Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Cell ; 83(22): 4000-4016.e6, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37935198

ABSTRACT

While 19S proteasome regulatory particle (RP) inhibition is a promising new avenue for treating bortezomib-resistant myeloma, the anti-tumor impact of inhibiting 19S RP component PSMD14 could not be explained by a selective inhibition of proteasomal activity. Here, we report that PSMD14 interacts with NSD2 on chromatin, independent of 19S RP. Functionally, PSMD14 acts as a histone H2AK119 deubiquitinase, facilitating NSD2-directed H3K36 dimethylation. Integrative genomic and epigenomic analyses revealed the functional coordination of PSMD14 and NSD2 in transcriptional activation of target genes (e.g., RELA) linked to myelomagenesis. Reciprocally, RELA transactivates PSMD14, forming a PSMD14/NSD2-RELA positive feedback loop. Remarkably, PSMD14 inhibitors enhance bortezomib sensitivity and fosters anti-myeloma synergy. PSMD14 expression is elevated in myeloma and inversely correlated with overall survival. Our study uncovers an unappreciated function of PSMD14 as an epigenetic regulator and a myeloma driver, supporting the pursuit of PSMD14 as a therapeutic target to overcome the treatment limitation of myeloma.


Subject(s)
Histones , Multiple Myeloma , Humans , Histones/genetics , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Bortezomib/pharmacology , Bortezomib/metabolism , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Cell Line, Tumor , Deubiquitinating Enzymes/metabolism , Proteasome Inhibitors/pharmacology , Trans-Activators/metabolism
2.
Mol Cell ; 81(21): 4481-4492.e9, 2021 11 04.
Article in English | MEDLINE | ID: mdl-34555356

ABSTRACT

The etiological role of NSD2 enzymatic activity in solid tumors is unclear. Here we show that NSD2, via H3K36me2 catalysis, cooperates with oncogenic KRAS signaling to drive lung adenocarcinoma (LUAD) pathogenesis. In vivo expression of NSD2E1099K, a hyperactive variant detected in individuals with LUAD, rapidly accelerates malignant tumor progression while decreasing survival in KRAS-driven LUAD mouse models. Pathologic H3K36me2 generation by NSD2 amplifies transcriptional output of KRAS and several complementary oncogenic gene expression programs. We establish a versatile in vivo CRISPRi-based system to test gene functions in LUAD and find that NSD2 loss strongly attenuates tumor progression. NSD2 knockdown also blocks neoplastic growth of PDXs (patient-dervived xenografts) from primary LUAD. Finally, a treatment regimen combining NSD2 depletion with MEK1/2 inhibition causes nearly complete regression of LUAD tumors. Our work identifies NSD2 as a bona fide LUAD therapeutic target and suggests a pivotal epigenetic role of the NSD2-H3K36me2 axis in sustaining oncogenic signaling.


Subject(s)
Adenocarcinoma of Lung/metabolism , DNA Methylation , Histone-Lysine N-Methyltransferase/chemistry , Histones/chemistry , Lung Neoplasms/metabolism , Repressor Proteins/chemistry , Adenocarcinoma of Lung/mortality , Animals , Biopsy , CRISPR-Cas Systems , Carcinogenesis/genetics , Disease Progression , Epigenesis, Genetic , Epigenomics , Female , Humans , Lung Neoplasms/mortality , Male , Mice , Mice, Inbred NOD , Mice, SCID , Neoplasm Transplantation , Oncogenes , Prognosis , Signal Transduction , Treatment Outcome
3.
Proc Natl Acad Sci U S A ; 120(52): e2305684120, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38113258

ABSTRACT

Metastasis is a major cause of cancer therapy failure and mortality. However, targeting metastatic seeding and colonization remains a significant challenge. In this study, we identified NSD2, a histone methyltransferase responsible for dimethylating histone 3 at lysine 36, as being overexpressed in metastatic tumors. Our findings suggest that NSD2 overexpression enhances tumor metastasis both in vitro and in vivo. Further analysis revealed that NSD2 promotes tumor metastasis by activating Rac1 signaling. Mechanistically, NSD2 combines with and activates Tiam1 (T lymphoma invasion and metastasis 1) and promotes Rac1 signaling by methylating Tiam1 at K724. In vivo and in vitro studies revealed that Tiam1 K724 methylation could be a predictive factor for cancer prognosis and a potential target for metastasis inhibition. Furthermore, we have developed inhibitory peptide which was proved to inhibit tumor metastasis through blocking the interaction between NSD2 and Tiam1. Our results demonstrate that NSD2-methylated Tiam1 promotes Rac1 signaling and cancer metastasis. These results provide insights into the inhibition of tumor metastasis.


Subject(s)
Colonic Neoplasms , Guanine Nucleotide Exchange Factors , Humans , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Signal Transduction/physiology , Neoplasm Invasiveness/pathology , Methylation , rac1 GTP-Binding Protein/genetics , rac1 GTP-Binding Protein/metabolism
4.
J Biol Chem ; 299(6): 104796, 2023 06.
Article in English | MEDLINE | ID: mdl-37150325

ABSTRACT

Protein lysine methyltransferases (PKMTs) play essential roles in gene expression regulation and cancer development. Somatic mutations in PKMTs are frequently observed in cancer cells. In biochemical experiments, we show here that the NSD1 mutations Y1971C, R2017Q, and R2017L observed mostly in solid cancers are catalytically inactive suggesting that NSD1 acts as a tumor suppressor gene in these tumors. In contrast, the frequently observed T1150A in NSD2 and its T2029A counterpart in NSD1, both observed in leukemia, are hyperactive and introduce up to three methyl groups in H3K36 in biochemical and cellular assays, while wildtype NSD2 and NSD1 only introduce up to two methyl groups. In Molecular Dynamics simulations, we determined key mechanistic and structural features controlling the product specificity of this class of enzymes. Simulations with NSD2 revealed that H3K36me3 formation is possible due to an enlarged active site pocket of T1150A and loss of direct contacts of T1150 to critical residues which regulate the product specificity of NSD2. Bioinformatic analyses of published data suggested that the generation of H3K36me3 by NSD2 T1150A could alter gene regulation by antagonizing H3K27me3 finally leading to the upregulation of oncogenes.


Subject(s)
Histone-Lysine N-Methyltransferase , Histones , Lysine , Methylation , Neoplasms , Humans , Histones/chemistry , Histones/metabolism , Lysine/chemistry , Lysine/metabolism , Neoplasms/enzymology , Neoplasms/genetics , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Mutation
5.
Pharmacol Res ; 200: 107051, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38190956

ABSTRACT

Renal interstitial fibrosis/tubular atrophy (IF/TA) is a prominent pathological feature of chronic allograft dysfunction (CAD). Our previous study has demonstrated that epithelial-mesenchymal transition (EMT) plays a significant role in shaping the development of IF/TA. Nuclear SET domain (NSD2), a histone methyltransferase catalyzing methylation at lysine 36 of histone 3, is crucially involved in the development and progression of solid tumors. But its role in the development of renal allograft interstitial fibrosis has yet to be elucidated. Here, we characterize NSD2 as a crucial mediator in the mouse renal transplantation model in vivo and a model of tumor necrosis factor-α (TNF-α) stimulated-human renal tubular epithelial cells (HK-2) in vitro. Functionally, NSD2 knockdown inhibits EMT, dynamin-related protein 1 (Drp1)-mediated mitochondrial fission in mice. Conversely, NSD2 overexpression exacerbates fibrosis-associated phenotypes and mitochondrial fission in tubular cells. Mechanistically, tubular NSD2 aggravated the Drp-1 mediated mitochondrial fission via STAT1/ERK/PI3K/Akt signaling pathway in TNF-α-induced epithelial cell models. Momentously, mass spectrometry (MS) Analysis and site-directed mutagenesis assays revealed that NSD2 interacted with and induced Mono-methylation of STAT1 on K173, leading to its phosphorylation, IMB1-dependent nuclear translocation and subsequent influence on TNF-α-induced EMT and mitochondrial fission in NSD2-dependent manner. Collectively, these findings shed light on the mechanisms and suggest that targeting NSD2 could be a promising therapeutic approach to enhance tubular cell survival and alleviate interstitial fibrosis in renal allografts during CAD.


Subject(s)
Kidney Diseases , Kidney Transplantation , Humans , Mice , Animals , Tumor Necrosis Factor-alpha/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Mitochondrial Dynamics , PR-SET Domains , Fibrosis , Allografts/metabolism , Epithelial-Mesenchymal Transition , STAT1 Transcription Factor/metabolism
6.
J Enzyme Inhib Med Chem ; 39(1): 2289355, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38059332

ABSTRACT

Liver cancer exhibits a high degree of heterogeneity and involves intricate mechanisms. Recent research has revealed the significant role of histone lysine methylation and acetylation in the epigenetic regulation of liver cancer development. In this study, five inhibitors capable of targeting both histone lysine methyltransferase nuclear receptor-binding SET domain 2 (NSD2) and histone deacetylase 2 (HDAC2) were identified using a structure-based virtual screening approach. Notably, DT-NH-1 displayed a potent inhibition of NSD2 (IC50 = 0.08 ± 0.03 µM) and HDAC2 (IC50 = 5.24 ± 0.87 nM). DT-NH-1 also demonstrated a strong anti-proliferative activity against various liver cancer cell lines, particularly HepG2 cells, and exhibited a high level of biological safety. In an experimental xenograft model involving HepG2 cells, DT-NH-1 showed a significant reduction in tumour growth. Consequently, these findings indicate that DT-NH-1 will be a promising lead compound for the treatment of liver cancer with epigenetic dual-target inhibitors.


Subject(s)
Liver Neoplasms , Molecular Dynamics Simulation , Humans , Epigenesis, Genetic , Histone Deacetylase 2/metabolism , Early Detection of Cancer , Liver Neoplasms/drug therapy , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemistry
7.
Chembiochem ; 24(24): e202300515, 2023 12 14.
Article in English | MEDLINE | ID: mdl-37807669

ABSTRACT

NSD2 is a histone methyltransferase predominantly catalyzing di-methylation of histone H3 on lysine K36. Increased NSD2 activity due to mutations or fusion-events affecting the gene encoding NSD2 is considered an oncogenic event and a driver in various cancers, including multiple myelomas carrying t(4;14) chromosomal translocations and acute lymphoblastic leukemia's expressing the hyperactive NSD2 mutant E1099 K. Using DNA-encoded libraries, we have identified small molecule ligands that selectively and potently bind to the PWWP1 domain of NSD2, inhibit NSD2 binding to H3K36me2-bearing nucleosomes, but do not inhibit the methyltransferase activity. The ligands were subsequently converted to selective VHL1-recruiting NSD2 degraders and by using one of the most efficacious degraders in cell lines, we show that it leads to NSD2 degradation, decrease in K3 K36me2 levels and inhibition of cell proliferation.


Subject(s)
Histone-Lysine N-Methyltransferase , Histones , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Nucleosomes , Cell Line, Tumor , Methylation
8.
Clin Genet ; 103(2): 226-230, 2023 02.
Article in English | MEDLINE | ID: mdl-36189577

ABSTRACT

NSD2 dimethylates histone H3 at lysine 36 (H3K36me2) and is located in the Wolf-Hirschhorn syndrome (WHS) critical region. Recent descriptions have delineated loss-of-function (LoF) variants in NSD2 with a distinct disorder. The oncogenic missense variant p.Glu1099Lys occurs somatically in leukemia and has a gain-of-function (GoF) effect. We describe two individuals carrying p.Glu1099Lys as heterozygous de novo germline variant identified by exome sequencing (ES) of blood DNA and subsequently confirmed in two ectodermal tissues. Clinically, these individuals are characterized by intellectual disability, coarse/ square facial gestalt, abnormalities of the hands, and organomegaly. Public cell lines with NSD2 GoF variants had increased K36me2, DNA promoter methylation, and dysregulated RNA expression. NSD2 GoF caused by p.Glu1099Lys is associated with a novel phenotype different from WHS and Rauch-Steindl syndrome (RAUST).


Subject(s)
Repressor Proteins , Wolf-Hirschhorn Syndrome , Humans , Repressor Proteins/genetics , Gain of Function Mutation , Histones/genetics , Histones/metabolism , Wolf-Hirschhorn Syndrome/genetics , DNA
9.
Cell Mol Life Sci ; 79(6): 285, 2022 May 09.
Article in English | MEDLINE | ID: mdl-35532818

ABSTRACT

NSD1, NSD2, and NSD3 constitute the nuclear receptor-binding SET Domain (NSD) family of histone 3 lysine 36 (H3K36) methyltransferases. These structurally similar enzymes mono- and di-methylate H3K36, which contribute to the maintenance of chromatin integrity and regulate the expression of genes that control cell division, apoptosis, DNA repair, and epithelial-mesenchymal transition (EMT). Aberrant expression or mutation of members of the NSD family is associated with developmental defects and the occurrence of some types of cancer. In this review, we discuss the effect of alterations in NSDs on cancer patient's prognosis and response to treatment. We summarize the current understanding of the biological functions of NSD proteins, focusing on their activities and the role in the formation and progression in solid tumors biology, as well as how it depends on tumor etiologies. This review also discusses ongoing efforts to develop NSD inhibitors as a promising new class of cancer therapeutic agents.


Subject(s)
Histone-Lysine N-Methyltransferase , Neoplasms , Histone Methyltransferases , Histone-Lysine N-Methyltransferase/metabolism , Humans , Neoplasms/genetics , Neoplasms/metabolism , Nuclear Proteins/metabolism , Repressor Proteins/metabolism
10.
Tohoku J Exp Med ; 260(3): 193-204, 2023 Jul 08.
Article in English | MEDLINE | ID: mdl-37045786

ABSTRACT

Oral squamous cell carcinoma (OSCC) remains the most prevalent malignance in the head and neck with highly aggressive attributes. This study investigates the functions of nuclear receptor interacting protein 1 (NRIP1) and its target transcripts in the progression of OSCC. By analyzing four OSCC-related Gene Expression Omnibus (GEO) datasets (GSE9844, GSE23558, GSE25104 and GSE74530) and querying bioinformatics systems, we obtained NRIP1 as an aberrantly highly expressed transcription factor in OSCC. Increased NRIP1 was detected in OSCC cell lines. Artificial downregulation of NRIP1 significantly suppressed proliferation, migration and invasion, resistance to apoptosis, tumorigenicity, and in vivo metastatic potential of OSCC cells. Moreover, the bioinformatics analyses suggested nuclear receptor binding SET domain protein 2 (NSD2) as a target of NRIP1 and DGCR8 microprocessor complex subunit (DGCR8) as a target of NSD2. Indeed, we validated by chromatin immunoprecipitation and luciferase assays that NRIP1 activated the transcription of NSD2, and NSD2 increased DGCR8 transcription by modulating histone methylation near the DGCR8 promoter. Either NSD2 or DGCR8 upregulation in OSCC cells rescued their malignant properties. Collectively, this study demonstrates that NRIP1 augments malignant properties of OSCC cells by activating NSD2-mediated histone methylation of DGCR8.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , MicroRNAs , Mouth Neoplasms , Humans , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Squamous Cell Carcinoma of Head and Neck/genetics , Mouth Neoplasms/genetics , Mouth Neoplasms/metabolism , Mouth Neoplasms/pathology , MicroRNAs/genetics , Histones/genetics , Histones/metabolism , Nuclear Receptor Interacting Protein 1/genetics , Nuclear Receptor Interacting Protein 1/metabolism , RNA-Binding Proteins/metabolism , DNA Methylation , Head and Neck Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Cell Movement/genetics
11.
BMC Nephrol ; 23(1): 124, 2022 03 30.
Article in English | MEDLINE | ID: mdl-35354439

ABSTRACT

BACKGROUND: Nuclear receptor-binding SET domain protein 2 (NSD2) is a histone methyltransferase that has been demonstrated to regulate insulin secretion and glucose concentration. This study focused on the role of NSD2 in the renal impairment during diabetic nephropathy (DN). METHODS: Serum NSD2 level in patients with DN was examined, and its correlations with the renal impairment-related indicators were examined. A murine model of DN was established, and mouse mesangial cells (SV40-MES-13) were treated with high-glucose (HG) to mimic a DN-like condition in vitro. Overexpression of NSD2 was introduced into mice or cells for in vivo and in vitro studies. The m6A level in HG-treated SV40-MES-13 cells was analyzed. METTL3 expression and its correlation with NSD2 were determined. RESULTS: NSD2 was poorly expressed in the serum of patients with DN and was negatively correlated with the levels of fasting blood sugar (FBG), serum creatinine (SCr), serum cystatin C (S-Cys-C), the 24-h urine protein (24-h U-protein) and the urine cystatin C (U-Cys-C). NSD2 overexpression reduced the kidney weight and reduced renal impairment in mice. It also suppressed interstitial fibrosis in mouse kidney tissues and reduced fibrosis-related markers in HG-treated SV40-MES-13 cells. HG treatment reduced the m6A level in the cells. METTL3 promoted m6A modification of NDS2 mRNA and enhanced its stability by YTHDF1. METTL3 overexpression alleviated renal impairment and fibrosis in vivo and in vitro. But the protective role was blocked upon NSD2 silencing. CONCLUSION: This study demonstrates that METTL3 promotes NSD2 mRNA stability by YTHDF1 to alleviate progression of DN.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Animals , Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Fibrosis , Histone-Lysine N-Methyltransferase , Humans , Methyltransferases/genetics , Methyltransferases/metabolism , Mice , RNA Stability , RNA, Messenger/metabolism , Repressor Proteins
12.
Int J Mol Sci ; 23(19)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36232375

ABSTRACT

Alterations of the epigenetic machinery are critically involved in cancer development and maintenance; therefore, the proteins in charge of the generation of epigenetic modifications are being actively studied as potential targets for anticancer therapies. A very important and widespread epigenetic mark is the dimethylation of Histone 3 in Lysine 36 (H3K36me2). Until recently, it was considered as merely an intermediate towards the generation of the trimethylated form, but recent data support a more specific role in many aspects of genome regulation. H3K36 dimethylation is mainly carried out by proteins of the Nuclear SET Domain (NSD) family, among which NSD2 is one of the most relevant members with a key role in normal hematopoietic development. Consequently, NSD2 is frequently altered in several types of tumors-especially in hematological malignancies. Herein, we discuss the role of NSD2 in these pathological processes, and we review the most recent findings in the development of new compounds aimed against the oncogenic forms of this novel anticancer candidate.


Subject(s)
Hematologic Diseases , Neoplasms , Epigenesis, Genetic , Hematologic Diseases/genetics , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Humans , Lysine/metabolism , Neoplasms/drug therapy , Neoplasms/genetics , Repressor Proteins/genetics
13.
J Biol Chem ; 294(33): 12459-12471, 2019 08 16.
Article in English | MEDLINE | ID: mdl-31248990

ABSTRACT

NSD2 is a histone methyltransferase that specifically dimethylates histone H3 lysine 36 (H3K36me2), a modification associated with gene activation. Dramatic overexpression of NSD2 in t(4;14) multiple myeloma (MM) and an activating mutation of NSD2 discovered in acute lymphoblastic leukemia are significantly associated with altered gene activation, transcription, and DNA damage repair. The partner proteins through which NSD2 may influence critical cellular processes remain poorly defined. In this study, we utilized proximity-based labeling (BioID) combined with label-free quantitative MS to identify high confidence NSD2 interacting partners in MM cells. The top 24 proteins identified were involved in maintaining chromatin structure, transcriptional regulation, RNA pre-spliceosome assembly, and DNA damage. Among these, an important DNA damage regulator, poly(ADP-ribose) polymerase 1 (PARP1), was discovered. PARP1 and NSD2 have been found to be recruited to DNA double strand breaks upon damage and H3K36me2 marks are enriched at damage sites. We demonstrate that PARP1 regulates NSD2 via PARylation upon oxidative stress. In vitro assays suggest the PARylation significantly reduces NSD2 histone methyltransferase activity. Furthermore, PARylation of NSD2 inhibits its ability to bind to nucleosomes and further get recruited at NSD2-regulated genes, suggesting PARP1 regulates NSD2 localization and H3K36me2 balance. This work provides clear evidence of cross-talk between PARylation and histone methylation and offers new directions to characterize NSD2 function in DNA damage response, transcriptional regulation, and other pathways.


Subject(s)
Chromatin/enzymology , Histone-Lysine N-Methyltransferase/metabolism , Multiple Myeloma/enzymology , Neoplasm Proteins/metabolism , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly ADP Ribosylation , Repressor Proteins/metabolism , Cell Line, Tumor , Chromatin/genetics , Chromatin/pathology , DNA Breaks, Double-Stranded , Histone-Lysine N-Methyltransferase/genetics , Histones/genetics , Histones/metabolism , Humans , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Neoplasm Proteins/genetics , Oxidative Stress/genetics , Poly (ADP-Ribose) Polymerase-1/genetics , Repressor Proteins/genetics
14.
Protein Expr Purif ; 166: 105506, 2020 02.
Article in English | MEDLINE | ID: mdl-31563542

ABSTRACT

The nuclear receptor-binding SET Domain (NSD) family consists of NSD1, NSD2/MMSET/WHSC1, and NSD3/WHSC1L1 histone methyltransferases that are crucial for chromatin remodeling. NSDs are implicated in developmental disorders such as Wolf-Hirschhorn and Sotos syndromes as well as various cancers including t(4; 14)(p16; q32) myeloma, an incurable cancer in plasma cells. NSDs have been the target of intensive study to understand their biological functions more fully and inform anti-cancer drug design. Recombinant protein expression and purification of human NSDs using an E. coli expression system are notoriously challenging, but the production of pure, stable, and active NSDs is essential for further studies. To overcome production challenges, we propose a cost-efficient approach optimized to produce a high yield of NSDs using a modified E. coli expression system. We found that tagging the NSDs with a human influenza hemagglutinin (HA) tag greatly improved the quality of the recombinant NSDs, resulting in more than 95% pure, stable, and active NSD-HAs, with an increase in production yield up to 22.4-fold and up to 6.25 mg/L from LB E. coli culture, and without further purification such as ion-exchange or size-exclusion chromatography.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/genetics , Histone-Lysine N-Methyltransferase/chemistry , Histone-Lysine N-Methyltransferase/genetics , Recombinant Proteins/genetics , Amino Acid Sequence , Chromatography, Ion Exchange , Escherichia coli/enzymology , Escherichia coli/genetics , Gene Expression , Genetic Vectors , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Humans , Intracellular Signaling Peptides and Proteins , Protein Conformation , Protein Stability , Recombinant Proteins/chemistry
15.
Biomarkers ; 25(3): 268-273, 2020 May.
Article in English | MEDLINE | ID: mdl-32091270

ABSTRACT

Purpose: To assess the prognostic significance of the nuclear receptor binding SET protein 2 (NSD2), a co-activator of the NFkB-pathway, on tumour progression in patients with advanced prostate cancer (PCa).Methods: We retrospectively assessed NSD2 expression in 53 patients with metastatic and castration-resistant PCa. Immunohistochemical staining for NSD2 was carried out on specimen obtained from palliative resection of the prostate. Univariable and multivariable analyses were performed to assess the association between NSD2 expression and PCa progression.Results: Of the 53 patients, 41 had castration-resistant PCa and 48 men had metastases at time of tissue acquisition. NSD2 expression was increased in tumour specimen from 42 patients (79.2%). In univariable Cox regression analyses, NSD2 expression was associated with PSA progression, progression on imaging and overall survival (p = 0.04, respectively). In multivariable analyses, NSD2 expression did not retain its association with these endpoints.Conclusions: NSD2 expression is abnormal in almost 80% of patients with advanced PCa. Expression levels of this epigenetic regulator are easily detected by immunohistochemistry while this biomarker exhibited prognostic value for PCa progression and death in univariable analysis. Further studies on NSD2 involvement in PCa proliferation, progression, metastasis and resistance mechanisms are needed.


Subject(s)
Biomarkers, Tumor/biosynthesis , Histone-Lysine N-Methyltransferase/biosynthesis , Prostate/metabolism , Prostatic Neoplasms/metabolism , Repressor Proteins/biosynthesis , Aged , Aged, 80 and over , Disease Progression , Humans , Immunohistochemistry/statistics & numerical data , Male , Prognosis , Proportional Hazards Models , Prostate/pathology , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/therapy , Retrospective Studies , Survival Analysis
16.
J Cell Mol Med ; 23(1): 568-575, 2019 01.
Article in English | MEDLINE | ID: mdl-30334333

ABSTRACT

Histone lysine methylation plays an important role in the regulation of ventricular remodelling. NSD2 is involved in many types of tumours through enhancing H3K36me2 expression. However, the role of NSD2 in the regulation of histone lysine methylation during ventricular remodelling remains unclear. In this study, we established cardiac hypertrophy model in C57BL/6 mice by transverse aortic constriction and found that histone lysine methylation participated in ventricular remodelling regulation via the up-regulation of H3K27me2 and H3K36me2 expression. In addition, we constructed transgenic C57BL/6 mice with conditional knockout of NSD2 (NSD2-/- ) in the myocardium. NSD2-/- C57BL/6 mice had milder ventricular remodelling and significantly improved cardiac function compared with wild-type mice, and the expression of H3K36me2 but not H3K27me2 was down-regulated. In conclusion, NSD2 promotes ventricular remodelling mediated by the regulation of H3K36me2.


Subject(s)
Histone-Lysine N-Methyltransferase/genetics , Histones/genetics , Ventricular Remodeling/genetics , Animals , Down-Regulation/genetics , Methylation , Mice , Mice, Inbred C57BL , Mice, Transgenic/genetics , Myocardium , Up-Regulation/genetics
17.
J Biol Chem ; 293(35): 13750-13765, 2018 08 31.
Article in English | MEDLINE | ID: mdl-29945974

ABSTRACT

The histone lysine methyltransferase nuclear receptor-binding SET domain protein 2 (NSD2, also known as WHSC1/MMSET) is an epigenetic modifier and is thought to play a driving role in oncogenesis. Both NSD2 overexpression and point mutations that increase its catalytic activity are associated with several human cancers. Although NSD2 is an attractive therapeutic target, no potent, selective, and bioactive small molecule inhibitors of NSD2 have been reported to date, possibly due to the challenges of developing high-throughput assays for NSD2. Here, to establish a platform for the discovery and development of selective NSD2 inhibitors, we optimized and implemented multiple assays. We performed quantitative high-throughput screening with full-length WT NSD2 and a nucleosome substrate against a diverse collection of bioactive small molecules comprising 16,251 compounds. We further interrogated 174 inhibitory compounds identified in the primary screen with orthogonal and counter assays and with activity assays based on the clinically relevant NSD2 variants E1099K and T1150A. We selected five confirmed inhibitors for follow-up, which included a radiolabeled validation assay, surface plasmon resonance studies, methyltransferase profiling, and histone methylation in cells. We found that all five NSD2 inhibitors bind the catalytic SET domain and one exhibited apparent activity in cells, validating the workflow and providing a template for identifying selective NSD2 inhibitors. In summary, we have established a robust discovery pipeline for identifying potent NSD2 inhibitors from small-molecule libraries.


Subject(s)
Drug Evaluation, Preclinical/methods , Enzyme Inhibitors/pharmacology , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Nucleosomes/metabolism , Repressor Proteins/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Cell Line, Tumor , Enzyme Inhibitors/chemistry , High-Throughput Screening Assays/methods , Histone-Lysine N-Methyltransferase/metabolism , Humans , Nucleosomes/drug effects , Repressor Proteins/metabolism , Small Molecule Libraries/chemistry
18.
Biochem Biophys Res Commun ; 519(3): 489-496, 2019 11 12.
Article in English | MEDLINE | ID: mdl-31526565

ABSTRACT

The molecular mechanisms revealing cervical cancer progression remain unclear. NSD2 belongs to the NSD family of histone lysine methyltransferases (HMTases), and is a histone methyltransferase that regulates dimethylation of histone 3 lysine 36 (H3K36me2). In this study, we explored the effects of NSD2 on the tumorigenesis and metastasis in cervical cancer. We found that NSD2 exhibited a pattern of gradual up-regulation from normal cervix (NC) to cervical carcinoma in situ (CIS) and then to invasive cervical cancer (ICC). NSD2 knockdown markedly reduced the cervical cancer cell proliferation. Loss of function assay in vitro suggested that NSD2 deletion markedly prevented the cervical cancer cell migration and invasion. Consistently, the in vivo results demonstrated that NSD2 knockdown not only reduced tumor growth, but also prevented the development of tumor metastasis. In addition, NSD2 knockdown clearly reduced the expression levels of transforming growth factor-ß1 (TGF-ß1), TGF-ßRI, phosphorylated SMAD2 and SMAD3 in cervical cancer cells, accompanied with the decreased expression of genes that promoted tumor metastasis. Importantly, we found that NSD2 knockdown-regulated expression levels of metastasis-associated genes were reversed by TGF-ß1 incubation. Therefore, our findings demonstrated that NSD2-modulated activation of TGF-ß1/TGF-ßRI/SMADs signaling pathway was crucial for cervical cancer progression, which might be a promising therapeutic strategy to overcome metastasis in cervical cancer.


Subject(s)
Histone-Lysine N-Methyltransferase/genetics , RNA Interference , Receptor, Transforming Growth Factor-beta Type I/genetics , Repressor Proteins/genetics , Smad Proteins/genetics , Transforming Growth Factor beta/genetics , Uterine Cervical Neoplasms/genetics , Animals , Cell Line , Cell Line, Tumor , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , HeLa Cells , Histone-Lysine N-Methyltransferase/metabolism , Humans , Mice, Inbred BALB C , Mice, Nude , Neoplasm Metastasis , Receptor, Transforming Growth Factor-beta Type I/metabolism , Repressor Proteins/metabolism , Signal Transduction/genetics , Smad Proteins/metabolism , Transforming Growth Factor beta/metabolism , Transplantation, Heterologous , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology
19.
Biochem Biophys Res Commun ; 508(1): 102-108, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30471851

ABSTRACT

The NSD family (NSD1, NSD2/MMSET/WHSC1, and NSD3/WHSC1L1) are histone lysine methyltransferases (HMTases) essential for chromatin regulation. The NSDs are oncoproteins, drivers of a number of tumors and are considered important drug-targets but the lack of potent and selective inhibitors hampers further therapeutic development and limits exploration of their biology. In particular, MMSET/NSD2 selective inhibition is being pursued for therapeutic interventions against multiple myeloma (MM) cases, especially in multiple myeloma t(4;14)(p16.3;q32) translocation that is associated with a significantly worse prognosis than other MM subgroups. Multiple myeloma is the second most common hematological malignancy, after non-Hodgkin lymphoma and remains an incurable malignancy. Here we report the discovery of LEM-14, an NSD2 specific inhibitor with an in vitro IC50 of 132 µM and that is inactive against the closely related NSD1 and NSD3. LEM-14-1189, a LEM-14 derivative, differentially inhibits the NSDs with in vitro IC50 of 418 µM (NSD1), IC50 of 111 µM (NSD2) and IC50 of 60 µM (NSD3). We propose LEM-14 and derivative LEM-14-1189 as tools for studying the biology of the NSDs and constitute meaningful steps toward potent NSDs therapeutic inhibitors.


Subject(s)
Enzyme Inhibitors/pharmacology , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Oncogene Proteins/antagonists & inhibitors , Repressor Proteins/antagonists & inhibitors , Catalytic Domain , Drug Design , Drug Discovery , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemistry , Histone-Lysine N-Methyltransferase/chemistry , Histone-Lysine N-Methyltransferase/genetics , Humans , Kinetics , Models, Molecular , Molecular Docking Simulation , Molecular Structure , Protein Conformation , Repressor Proteins/chemistry , Repressor Proteins/genetics , User-Computer Interface
20.
BMC Med Genet ; 20(1): 134, 2019 08 05.
Article in English | MEDLINE | ID: mdl-31382906

ABSTRACT

BACKGROUND: Wolf-Hirschhorn syndrome (WHS) is a contiguous gene syndrome caused by partial 4p deletion highly variable in size in individual patients. The core WHS phenotype is defined by the association of growth delay, typical facial characteristics, intellectual disability and seizures. The WHS critical region (WHSCR) has been narrowed down and NSD2 falls within this 200 kb region. Only four patients with NSD2 variants have been documented with phenotypic features in detail. CASE PRESENTATION: Herein, we report the case of a 12-year-old boy with developmental delay. He had dysmorphic facial features including wide-spaced eyes, prominent nasal bridge continuing to forehead, abnormal teething and micrognathia. He also had mild clinodactyly of both hands. Using whole-exome sequencing, we identified a pathogenic mutation in NSD2 [c.4029_4030insAA, p.Glu1344Lysfs*49] isolated from peripheral blood DNA. Sanger confirmation of this variant revealed it as a de novo truncating variant in the family. CONCLUSION: Here, we reported a boy with de novo truncating variant in NSD2 with atypical clinical features comparing with 4p16.3 deletion related WHS. Our finding further supported the pathogenesis of truncating variants in NSD2 and delineated the possible symptom spectrum caused by these variants.


Subject(s)
Genetic Predisposition to Disease/genetics , Histone-Lysine N-Methyltransferase/genetics , Phenotype , Repressor Proteins/genetics , Wolf-Hirschhorn Syndrome/genetics , Base Sequence , Child , Chromosomes, Human, Pair 4 , DNA/blood , Developmental Disabilities/genetics , Humans , Intellectual Disability/genetics , Male , Seizures/genetics , Exome Sequencing , Wolf-Hirschhorn Syndrome/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL