Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 17.232
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 42(1): 585-613, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38424470

ABSTRACT

Alzheimer disease (AD) is the most common neurodegenerative disease, and with no efficient curative treatment available, its medical, social, and economic burdens are expected to dramatically increase. AD is historically characterized by amyloid ß (Aß) plaques and tau neurofibrillary tangles, but over the last 25 years chronic immune activation has been identified as an important factor contributing to AD pathogenesis. In this article, we review recent and important advances in our understanding of the significance of immune activation in the development of AD. We describe how brain-resident macrophages, the microglia, are able to detect Aß species and be activated, as well as the consequences of activated microglia in AD pathogenesis. We discuss transcriptional changes of microglia in AD, their unique heterogeneity in humans, and emerging strategies to study human microglia. Finally, we expose, beyond Aß and microglia, the role of peripheral signals and different cell types in immune activation.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Microglia , Alzheimer Disease/immunology , Alzheimer Disease/etiology , Alzheimer Disease/metabolism , Humans , Animals , Microglia/immunology , Microglia/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/immunology , Brain/immunology , Brain/metabolism , Brain/pathology , Macrophages/immunology , Macrophages/metabolism
2.
Annu Rev Immunol ; 41: 431-452, 2023 04 26.
Article in English | MEDLINE | ID: mdl-36750318

ABSTRACT

The complement system is an ancient collection of proteolytic cascades with well-described roles in regulation of innate and adaptive immunity. With the convergence of a revolution in complement-directed clinical therapeutics, the discovery of specific complement-associated targetable pathways in the central nervous system, and the development of integrated multi-omic technologies that have all emerged over the last 15 years, precision therapeutic targeting in Alzheimer disease and other neurodegenerative diseases and processes appears to be within reach. As a sensor of tissue distress, the complement system protects the brain from microbial challenge as well as the accumulation of dead and/or damaged molecules and cells. Additional more recently discovered diverse functions of complement make it of paramount importance to design complement-directed neurotherapeutics such that the beneficial roles in neurodevelopment, adult neural plasticity, and neuroprotective functions of the complement system are retained.


Subject(s)
Neuroinflammatory Diseases , Neuroprotection , Humans , Animals , Brain , Complement System Proteins , Neuronal Plasticity/physiology , Microglia/physiology
3.
Annu Rev Immunol ; 40: 143-167, 2022 04 26.
Article in English | MEDLINE | ID: mdl-34990209

ABSTRACT

The gut microbiome influences many host physiologies, spanning gastrointestinal function, metabolism, immune homeostasis, neuroactivity, and behavior. Many microbial effects on the host are orchestrated by bidirectional interactions between the microbiome and immune system. Imbalances in this dialogue can lead to immune dysfunction and immune-mediated conditions in distal organs including the brain. Dysbiosis of the gut microbiome and dysregulated neuroimmune responses are common comorbidities of neurodevelopmental, neuropsychiatric, and neurological disorders, highlighting the importance of the gut microbiome-neuroimmune axis as a regulator of central nervous system homeostasis. In this review, we discuss recent evidence supporting a role for the gut microbiome in regulating the neuroimmune landscape in health and disease.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Brain , Dysbiosis , Humans , Neuroimmunomodulation
4.
Annu Rev Immunol ; 39: 199-226, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33524273

ABSTRACT

Multiple sclerosis (MS) is a chronic disease that is characterized by the inappropriate invasion of lymphocytes and monocytes into the central nervous system (CNS), where they orchestrate the demyelination of axons, leading to physical and cognitive disability. There are many reasons immunologists should be interested in MS. Aside from the fact that there is still significant unmet need for patients living with the progressive form of the disease, MS is a case study for how immune cells cross CNS barriers and subsequently interact with specialized tissue parenchymal cells. In this review, we describe the types of immune cells that infiltrate the CNS and then describe interactions between immune cells and glial cells in different types of lesions. Lastly, we provide evidence for CNS-compartmentalized immune cells and speculate on how this impacts disease progression for MS patients.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Animals , Central Nervous System , Humans , Inflammation , Monocytes
5.
Annu Rev Immunol ; 37: 73-95, 2019 04 26.
Article in English | MEDLINE | ID: mdl-31026414

