H4 and E. coli O157:H7, respectively. Transconjugants were not detected in liquid media at 4 °C. Moreover, transfer frequency (5.68E-05 per recipient) of mcr-1 was greater during mung bean sprout growth for E. coli O104:H4 compared to E. coli O157:H7 (1.02E-05 per recipient) Day 3 to Day 6. This study indicates that the transfer of antibiotic resistant gene(s) among bacteria during mung bean sprout production may facilitate the spread of antibiotic resistant bacteria in the environment and to humans.


Subject(s)
Escherichia coli O104 , Escherichia coli O157 , Escherichia coli Proteins , Fabaceae , Vigna , Anti-Bacterial Agents , Colistin , Escherichia coli O104/genetics , Escherichia coli O157/genetics , Escherichia coli Proteins/genetics , Fabaceae/microbiology , Nutrients , Plasmids , Drug Resistance, Bacterial/genetics
18.
Pestic Biochem Physiol ; 192: 105394, 2023 May.
Article in English | MEDLINE | ID: mdl-37105632

ABSTRACT

Callosobruchus chinensis (Coleoptera: Fabaceae) is a worldwide pest that feeds exclusively on legumes, and is the most serious pest affecting mung beans. Usually, the insect olfactory system plays a predominant role in searching for host plants and egg-laying locations. Chemosensory proteins (CSPs), are mainly responsible for transporting specific odour molecules from the environment. In this study, we found that the CSP1 gene of adult C. chinensis displayed antennae-biased expression using quantitative real-time PCR (qRT-PCR) analysis. The binding properties of 23 mung bean volatiles were then determined through several analyses of in vitro recombinant CSP1 protein, including fluorescence competitive binding assay, homology modelling, molecular docking, and site-directed mutagenesis. Fluorescence competitive binding assays showed that CchiCSP1 protein could bind to four mung bean volatiles and was most stable at pH 7.4. After site-directed mutation of three key amino acid bases (L39, V25, and Y35), their binding affinities to each ligand were significantly decreased or lost. This indicated that these three amino acid residues may be involved in the binding of CchiCSP1 to different ligands. We further used Y-tube behavioural bioassays to find that the four mung bean volatiles had a significant attraction or repulsion response in adult C. chinensis. The above findings confirm that the CchiCSP1 protein may be involved in the response of C. chinensis to mung bean volatiles and plays an important role in olfactory-related behaviours. The four active volatiles are expected to develop into new behavioural attractants or repellents in the future.


Subject(s)
Coleoptera , Fabaceae , Vigna , Animals , Molecular Docking Simulation , Ligands
19.
Chem Biodivers ; 20(8): e202300175, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37345949

ABSTRACT

Mung bean peel polysaccharides are one of the main active components in mung bean peel. Acetylated mung bean peel polysaccharides were prepared by extracting and acetylating them, and characterized by infrared and ultraviolet methods to preliminarily understand the structural characteristics and activity of acetylated mung bean peel polysaccharides. Acetylation modification can improve the structure of polysaccharides, thereby causing changes in their properties. The product obtained after acetylation modification exhibited new characteristic absorption peaks at 1732 cm-1 , and the scavenging ability of hydroxyl radicals was improved. Therefore, acetylation modification of mung bean peel polysaccharides could enhance the activity by improving the structure, which provided an experimental basis for the application of mung bean peel polysaccharides.


Subject(s)
Fabaceae , Vigna , Vigna/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Fabaceae/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemistry , Plant Extracts/chemistry
20.
Field Crops Res ; 291: 108791, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36742349

ABSTRACT

Intensive rice (Oryza sativa)-based cropping systems in south Asia provide much of the calorie and protein requirements of low to middle-income rural and urban populations. Intensive tillage practices demand more resources, damage soil quality, and reduce crop yields and profit margins. Crop diversification along with conservation agriculture (CA)-based management practices may reduce external input use, improve resource-use efficiency, and increase the productivity and profitability of intensive cropping systems. A field study was conducted on loamy soil in a sub-tropical climate in northern Bangladesh to evaluate the effects of three tillage options and six rice-based cropping sequences on grain, calorie, and protein yields and gross margins (GM) for different crops and cropping sequences. The three tillage options were: (1) conservation agriculture (CA) with all crops in sequences untilled, (2) alternating tillage (AT) with the monsoon season rice crop tilled but winter season crops untilled, and (3) conventional tillage (CT) with all crops in sequences tilled. The six cropping sequences were: rice-rice (R-R), rice-mung bean (Vigna radiata) (R-MB), rice-wheat (Triticum aestivum) (R-W), rice-maize (Zea mays) (R-M), rice-wheat-mung bean (R-W-MB), and rice-maize-mung bean (R-M-MB). Over three years of experimentation, the average monsoon rice yield was 8% lower for CA than CT, but the average winter crops yield was 13% higher for CA than CT. Systems rice equivalent yield (SREY) and systems calorie and protein yields were about 5%, 3% and 6%, respectively, higher under CA than CT; additionally, AT added approximately 1% more to these benefits. The systems productivity gain under CA and AT resulted in higher GM by 16% while reducing the labor and total production cost under CA than CT. The R-M rotation had higher SREY, calorie, protein yields, and GM by 24%, 26%, 66%, and 148%, respectively, than the predominantly practiced R-R rotation. The R-W-MB rotation had the highest SREY (30%) and second highest (118%) GM. Considering the combined effect of tillage and cropping system, CA with R-M rotation showed superior performance in terms of SREY, protein yield, and GM. The distribution of labor use and GM across rotations was grouped into four categories: R-W in low-low (low labor use and low GM), R-M in low-high (low labor use and high GM), R-W-MB and R-M-MB in high-high (high labor use and high GM) and R-R and R-MB in high-low (high labor use and low GM). In conclusion, CA performed better than CT in different winter crops and cropping systems but not in monsoon rice. Our results demonstrate the multiple benefits of partial and full CA-based tillage practices employed with appropriate crop diversification to achieve sustainable food security with greater calorie and protein intake while maximizing farm profitability of intensive rice-based rotational systems.

SELECTION OF CITATIONS
SEARCH DETAIL