Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 582
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 184(17): 4480-4494.e15, 2021 08 19.
Article in English | MEDLINE | ID: mdl-34320407

ABSTRACT

In neutrophils, nicotinamide adenine dinucleotide phosphate (NADPH) generated via the pentose phosphate pathway fuels NADPH oxidase NOX2 to produce reactive oxygen species for killing invading pathogens. However, excessive NOX2 activity can exacerbate inflammation, as in acute respiratory distress syndrome (ARDS). Here, we use two unbiased chemical proteomic strategies to show that small-molecule LDC7559, or a more potent designed analog NA-11, inhibits the NOX2-dependent oxidative burst in neutrophils by activating the glycolytic enzyme phosphofructokinase-1 liver type (PFKL) and dampening flux through the pentose phosphate pathway. Accordingly, neutrophils treated with NA-11 had reduced NOX2-dependent outputs, including neutrophil cell death (NETosis) and tissue damage. A high-resolution structure of PFKL confirmed binding of NA-11 to the AMP/ADP allosteric activation site and explained why NA-11 failed to agonize phosphofructokinase-1 platelet type (PFKP) or muscle type (PFKM). Thus, NA-11 represents a tool for selective activation of PFKL, the main phosphofructokinase-1 isoform expressed in immune cells.


Subject(s)
Phagocytosis , Phosphofructokinase-1, Liver Type/metabolism , Respiratory Burst , Adenosine Diphosphate/metabolism , Adenosine Monophosphate/metabolism , Allosteric Regulation/drug effects , Enzyme Activation/drug effects , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Glycolysis/drug effects , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Kinetics , Microbial Viability/drug effects , Models, Molecular , NADPH Oxidases/metabolism , Neutrophils/drug effects , Neutrophils/metabolism , Phagocytosis/drug effects , Phosphate-Binding Proteins/metabolism , Phosphofructokinase-1, Liver Type/antagonists & inhibitors , Phosphofructokinase-1, Liver Type/ultrastructure , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Recombinant Proteins/isolation & purification , Respiratory Burst/drug effects , Tetradecanoylphorbol Acetate/pharmacology
2.
Immunity ; 56(5): 1013-1026.e6, 2023 05 09.
Article in English | MEDLINE | ID: mdl-36944334

ABSTRACT

Sepsis is a dysregulated inflammatory consequence of systemic infection. As a result, excessive platelet activation leads to thrombosis and coagulopathy, but we currently lack sufficient understanding of these processes. Here, using the cecal ligation and puncture (CLP) model of sepsis, we observed septic thrombosis and neutrophil extracellular trap formation (NETosis) within the mouse vasculature by intravital microscopy. STING activation in platelets was a critical driver of sepsis-induced pathology. Platelet-specific STING deficiency suppressed platelet activation and granule secretion, which alleviated sepsis-induced intravascular thrombosis and NETosis in mice. Mechanistically, sepsis-derived cGAMP promoted the binding of STING to STXBP2, the assembly of SNARE complex, granule secretion, and subsequent septic thrombosis, which probably depended on the palmitoylation of STING. We generated a peptide, C-ST5, to block STING binding to STXBP2. Septic mice treated with C-ST5 showed reduced thrombosis. Overall, platelet activation via STING reveals a potential strategy for limiting life-threatening sepsis-mediated coagulopathy.


Subject(s)
Extracellular Traps , Sepsis , Thrombosis , Animals , Mice , Blood Platelets/metabolism , Extracellular Traps/metabolism , Mice, Inbred C57BL , Munc18 Proteins/metabolism , Platelet Activation , Sepsis/metabolism , Thrombosis/metabolism
3.
Immunity ; 56(12): 2755-2772.e8, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38039967

ABSTRACT

In triple-negative breast cancer (TNBC), stromal restriction of CD8+ T cells associates with poor clinical outcomes and lack of responsiveness to immune-checkpoint blockade (ICB). To identify mediators of T cell stromal restriction, we profiled murine breast tumors lacking the transcription factor Stat3, which is commonly hyperactive in breast cancers and promotes an immunosuppressive tumor microenvironment. Expression of the cytokine Chi3l1 was decreased in Stat3-/- tumors. CHI3L1 expression was elevated in human TNBCs and other solid tumors exhibiting T cell stromal restriction. Chi3l1 ablation in the polyoma virus middle T (PyMT) breast cancer model generated an anti-tumor immune response and delayed mammary tumor onset. These effects were associated with increased T cell tumor infiltration and improved response to ICB. Mechanistically, Chi3l1 promoted neutrophil recruitment and neutrophil extracellular trap formation, which blocked T cell infiltration. Our findings provide insight into the mechanism underlying stromal restriction of CD8+ T cells and suggest that targeting Chi3l1 may promote anti-tumor immunity in various tumor types.


Subject(s)
Extracellular Traps , Triple Negative Breast Neoplasms , Animals , Humans , Mice , CD8-Positive T-Lymphocytes , Cell Line, Tumor , Cytokines , Extracellular Traps/metabolism , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Tumor Microenvironment
4.
Cell ; 171(6): 1368-1382.e23, 2017 Nov 30.
Article in English | MEDLINE | ID: mdl-29195076

ABSTRACT

Blood platelets are critical for hemostasis and thrombosis and play diverse roles during immune responses. Despite these versatile tasks in mammalian biology, their skills on a cellular level are deemed limited, mainly consisting in rolling, adhesion, and aggregate formation. Here, we identify an unappreciated asset of platelets and show that adherent platelets use adhesion receptors to mechanically probe the adhesive substrate in their local microenvironment. When actomyosin-dependent traction forces overcome substrate resistance, platelets migrate and pile up the adhesive substrate together with any bound particulate material. They use this ability to act as cellular scavengers, scanning the vascular surface for potential invaders and collecting deposited bacteria. Microbe collection by migrating platelets boosts the activity of professional phagocytes, exacerbating inflammatory tissue injury in sepsis. This assigns platelets a central role in innate immune responses and identifies them as potential targets to dampen inflammatory tissue damage in clinical scenarios of severe systemic infection.


Subject(s)
Bacterial Infections/immunology , Blood Platelets/immunology , Animals , Bacteria/classification , Blood Platelets/cytology , Blood Vessels/injuries , Blood Vessels/pathology , Calcium/metabolism , Cell Movement , Cell Polarity , Humans , Inflammation/immunology , Integrins/metabolism , Mice , Myosins/metabolism , Neutrophils/cytology
5.
Immunol Rev ; 321(1): 263-279, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37712361

ABSTRACT

The process of neutrophil extracellular traps (NETs) formation, called NETosis, is a peculiar death modality of neutrophils, which was first observed as an immune response against bacterial infection. However, recent work has revealed the unique biology of NETosis in facilitating tumor metastatic process. Neutrophil extracellular traps released by the tumor microenvironment (TME) shield tumor cells from cytotoxic immunity, leading to impaired tumor clearance. Besides, tumor cells tapped by NETs enable to travel through vessels and subsequently seed distant organs. Targeted ablation of NETosis has been proven to be beneficial in potentiating the efficacy of cancer immunotherapy in the metastatic settings. This review outlines the impact of NETosis at almost all stages of tumor metastasis. Furthermore, understanding the multifaceted interplay between NETosis and the TME components is crucial for supporting the rational development of highly effective combination immunotherapeutic strategies with anti-NETosis for patients with metastatic disease.


Subject(s)
Extracellular Traps , Neoplasms , Humans , Neutrophils , Neoplasms/therapy , Neoplasms/pathology , Immunotherapy , Tumor Microenvironment
6.
Semin Immunol ; 70: 101849, 2023 11.
Article in English | MEDLINE | ID: mdl-37939552

ABSTRACT

Neutrophils are among the most abundant immune cells, representing about 50%- 70% of all circulating leukocytes in humans. Neutrophils rapidly infiltrate inflamed tissues and play an essential role in host defense against infections. They exert microbicidal activity through a variety of specialized effector mechanisms, including phagocytosis, production of reactive oxygen species, degranulation and release of secretory vesicles containing broad-spectrum antimicrobial factors. In addition to their homeostatic turnover by apoptosis, recent studies have revealed the mechanisms by which neutrophils undergo various forms of regulated cell death. In this review, we will discuss the different modes of regulated cell death that have been described in neutrophils, with a particular emphasis on the current understanding of neutrophil pyroptosis and its role in infections and autoinflammation.


Subject(s)
Neutrophils , Pyroptosis , Humans , Phagocytosis/physiology , Apoptosis/physiology
7.
Immunol Rev ; 314(1): 229-249, 2023 03.
Article in English | MEDLINE | ID: mdl-36656082

ABSTRACT

Pyroptosis is a proinflammatory mode of lytic cell death mediated by accumulation of plasma membrane (PM) macropores composed of gasdermin-family (GSDM) proteins. It facilitates two major functions in innate immunity: (i) elimination of intracellular replicative niches for pathogenic bacteria; and (ii) non-classical secretion of IL-1 family cytokines that amplify host-beneficial inflammatory responses to microbial infection or tissue damage. Physiological roles for gasdermin D (GSDMD) in pyroptosis and IL-1ß release during inflammasome signaling have been extensively characterized in macrophages. This involves cleavage of GSDMD by caspase-1 to generate GSDMD macropores that mediate IL-1ß efflux and progression to pyroptotic lysis. Neutrophils, which rapidly accumulate in large numbers at sites of tissue infection or damage, become the predominant local source of IL-1ß in coordination with their potent microbiocidal capacity. Similar to macrophages, neutrophils express GSDMD and utilize the same spectrum of diverse inflammasome platforms for caspase-1-mediated cleavage of GSDMD. Distinct from macrophages, neutrophils possess a remarkable capacity to resist progression to GSDMD-dependent pyroptotic lysis to preserve their viability for efficient microbial killing while maintaining GSDMD-dependent mechanisms for export of bioactive IL-1ß. Rather, neutrophils employ cell-specific mechanisms to conditionally engage GSDMD-mediated pyroptosis in response to bacterial pathogens that use neutrophils as replicative niches. GSDMD and pyroptosis have also been mechanistically linked to induction of NETosis, a signature neutrophil pathway that expels decondensed nuclear DNA into extracellular compartments for immobilization and killing of microbial pathogens. This review summarizes a rapidly growing number of recent studies that have produced new insights, unexpected mechanistic nuances, and some controversies regarding the regulation of, and roles for, neutrophil inflammasomes, pyroptosis, and GSDMs in diverse innate immune responses.


Subject(s)
Inflammasomes , Pyroptosis , Humans , Pyroptosis/physiology , Inflammasomes/metabolism , Neutrophils , Intracellular Signaling Peptides and Proteins/metabolism , Gasdermins , Caspase 1/metabolism , Signal Transduction
9.
Stem Cells ; 42(5): 403-415, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38310524

ABSTRACT

Polymorphonuclear neutrophils (PMNs), the predominant immune cell type in humans, have long been known as first-line effector cells against bacterial infections mainly through phagocytosis and production of reactive oxygen species (ROS). However, recent research has unveiled novel and pivotal roles of these abundant but short-lived granulocytes in health and disease. Human mesenchymal stromal/stem cells (MSCs), renowned for their regenerative properties and modulation of T lymphocytes from effector to regulatory phenotypes, exhibit complex and context-dependent interactions with PMNs. Regardless of species or source, MSCs strongly abrogate PMN apoptosis, a critical determinant of PMN function, except if PMNs are highly stimulated. MSCs also have the capacity to fine-tune PMN activation, particularly in terms of CD11b expression and phagocytosis. Moreover, MSCs can modulate numerous other PMN functions, spanning migration, ROS production, and neutrophil extracellular trap (NET) formation/NETosis, but directionality is remarkably dependent on the underlying context: in normal nondiseased conditions, MSCs enhance PMN migration and ROS production, whereas in inflammatory conditions, MSCs reduce both these functions and NETosis. Furthermore, the state of the MSCs themselves, whether isolated from diseased or healthy donors, and the specific secreted products and molecules, can impact interactions with PMNs; while healthy MSCs prevent PMN infiltration and NETosis, MSCs isolated from patients with cancer promote these functions. This comprehensive analysis highlights the intricate interplay between PMNs and MSCs and its profound relevance in healthy and pathological conditions, shedding light on how to best strategize the use of MSCs in the expanding list of diseases with PMN involvement.


Subject(s)
Mesenchymal Stem Cells , Neutrophils , Humans , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/immunology , Neutrophils/metabolism , Neutrophils/immunology , Reactive Oxygen Species/metabolism , Animals , Phagocytosis
10.
Eur Heart J ; 45(18): 1662-1680, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38666340

ABSTRACT

BACKGROUND AND AIMS: The Glu504Lys polymorphism in the aldehyde dehydrogenase 2 (ALDH2) gene is closely associated with myocardial ischaemia/reperfusion injury (I/RI). The effects of ALDH2 on neutrophil extracellular trap (NET) formation (i.e. NETosis) during I/RI remain unknown. This study aimed to investigate the role of ALDH2 in NETosis in the pathogenesis of myocardial I/RI. METHODS: The mouse model of myocardial I/RI was constructed on wild-type, ALDH2 knockout, peptidylarginine deiminase 4 (Pad4) knockout, and ALDH2/PAD4 double knockout mice. Overall, 308 ST-elevation myocardial infarction patients after primary percutaneous coronary intervention were enrolled in the study. RESULTS: Enhanced NETosis was observed in human neutrophils carrying the ALDH2 genetic mutation and ischaemic myocardium of ALDH2 knockout mice compared with controls. PAD4 knockout or treatment with NETosis-targeting drugs (GSK484, DNase1) substantially attenuated the extent of myocardial damage, particularly in ALDH2 knockout. Mechanistically, ALDH2 deficiency increased damage-associated molecular pattern release and susceptibility to NET-induced damage during myocardial I/RI. ALDH2 deficiency induced NOX2-dependent NETosis via upregulating the endoplasmic reticulum stress/microsomal glutathione S-transferase 2/leukotriene C4 (LTC4) pathway. The Food and Drug Administration-approved LTC4 receptor antagonist pranlukast ameliorated I/RI by inhibiting NETosis in both wild-type and ALDH2 knockout mice. Serum myeloperoxidase-DNA complex and LTC4 levels exhibited the predictive effect on adverse left ventricular remodelling at 6 months after primary percutaneous coronary intervention in ST-elevation myocardial infarction patients. CONCLUSIONS: ALDH2 deficiency exacerbates myocardial I/RI by promoting NETosis via the endoplasmic reticulum stress/microsomal glutathione S-transferase 2/LTC4/NOX2 pathway. This study hints at the role of NETosis in the pathogenesis of myocardial I/RI, and pranlukast might be a potential therapeutic option for attenuating I/RI, particularly in individuals with the ALDH2 mutation.


Subject(s)
Aldehyde Dehydrogenase, Mitochondrial , Extracellular Traps , Leukotriene C4 , Myocardial Reperfusion Injury , Animals , Female , Humans , Male , Mice , Middle Aged , Aldehyde Dehydrogenase, Mitochondrial/genetics , Aldehyde Dehydrogenase, Mitochondrial/metabolism , Benzamides , Benzodioxoles , Disease Models, Animal , Extracellular Traps/metabolism , Leukotriene Antagonists/pharmacology , Leukotriene Antagonists/therapeutic use , Leukotriene C4/antagonists & inhibitors , Leukotriene C4/metabolism , Mice, Knockout , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/metabolism , Neutrophils/metabolism , Protein-Arginine Deiminase Type 4/metabolism , ST Elevation Myocardial Infarction/metabolism
11.
J Allergy Clin Immunol ; 153(1): 320-329.e8, 2024 01.
Article in English | MEDLINE | ID: mdl-37678576

ABSTRACT

BACKGROUND: Electronic cigarette (e-cigarette) use continues to rise despite concerns of long-term effects, especially the risk of developing lung diseases such as chronic obstructive pulmonary disease. Neutrophils are central to the pathogenesis of chronic obstructive pulmonary disease, with changes in phenotype and function implicated in tissue damage. OBJECTIVE: We sought to measure the impact of direct exposure to nicotine-containing and nicotine-free e-cigarette vapor on human neutrophil function and phenotype. METHODS: Neutrophils were isolated from the whole blood of self-reported nonsmoking, nonvaping healthy volunteers. Neutrophils were exposed to 40 puffs of e-cigarette vapor generated from e-cigarette devices using flavorless e-cigarette liquids with and without nicotine before functions, deformability, and phenotype were assessed. RESULTS: Neutrophil surface marker expression was altered, with CD62L and CXCR2 expression significantly reduced in neutrophils treated with e-cigarette vapor containing nicotine. Neutrophil migration to IL-8, phagocytosis of Escherichia coli and Staphylococcus aureus pHrodo bioparticles, oxidative burst response, and phorbol 12-myristate 13-acetate-stimulated neutrophil extracellular trap formation were all significantly reduced by e-cigarette vapor treatments, independent of nicotine content. E-cigarette vapor induced increased levels of baseline polymerized filamentous actin levels in the cytoplasm, compared with untreated controls. CONCLUSIONS: The significant reduction in effector neutrophil functions after exposure to high-power e-cigarette devices, even in the absence of nicotine, is associated with excessive filamentous actin polymerization. This highlights the potentially damaging impact of vaping on respiratory health and reinforces the urgency of research to uncover the long-term health implications of e-cigarettes.


Subject(s)
E-Cigarette Vapor , Electronic Nicotine Delivery Systems , Pulmonary Disease, Chronic Obstructive , Humans , Neutrophils , E-Cigarette Vapor/metabolism , E-Cigarette Vapor/pharmacology , Nicotine/adverse effects , Nicotine/metabolism , Actins/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism
12.
J Infect Dis ; 230(2): 514-521, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38728418

ABSTRACT

Neutrophils possess a diverse repertoire of pathogen clearance mechanisms, one of which is the formation of neutrophil extracellular traps (NETs). NETs are complexes of histone proteins and DNA coated with proteolytic enzymes that are released extracellularly to entrap pathogens and aid in their clearance, in a process known as NETosis. Intravascular NETosis may drive a massive inflammatory response that has been shown to contribute to morbidity and mortality in many infectious diseases, including malaria, dengue fever, influenza, bacterial sepsis, and severe acute respiratory syndrome coronavirus 2 infection. In this review we seek to (1) summarize the current understanding of NETs, (2) discuss infectious diseases in which NET formation contributes to morbidity and mortality, and (3) explore potential adjunctive therapeutics that may be considered for future study in treating severe infections driven by NET pathophysiology. This includes drugs specifically targeting NET inhibition and US Food and Drug Administration-approved drugs that may be repurposed as NET inhibitors.


Subject(s)
Extracellular Traps , Neutrophils , Extracellular Traps/immunology , Humans , Neutrophils/immunology , COVID-19/immunology , Communicable Diseases/drug therapy , SARS-CoV-2/immunology
13.
J Mol Cell Cardiol ; 189: 1-11, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38387309

ABSTRACT

Persistent immune activation contributes significantly to left ventricular (LV) dysfunction and adverse remodeling in heart failure (HF). In contrast to their well-known essential role in acute myocardial infarction (MI) as first responders that clear dead cells and facilitate subsequent reparative macrophage polarization, the role of neutrophils in the pathobiology of chronic ischemic HF is poorly defined. To determine the importance of neutrophils in the progression of ischemic cardiomyopathy, we measured their production, levels, and activation in a mouse model of chronic HF 8 weeks after permanent coronary artery ligation and large MI. In HF mice, neutrophils were more abundant both locally in failing myocardium (more in the border zone) and systemically in the blood, spleen, and bone marrow, together with increased BM granulopoiesis. There were heightened stimuli for neutrophil recruitment and trafficking in HF, with increased myocardial expression of the neutrophil chemoattract chemokines CXCL1 and CXCL5, and increased neutrophil chemotactic factors in the circulation. HF neutrophil NETotic activity was increased in vitro with coordinate increases in circulating neutrophil extracellular traps (NETs) in vivo. Neutrophil depletion with either antibody-based or genetic approaches abrogated the progression of LV remodeling and fibrosis at both intermediate and late stages of HF. Moreover, analogous to murine HF, the plasma milieu in human acute decompensated HF strongly promoted neutrophil trafficking. Collectively, these results support a key tissue-injurious role for neutrophils and their associated cytotoxic products in ischemic cardiomyopathy and suggest that neutrophils are potential targets for therapeutic immunomodulation in this disease.


Subject(s)
Cardiomyopathies , Heart Failure , Myocardial Ischemia , Humans , Animals , Mice , Neutrophils/metabolism , Ventricular Remodeling , Myocardium/metabolism , Myocardial Ischemia/metabolism , Cardiomyopathies/metabolism , Mice, Inbred C57BL
14.
J Cell Mol Med ; 28(5): e18087, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38146607

ABSTRACT

The role of NETosis and its related molecules remains unclear in gastric cancer. The data used in this study was directly downloaded from the Cancer Genome Atlas (TCGA) database. All analysis and plots are completed in R software using diverse R packages. In our study, we collected the list of NETosis-related genes from previous publications. Based on the list and expression profile of gastric cancer patients from the TCGA database, we identified the NETosis-related genes significantly correlated with patients survival. Then, CLEC6A, BST1 and TLR7 were identified through LASSO regression and multivariate Cox regression analysis for prognosis model construction. This prognosis model showed great predictive efficiency in both training and validation cohorts. We noticed that the high-risk patients might have a worse survival performance. Next, we explored the biological enrichment difference between high- and low-risk patients and found that many carcinogenic pathways were upregulated in the high-risk patients. Meanwhile, we investigated the genomic instability, mutation burden and immune microenvironment difference between high- and low-risk patients. Moreover, we noticed that low-risk patients were more sensitive to immunotherapy (85.95% vs. 56.22%). High-risk patients were more sensitive to some small molecules compounds like camptothecin_1003, cisplatin_1005, cytarabine_1006, nutlin-3a (-)_1047, gemcitabine_1190, WZ4003_1614, selumetinib_1736 and mitoxantrone_1810. In summary, our study comprehensively explored the role of NETosis-related genes in gastric cancer, which can provide direction for relevant studies.


Subject(s)
Biomarkers, Tumor , Gene Expression Regulation, Neoplastic , Immunotherapy , Stomach Neoplasms , Humans , Stomach Neoplasms/genetics , Stomach Neoplasms/therapy , Stomach Neoplasms/immunology , Prognosis , Immunotherapy/methods , Biomarkers, Tumor/genetics , Toll-Like Receptor 7/genetics , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , GPI-Linked Proteins/genetics , Male , Transcriptome/genetics , Female , Gene Expression Profiling , Databases, Genetic , Middle Aged
15.
EMBO J ; 39(2): e103397, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31793683

ABSTRACT

Programmed cell death is a key mechanism involved in several biological processes ranging from development and homeostasis to immunity, where it promotes the removal of stressed, damaged, malignant or infected cells. Abnormalities in the pathways leading to initiation of cell death or removal of dead cells are consequently associated with a range of human diseases including infections, autoinflammatory disease, neurodegenerative disease and cancer. Apoptosis, pyroptosis and NETosis are three well-studied modes of cell death that were traditionally believed to be independent of one another, but emerging evidence indicates that there is extensive cross-talk between them, and that all three pathways can converge onto the activation of the same cell death effector-the pore-forming protein Gasdermin D (GSDMD). In this review, we highlight recent advances in gasdermin research, with a particular focus on the role of gasdermins in pyroptosis, NETosis and apoptosis, as well as cell type-specific consequences of gasdermin activation. In addition, we discuss controversies surrounding a related gasdermin family protein, Gasdermin E (GSDME), in mediating pyroptosis and secondary necrosis following apoptosis, chemotherapy and inflammasome activation.


Subject(s)
Apoptosis , Inflammasomes/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Necrosis , Neoplasms/pathology , Neutrophils/pathology , Phosphate-Binding Proteins/metabolism , Pyroptosis , Humans , Intracellular Signaling Peptides and Proteins/immunology , Neoplasms/metabolism , Neutrophils/metabolism , Phosphate-Binding Proteins/immunology
16.
J Med Virol ; 96(8): e29887, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39189651

ABSTRACT

Understanding the pathophysiology of long COVID is one of the most intriguing challenges confronting contemporary medicine. Despite observations recently made in the relevant molecular, cellular, and physiological domains, it is still difficult to say whether the post-acute sequelae of COVID-19 directly correspond to the consequences of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. This work hypothesizes that neutrophils and neutrophil extracellular traps (NETs) production are at the interconnection of three positive feedback loops which are initiated in the acute phase of SARS-CoV-2 infection, and which involve inflammation, immunothrombosis, and autoimmunity. This phenomenon could be favored by the fact that SARS-CoV-2 may directly bind and penetrate neutrophils. The ensuing strong neutrophil stimulation leads to a progressive amplification of an exacerbated and uncontrolled NETs production, potentially persisting for months beyond the acute phase of infection. This continuous self-stimulation of neutrophils leads, in turn, to systemic inflammation, micro-thromboses, and the production of autoantibodies, whose significant consequences include the persistence of endothelial and multiorgan damage, and vascular complications.


Subject(s)
Autoimmunity , Feedback, Physiological , Inflammation , Neutrophils , Post-Acute COVID-19 Syndrome , Thromboinflammation , Inflammation/immunology , Thromboinflammation/immunology , Neutrophils/immunology , Post-Acute COVID-19 Syndrome/immunology , Post-Acute COVID-19 Syndrome/physiopathology , Extracellular Traps/immunology , Communicable Diseases/pathology
17.
Heart Fail Rev ; 29(5): 1097-1106, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39073665

ABSTRACT

The hallmark of heart failure (HF) is structural myocardial remodeling including cardiomyocyte hypertrophy, fibrosis, cardiomyocyte cell death, and a low-grade aseptic inflammation. The initiation and maintenance of persistent chronic low-grade inflammation in HF are not fully understood. Oxidative stress-mediated neutrophil extracellular traps (NETs) are the main immune defense mechanism against external bacterial infections. Furthermore, NETs play important roles in noninfectious diseases. In the settings of myocardial infarction, myocarditis, or cardiomyopathies, neutrophils infiltrate the cardiac tissue and undergo NETosis that further aggravate the inflammation. A number of stimuli may cause NETosis that is a form of programmed cell death of neutrophils that is different from apoptosis of these cells. Whether NETosis is directly involved in the pathogenesis and development of HF is still unclear. In this review, we analyzed the mechanisms and markers of NETosis, especially placing the accent on the activation of the neutrophil-specific myeloperoxidase (MPO), elastase (NE), and peptidylarginine deiminase 4 (PAD4). These conclusions are supported by the recent genetic and pharmacological studies which demonstrated that MPO, NE, and PAD4 inhibitors are effective at least in the settings of post-myocardial infarction adverse remodeling, cardiac valve diseases, cardiomyopathies, and decompensated left ventricular hypertrophy whose deterioration can lead to HF. This is essential for understanding NETosis as a contributor to pathophysiology of HF and developments of new therapies of HF.


Subject(s)
Extracellular Traps , Heart Failure , Neutrophils , Humans , Heart Failure/physiopathology , Heart Failure/immunology , Extracellular Traps/metabolism , Extracellular Traps/immunology , Neutrophils/immunology , Neutrophils/metabolism , Oxidative Stress/physiology , Ventricular Remodeling/physiology , Inflammation
18.
Cytokine ; 176: 156503, 2024 04.
Article in English | MEDLINE | ID: mdl-38301358

ABSTRACT

Orosomucoid, or alpha-1 acid glycoprotein (AGP), is a major acute-phase protein expressed in response to systemic injury and inflammation. AGP has been described as an inhibitor of neutrophil migration on sepsis, particularly its immunomodulation effects. AGP's biological functions in coronavirus disease 2019 (COVID-19) are not understood. We sought to investigate the role of AGP in severe COVID-19 infection patients and neutrophils infected with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Epidemiological data, AGP levels, and other laboratory parameters were measured in blood samples from 56 subjects hospitalized in the ICU with SARS-CoV-2 infection. To evaluate the role of AGP in NETosis in neutrophils, blood samples from health patients were collected, and neutrophils were separated and infected with SARS-CoV-2. Those neutrophils were treated with AGP or vehicle, and NETosis was analyzed by flow cytometry. AGP was upregulated in severe COVID-19 patients (p<0.05). AGP level was positively correlated with IL-6 and C-reactive protein (respectively, p=0.005, p=0.002) and negatively correlated with lactate (p=0.004). AGP treatment downregulated early and late NETosis (respectively, 35.7% and 43.5%) in neutrophils infected with SARS-CoV-2 and up-regulated IL-6 supernatant culture expression (p<0.0001). Our data showed increased AGP in COVID-19 infection and contributed to NETosis regulation and increased IL-6 production, possibly related to the Cytokine storm in COVID-19.


Subject(s)
COVID-19 , Humans , COVID-19/metabolism , Neutrophils/metabolism , Orosomucoid/metabolism , Orosomucoid/pharmacology , SARS-CoV-2 , Interleukin-6/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Immunoproteins/metabolism
19.
J Biomed Sci ; 31(1): 39, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637878

ABSTRACT

BACKGROUND: High levels of neutrophil extracellular trap (NET) formation or NETosis and autoantibodies are related to poor prognosis and disease severity of COVID-19 patients. Human angiotensin-converting enzyme 2 (ACE2) cross-reactive anti-severe acute respiratory syndrome coronavirus 2 spike protein receptor-binding domain (SARS-CoV-2 RBD) antibodies (CR Abs) have been reported as one of the sources of anti-ACE2 autoantibodies. However, the pathological implications of CR Abs in NET formation remain unknown. METHODS: In this study, we first assessed the presence of CR Abs in the sera of COVID-19 patients with different severity by serological analysis. Sera and purified IgG from CR Abs positive COVID-19 patients as well as a mouse monoclonal Ab (mAb 127) that can recognize both ACE2 and the RBD were tested for their influence on NETosis and the possible mechanisms involved were studied. RESULTS: An association between CR Abs levels and the severity of COVID-19 in 120 patients was found. The CR Abs-positive sera and IgG from severe COVID-19 patients and mAb 127 significantly activated human leukocytes and triggered NETosis, in the presence of RBD. This NETosis, triggered by the coexistence of CR Abs and RBD, activated thrombus-related cells but was abolished when the interaction between CR Abs and ACE2 or Fc receptors was disrupted. We also revealed that CR Abs-induced NETosis was suppressed in the presence of recombinant ACE2 or the Src family kinase inhibitor, dasatinib. Furthermore, we found that COVID-19 vaccination not only reduced COVID-19 severity but also prevented the production of CR Abs after SARS-CoV-2 infection. CONCLUSIONS: Our findings provide possible pathogenic effects of CR Abs in exacerbating COVID-19 by enhancing NETosis, highlighting ACE2 and dasatinib as potential treatments, and supporting the benefit of vaccination in reducing disease severity and CR Abs production in COVID-19 patients.


Subject(s)
COVID-19 , Humans , Animals , Mice , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , COVID-19 Vaccines , Dasatinib , Immunoglobulin G/metabolism , Autoantibodies/metabolism , Spike Glycoprotein, Coronavirus , Protein Binding
20.
Eur J Haematol ; 113(1): 44-53, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38544388

ABSTRACT

INTRODUCTION: Recent studies scrutinize how NETosis (a unique cell death mechanism of neutrophil), impacts thrombosis patients with essential thrombocythemia (ET). This research evaluates the susceptibility of ET neutrophils to form NETs and tests two potential inhibitors, resveratrol (RSV) and tetrahydroisoquinoline (THIQ), in vitro. METHODS: Platelet-rich plasma from low-risk ET patients was used, along with neutrophils from both patients and controls. NET formation assays, with or without RSV and THIQ treatment after LPS stimulation, were conducted in a CO2 incubator. Evaluation included flow cytometry and fluorescence microscopy for NET formation and ELISA for TNFα, IL8, and vWF:Ag levels in patient and control plasma. RESULTS: Neutrophils from ET patients released more NETs than controls, confirmed by flow cytometry and fluorescence microscopy. Additionally, patients had significantly higher plasma levels of IL8 and TNFα compared to controls, while RSV was more effective than THIQ in reducing NETosis rates in these patients. CONCLUSIONS: In ET patients, a platelet counts over 1 million indicates the need for preventive treatment against thrombotic events. Similarly, in this study, RSV and THIQ significantly reduced the rate of NETosis in ET patients with higher platelet counts, and this role was more prominent in the case of the second inhibitor (RSV).


Subject(s)
Extracellular Traps , Neutrophils , Resveratrol , Tetrahydroisoquinolines , Thrombocythemia, Essential , Humans , Resveratrol/pharmacology , Resveratrol/therapeutic use , Neutrophils/metabolism , Neutrophils/drug effects , Neutrophils/immunology , Thrombocythemia, Essential/drug therapy , Thrombocythemia, Essential/blood , Thrombocythemia, Essential/metabolism , Female , Male , Middle Aged , Extracellular Traps/metabolism , Extracellular Traps/drug effects , Tetrahydroisoquinolines/pharmacology , Tetrahydroisoquinolines/therapeutic use , Adult , Aged , Case-Control Studies , Cytokines/metabolism , Disease Susceptibility
SELECTION OF CITATIONS
SEARCH DETAIL