ABSTRACT

Neurotropic RNA viruses continue to emerge and are increasingly linked to diseases of the central nervous system (CNS) despite viral clearance. Indeed, the overall mortality of viral encephalitis in immunocompetent individuals is low, suggesting efficient mechanisms of virologic control within the CNS. Both immune and neural cells participate in this process, which requires extensive innate immune signaling between resident and infiltrating cells, including microglia and monocytes, that regulate the effector functions of antiviral T and B cells as they gain access to CNS compartments. While these interactions promote viral clearance via mainly neuroprotective mechanisms, they may also promote neuropathology and, in some cases, induce persistent alterations in CNS physiology and function that manifest as neurologic and psychiatric diseases. This review discusses mechanisms of RNA virus clearance and neurotoxicity during viral encephalitis with a focus on the cytokines essential for immune and neural cell inflammatory responses and interactions. Understanding neuroimmune communications in the setting of viral infections is essential for the development of treatments that augment neuroprotective processes while limiting ongoing immunopathological processes that cause ongoing CNS disease.


Subject(s)
Brain/immunology , Immunity, Innate , Microglia/physiology , RNA Virus Infections/immunology , RNA Viruses/physiology , Animals , Blood-Brain Barrier , Brain/virology , Humans , Neurogenic Inflammation , Neuroimmunomodulation
6.
Cell ; 187(15): 4043-4060.e30, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38878778

ABSTRACT

Inflammation-induced neurodegeneration is a defining feature of multiple sclerosis (MS), yet the underlying mechanisms remain unclear. By dissecting the neuronal inflammatory stress response, we discovered that neurons in MS and its mouse model induce the stimulator of interferon genes (STING). However, activation of neuronal STING requires its detachment from the stromal interaction molecule 1 (STIM1), a process triggered by glutamate excitotoxicity. This detachment initiates non-canonical STING signaling, which leads to autophagic degradation of glutathione peroxidase 4 (GPX4), essential for neuronal redox homeostasis and thereby inducing ferroptosis. Both genetic and pharmacological interventions that target STING in neurons protect against inflammation-induced neurodegeneration. Our findings position STING as a central regulator of the detrimental neuronal inflammatory stress response, integrating inflammation with glutamate signaling to cause neuronal cell death, and present it as a tractable target for treating neurodegeneration in MS.


Subject(s)
Inflammation , Membrane Proteins , Multiple Sclerosis , Neurons , Animals , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Membrane Proteins/metabolism , Neurons/metabolism , Neurons/pathology , Mice , Humans , Inflammation/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Signal Transduction , Autophagy , Mice, Inbred C57BL , Glutamic Acid/metabolism , Ferroptosis , Disease Models, Animal , Female , Male
7.
Cell ; 187(18): 4946-4963.e17, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39089253

ABSTRACT

The choroid plexus (ChP) is a vital brain barrier and source of cerebrospinal fluid (CSF). Here, we use longitudinal two-photon imaging in awake mice and single-cell transcriptomics to elucidate the mechanisms of ChP regulation of brain inflammation. We used intracerebroventricular injections of lipopolysaccharides (LPS) to model meningitis in mice and observed that neutrophils and monocytes accumulated in the ChP stroma and surged across the epithelial barrier into the CSF. Bi-directional recruitment of monocytes from the periphery and, unexpectedly, macrophages from the CSF to the ChP helped eliminate neutrophils and repair the barrier. Transcriptomic analyses detailed the molecular steps accompanying this process and revealed that ChP epithelial cells transiently specialize to nurture immune cells, coordinating their recruitment, survival, and differentiation as well as regulation of the tight junctions that control the permeability of the ChP brain barrier. Collectively, we provide a mechanistic understanding and a comprehensive roadmap of neuroinflammation at the ChP brain barrier.


Subject(s)
Blood-Brain Barrier , Choroid Plexus , Lipopolysaccharides , Macrophages , Neuroinflammatory Diseases , Neutrophils , Choroid Plexus/metabolism , Animals , Mice , Neuroinflammatory Diseases/metabolism , Blood-Brain Barrier/metabolism , Macrophages/metabolism , Macrophages/immunology , Neutrophils/metabolism , Neutrophils/immunology , Mice, Inbred C57BL , Monocytes/metabolism , Male , Tight Junctions/metabolism , Epithelial Cells/metabolism , Female
8.
Cell ; 187(8): 1990-2009.e19, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38513664

ABSTRACT

Multiple sclerosis (MS) is a neurological disease characterized by multifocal lesions and smoldering pathology. Although single-cell analyses provided insights into cytopathology, evolving cellular processes underlying MS remain poorly understood. We investigated the cellular dynamics of MS by modeling temporal and regional rates of disease progression in mouse experimental autoimmune encephalomyelitis (EAE). By performing single-cell spatial expression profiling using in situ sequencing (ISS), we annotated disease neighborhoods and found centrifugal evolution of active lesions. We demonstrated that disease-associated (DA)-glia arise independently of lesions and are dynamically induced and resolved over the disease course. Single-cell spatial mapping of human archival MS spinal cords confirmed the differential distribution of homeostatic and DA-glia, enabled deconvolution of active and inactive lesions into sub-compartments, and identified new lesion areas. By establishing a spatial resource of mouse and human MS neuropathology at a single-cell resolution, our study unveils the intricate cellular dynamics underlying MS.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Spinal Cord , Animals , Humans , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Spinal Cord/metabolism , Spinal Cord/pathology , Mice , Single-Cell Gene Expression Analysis , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology , Neuroglia/metabolism , Neuroglia/pathology
9.
Cell ; 187(8): 1874-1888.e14, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38518773

ABSTRACT

Infections of the lung cause observable sickness thought to be secondary to inflammation. Signs of sickness are crucial to alert others via behavioral-immune responses to limit contact with contagious individuals. Gram-negative bacteria produce exopolysaccharide (EPS) that provides microbial protection; however, the impact of EPS on sickness remains uncertain. Using genome-engineered Pseudomonas aeruginosa (P. aeruginosa) strains, we compared EPS-producers versus non-producers and a virulent Escherichia coli (E. coli) lung infection model in male and female mice. EPS-negative P. aeruginosa and virulent E. coli infection caused severe sickness, behavioral alterations, inflammation, and hypothermia mediated by TLR4 detection of the exposed lipopolysaccharide (LPS) in lung TRPV1+ sensory neurons. However, inflammation did not account for sickness. Stimulation of lung nociceptors induced acute stress responses in the paraventricular hypothalamic nuclei by activating corticotropin-releasing hormone neurons responsible for sickness behavior and hypothermia. Thus, EPS-producing biofilm pathogens evade initiating a lung-brain sensory neuronal response that results in sickness.


Subject(s)
Escherichia coli Infections , Escherichia coli , Lung , Polysaccharides, Bacterial , Pseudomonas Infections , Pseudomonas aeruginosa , Animals , Female , Male , Mice , Biofilms , Escherichia coli/physiology , Hypothermia/metabolism , Hypothermia/pathology , Inflammation/metabolism , Inflammation/pathology , Lung/microbiology , Lung/pathology , Pneumonia/microbiology , Pneumonia/pathology , Pseudomonas aeruginosa/physiology , Sensory Receptor Cells , Polysaccharides, Bacterial/metabolism , Escherichia coli Infections/metabolism , Escherichia coli Infections/microbiology , Escherichia coli Infections/pathology , Pseudomonas Infections/metabolism , Pseudomonas Infections/microbiology , Pseudomonas Infections/pathology , Nociceptors/metabolism
10.
Cell ; 186(4): 764-785.e21, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36803604

ABSTRACT

The choroid plexus (ChP) is the blood-cerebrospinal fluid (CSF) barrier and the primary source of CSF. Acquired hydrocephalus, caused by brain infection or hemorrhage, lacks drug treatments due to obscure pathobiology. Our integrated, multi-omic investigation of post-infectious hydrocephalus (PIH) and post-hemorrhagic hydrocephalus (PHH) models revealed that lipopolysaccharide and blood breakdown products trigger highly similar TLR4-dependent immune responses at the ChP-CSF interface. The resulting CSF "cytokine storm", elicited from peripherally derived and border-associated ChP macrophages, causes increased CSF production from ChP epithelial cells via phospho-activation of the TNF-receptor-associated kinase SPAK, which serves as a regulatory scaffold of a multi-ion transporter protein complex. Genetic or pharmacological immunomodulation prevents PIH and PHH by antagonizing SPAK-dependent CSF hypersecretion. These results reveal the ChP as a dynamic, cellularly heterogeneous tissue with highly regulated immune-secretory capacity, expand our understanding of ChP immune-epithelial cell cross talk, and reframe PIH and PHH as related neuroimmune disorders vulnerable to small molecule pharmacotherapy.


Subject(s)
Choroid Plexus , Hydrocephalus , Humans , Blood-Brain Barrier/metabolism , Brain/metabolism , Choroid Plexus/metabolism , Hydrocephalus/cerebrospinal fluid , Hydrocephalus/immunology , Immunity, Innate , Cytokine Release Syndrome/pathology
11.
Cell ; 186(17): 3706-3725.e29, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37562402

ABSTRACT

The bone marrow in the skull is important for shaping immune responses in the brain and meninges, but its molecular makeup among bones and relevance in human diseases remain unclear. Here, we show that the mouse skull has the most distinct transcriptomic profile compared with other bones in states of health and injury, characterized by a late-stage neutrophil phenotype. In humans, proteome analysis reveals that the skull marrow is the most distinct, with differentially expressed neutrophil-related pathways and a unique synaptic protein signature. 3D imaging demonstrates the structural and cellular details of human skull-meninges connections (SMCs) compared with veins. Last, using translocator protein positron emission tomography (TSPO-PET) imaging, we show that the skull bone marrow reflects inflammatory brain responses with a disease-specific spatial distribution in patients with various neurological disorders. The unique molecular profile and anatomical and functional connections of the skull show its potential as a site for diagnosing, monitoring, and treating brain diseases.


Subject(s)
Bone Marrow , Nervous System Diseases , Skull , Animals , Humans , Mice , Bone Marrow/metabolism , Brain/diagnostic imaging , Brain/metabolism , Carrier Proteins/metabolism , Nervous System Diseases/metabolism , Nervous System Diseases/pathology , Positron-Emission Tomography/methods , Receptors, GABA/metabolism , Skull/cytology , Skull/diagnostic imaging
12.
Cell ; 186(6): 1162-1178.e20, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36931244

ABSTRACT

Germline histone H3.3 amino acid substitutions, including H3.3G34R/V, cause severe neurodevelopmental syndromes. To understand how these mutations impact brain development, we generated H3.3G34R/V/W knock-in mice and identified strikingly distinct developmental defects for each mutation. H3.3G34R-mutants exhibited progressive microcephaly and neurodegeneration, with abnormal accumulation of disease-associated microglia and concurrent neuronal depletion. G34R severely decreased H3K36me2 on the mutant H3.3 tail, impairing recruitment of DNA methyltransferase DNMT3A and its redistribution on chromatin. These changes were concurrent with sustained expression of complement and other innate immune genes possibly through loss of non-CG (CH) methylation and silencing of neuronal gene promoters through aberrant CG methylation. Complement expression in G34R brains may lead to neuroinflammation possibly accounting for progressive neurodegeneration. Our study reveals that H3.3G34-substitutions have differential impact on the epigenome, which underlie the diverse phenotypes observed, and uncovers potential roles for H3K36me2 and DNMT3A-dependent CH-methylation in modulating synaptic pruning and neuroinflammation in post-natal brains.


Subject(s)
DNA Methyltransferase 3A , Histones , Animals , Mice , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methylation/genetics , DNA Modification Methylases/genetics , Histones/metabolism , Neuroinflammatory Diseases
13.
Cell ; 185(13): 2234-2247.e17, 2022 06 23.
Article in English | MEDLINE | ID: mdl-35709748

ABSTRACT

Multiple sclerosis (MS) is a T cell-mediated autoimmune disease of the central nervous system (CNS). Bone marrow hematopoietic stem and progenitor cells (HSPCs) rapidly sense immune activation, yet their potential interplay with autoreactive T cells in MS is unknown. Here, we report that bone marrow HSPCs are skewed toward myeloid lineage concomitant with the clonal expansion of T cells in MS patients. Lineage tracing in experimental autoimmune encephalomyelitis, a mouse model of MS, reveals remarkable bone marrow myelopoiesis with an augmented output of neutrophils and Ly6Chigh monocytes that invade the CNS. We found that myelin-reactive T cells preferentially migrate into the bone marrow compartment in a CXCR4-dependent manner. This aberrant bone marrow myelopoiesis involves the CCL5-CCR5 axis and augments CNS inflammation and demyelination. Our study suggests that targeting the bone marrow niche presents an avenue to treat MS and other autoimmune disorders.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Animals , Bone Marrow , Hematopoiesis , Humans , Mice , Mice, Inbred C57BL
14.
Cell ; 185(14): 2452-2468.e16, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35768006

ABSTRACT

COVID survivors frequently experience lingering neurological symptoms that resemble cancer-therapy-related cognitive impairment, a syndrome for which white matter microglial reactivity and consequent neural dysregulation is central. Here, we explored the neurobiological effects of respiratory SARS-CoV-2 infection and found white-matter-selective microglial reactivity in mice and humans. Following mild respiratory COVID in mice, persistently impaired hippocampal neurogenesis, decreased oligodendrocytes, and myelin loss were evident together with elevated CSF cytokines/chemokines including CCL11. Systemic CCL11 administration specifically caused hippocampal microglial reactivity and impaired neurogenesis. Concordantly, humans with lasting cognitive symptoms post-COVID exhibit elevated CCL11 levels. Compared with SARS-CoV-2, mild respiratory influenza in mice caused similar patterns of white-matter-selective microglial reactivity, oligodendrocyte loss, impaired neurogenesis, and elevated CCL11 at early time points, but after influenza, only elevated CCL11 and hippocampal pathology persisted. These findings illustrate similar neuropathophysiology after cancer therapy and respiratory SARS-CoV-2 infection which may contribute to cognitive impairment following even mild COVID.


Subject(s)
COVID-19 , Influenza, Human , Neoplasms , Animals , Humans , Influenza, Human/pathology , Mice , Microglia/pathology , Myelin Sheath , Neoplasms/pathology , SARS-CoV-2
15.
Cell ; 182(5): 1156-1169.e12, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32795415

ABSTRACT

Dysregulated microglia are intimately involved in neurodegeneration, including Alzheimer's disease (AD) pathogenesis, but the mechanisms controlling pathogenic microglial gene expression remain poorly understood. The transcription factor CCAAT/enhancer binding protein beta (c/EBPß) regulates pro-inflammatory genes in microglia and is upregulated in AD. We show expression of c/EBPß in microglia is regulated post-translationally by the ubiquitin ligase COP1 (also called RFWD2). In the absence of COP1, c/EBPß accumulates rapidly and drives a potent pro-inflammatory and neurodegeneration-related gene program, evidenced by increased neurotoxicity in microglia-neuronal co-cultures. Antibody blocking studies reveal that neurotoxicity is almost entirely attributable to complement. Remarkably, loss of a single allele of Cebpb prevented the pro-inflammatory phenotype. COP1-deficient microglia markedly accelerated tau-mediated neurodegeneration in a mouse model where activated microglia play a deleterious role. Thus, COP1 is an important suppressor of pathogenic c/EBPß-dependent gene expression programs in microglia.


Subject(s)
CCAAT-Enhancer-Binding Protein-beta/metabolism , Ligases/metabolism , Microglia/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin/genetics , Alzheimer Disease/metabolism , Animals , Cell Line , Coculture Techniques/methods , Female , Gene Expression/physiology , Gene Expression Regulation/physiology , HEK293 Cells , Humans , Inflammation/metabolism , Male , Mice , Mice, Inbred C57BL , Neurons/metabolism
16.
Cell ; 180(5): 833-846.e16, 2020 03 05.
Article in English | MEDLINE | ID: mdl-32142677

ABSTRACT

Cognitive dysfunction and reactive microglia are hallmarks of traumatic brain injury (TBI), yet whether these cells contribute to cognitive deficits and secondary inflammatory pathology remains poorly understood. Here, we show that removal of microglia from the mouse brain has little effect on the outcome of TBI, but inducing the turnover of these cells through either pharmacologic or genetic approaches can yield a neuroprotective microglial phenotype that profoundly aids recovery. The beneficial effects of these repopulating microglia are critically dependent on interleukin-6 (IL-6) trans-signaling via the soluble IL-6 receptor (IL-6R) and robustly support adult neurogenesis, specifically by augmenting the survival of newborn neurons that directly support cognitive function. We conclude that microglia in the mammalian brain can be manipulated to adopt a neuroprotective and pro-regenerative phenotype that can aid repair and alleviate the cognitive deficits arising from brain injury.


Subject(s)
Brain Injuries, Traumatic/therapy , Interleukin-6/genetics , Receptors, Interleukin-6/genetics , Regeneration/genetics , Animals , Brain/growth & development , Brain/pathology , Brain Injuries, Traumatic/genetics , Brain Injuries, Traumatic/pathology , Cognitive Dysfunction/genetics , Cognitive Dysfunction/pathology , Cognitive Dysfunction/therapy , Disease Models, Animal , Humans , Inflammation/genetics , Inflammation/pathology , Mice , Microglia/metabolism , Microglia/pathology , Neurons/metabolism , Neurons/pathology , Neuroprotective Agents/therapeutic use , Signal Transduction/genetics
17.
Cell ; 179(7): 1483-1498.e22, 2019 12 12.
Article in English | MEDLINE | ID: mdl-31813625

ABSTRACT

Metabolism has been shown to control peripheral immunity, but little is known about its role in central nervous system (CNS) inflammation. Through a combination of proteomic, metabolomic, transcriptomic, and perturbation studies, we found that sphingolipid metabolism in astrocytes triggers the interaction of the C2 domain in cytosolic phospholipase A2 (cPLA2) with the CARD domain in mitochondrial antiviral signaling protein (MAVS), boosting NF-κB-driven transcriptional programs that promote CNS inflammation in experimental autoimmune encephalomyelitis (EAE) and, potentially, multiple sclerosis. cPLA2 recruitment to MAVS also disrupts MAVS-hexokinase 2 (HK2) interactions, decreasing HK enzymatic activity and the production of lactate involved in the metabolic support of neurons. Miglustat, a drug used to treat Gaucher and Niemann-Pick disease, suppresses astrocyte pathogenic activities and ameliorates EAE. Collectively, these findings define a novel immunometabolic mechanism that drives pro-inflammatory astrocyte activities, outlines a new role for MAVS in CNS inflammation, and identifies candidate targets for therapeutic intervention.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Astrocytes/metabolism , Encephalomyelitis, Autoimmune, Experimental/metabolism , Phospholipases A2, Secretory/metabolism , 1-Deoxynojirimycin/analogs & derivatives , 1-Deoxynojirimycin/pharmacology , 1-Deoxynojirimycin/therapeutic use , Adaptor Proteins, Signal Transducing/genetics , Animals , Astrocytes/drug effects , Astrocytes/pathology , Brain/metabolism , Brain/pathology , Cells, Cultured , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Female , Hexokinase/metabolism , Humans , Lactic Acid/metabolism , Male , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Phospholipases A2, Secretory/genetics
18.
Cell ; 178(3): 536-551.e14, 2019 07 25.
Article in English | MEDLINE | ID: mdl-31257024

ABSTRACT

The expression of some proteins in the autophagy pathway declines with age, which may impact neurodegeneration in diseases, including Alzheimer's Disease. We have identified a novel non-canonical function of several autophagy proteins in the conjugation of LC3 to Rab5+, clathrin+ endosomes containing ß-amyloid in a process of LC3-associated endocytosis (LANDO). We found that LANDO in microglia is a critical regulator of immune-mediated aggregate removal and microglial activation in a murine model of AD. Mice lacking LANDO but not canonical autophagy in the myeloid compartment or specifically in microglia have a robust increase in pro-inflammatory cytokine production in the hippocampus and increased levels of neurotoxic ß-amyloid. This inflammation and ß-amyloid deposition were associated with reactive microgliosis and tau hyperphosphorylation. LANDO-deficient AD mice displayed accelerated neurodegeneration, impaired neuronal signaling, and memory deficits. Our data support a protective role for LANDO in microglia in neurodegenerative pathologies resulting from ß-amyloid deposition.


Subject(s)
Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Endocytosis , Microtubule-Associated Proteins/metabolism , Alzheimer Disease/metabolism , Animals , Autophagy-Related Protein 5/deficiency , Autophagy-Related Protein 5/genetics , Autophagy-Related Proteins/deficiency , Autophagy-Related Proteins/genetics , CD36 Antigens/metabolism , Cytokines/metabolism , Disease Models, Animal , Hippocampus/metabolism , Intracellular Signaling Peptides and Proteins/deficiency , Intracellular Signaling Peptides and Proteins/genetics , Membrane Glycoproteins/metabolism , Mice , Mice, Transgenic , Microglia/cytology , Microglia/metabolism , RAW 264.7 Cells , Receptors, Immunologic/metabolism , Toll-Like Receptor 4/metabolism
19.
Immunity ; 57(7): 1696-1709.e10, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38878770

ABSTRACT

Aicardi-Goutières syndrome (AGS) is an autoinflammatory disease characterized by aberrant interferon (IFN)-α production. The major cause of morbidity in AGS is brain disease, yet the primary source and target of neurotoxic IFN-α remain unclear. Here, we demonstrated that the brain was the primary source of neurotoxic IFN-α in AGS and confirmed the neurotoxicity of intracerebral IFN-α using astrocyte-driven Ifna1 misexpression in mice. Using single-cell RNA sequencing, we demonstrated that intracerebral IFN-α-activated receptor (IFNAR) signaling within cerebral endothelial cells caused a distinctive cerebral small vessel disease similar to that observed in individuals with AGS. Magnetic resonance imaging (MRI) and single-molecule ELISA revealed that central and not peripheral IFN-α was the primary determinant of microvascular disease in humans. Ablation of endothelial Ifnar1 in mice rescued microvascular disease, stopped the development of diffuse brain disease, and prolonged lifespan. These results identify the cerebral microvasculature as a primary mediator of IFN-α neurotoxicity in AGS, representing an accessible target for therapeutic intervention.


Subject(s)
Brain , Interferon-alpha , Microvessels , Nervous System Malformations , Receptor, Interferon alpha-beta , Animals , Humans , Mice , Interferon-alpha/metabolism , Brain/metabolism , Brain/pathology , Receptor, Interferon alpha-beta/metabolism , Receptor, Interferon alpha-beta/genetics , Microvessels/pathology , Nervous System Malformations/genetics , Autoimmune Diseases of the Nervous System/immunology , Endothelial Cells/metabolism , Mice, Knockout , Male , Female , Signal Transduction , Mice, Inbred C57BL , Astrocytes/metabolism , Disease Models, Animal
20.
Immunity ; 57(9): 2030-2042.e8, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39116878

ABSTRACT

Hypertension is usually accompanied by elevated sympathetic tonicity, but how sympathetic hyperactivity is triggered is not clear. Recent advances revealed that microglia-centered neuroinflammation contributes to sympathetic excitation in hypertension. In this study, we performed a temporospatial analysis of microglia at both morphological and transcriptomic levels and found that microglia in the hypothalamic paraventricular nucleus (PVN), a sympathetic center, were early responders to hypertensive challenges. Vasculature analyses revealed that the PVN was characterized by high capillary density, thin vessel diameter, and complex vascular topology relative to other brain regions. As such, the PVN was susceptible to the penetration of ATP released from the vasculature in response to hemodynamic disturbance after blood pressure increase. Mechanistically, ATP ligation to microglial P2Y12 receptor was responsible for microglial inflammatory activation and the eventual sympathetic overflow. Together, these findings identified a distinct vasculature pattern rendering vulnerability of PVN pre-sympathetic neurons to hypertension-associated microglia-mediated inflammatory insults.


Subject(s)
Hemodynamics , Hypertension , Microglia , Paraventricular Hypothalamic Nucleus , Sympathetic Nervous System , Paraventricular Hypothalamic Nucleus/metabolism , Animals , Microglia/metabolism , Hypertension/physiopathology , Mice , Sympathetic Nervous System/physiopathology , Male , Mice, Inbred C57BL , Adenosine Triphosphate/metabolism , Receptors, Purinergic P2Y12/metabolism , Inflammation/immunology , Blood Pressure , Neurons/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL