Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.119
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Stem Cells ; 42(7): 623-635, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38393380

ABSTRACT

Adipose-derived stem cells (ASCs) from diabetic osteoporosis (DOP) mice showed impaired osteogenic differentiation capacity. Recent studies have shown that in addition to antidiabetic drugs, sodium-glucose co-transporter inhibitor-2 (SGLT-2), empagliflozin, can play multipotent roles through various mechanisms of action. In this study, we aimed to investigate the effects and underlying mechanisms of empagliflozin on osteogenic differentiation of ASCs in DOP mice. Our results showed that osteogenic differentiation potential and autophagy activity weakened in DOP-ASCs when compared to controls. However, empagliflozin enhanced autophagy flux by promoting the formation of autophagosomes and acidification of autophagic lysosomes, resulting in an increase in LC3-II expression and a decrease in SQSTM1 expression. Furthermore, empagliflozin contributed to the reversal of osteogenesis inhibition in DOP-ASCs induced by a diabetic microenvironment. When 3-methyladenine was used to block autophagy activity, empagliflozin could not exert its protective effect on DOP-ASCs. Nonetheless, this study demonstrated that the advent of cellular autophagy attributed to the administration of empagliflozin could ameliorate the impaired osteogenic differentiation potential of ASCs in DOP mice. This finding might be conducive to the application of ASCs transplantation for promoting bone fracture healing and bone regeneration in patients with DOP.


Subject(s)
Autophagy , Benzhydryl Compounds , Cell Differentiation , Glucosides , Osteogenesis , Osteoporosis , Animals , Glucosides/pharmacology , Autophagy/drug effects , Osteogenesis/drug effects , Benzhydryl Compounds/pharmacology , Cell Differentiation/drug effects , Mice , Osteoporosis/pathology , Osteoporosis/drug therapy , Stem Cells/metabolism , Stem Cells/drug effects , Adipose Tissue/metabolism , Adipose Tissue/drug effects , Adipose Tissue/cytology , Mice, Inbred C57BL , Male
2.
Stem Cells ; 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39283761

ABSTRACT

A general decline in the osteogenic differentiation capacity of human bone marrow mesenchymal stem cells (hBMSCs) in the elderly is a clinical consensus, with diverse opinions on the mechanisms. Many studies have demonstrated that metformin (MF) significantly protects against osteoporosis and reduces fracture risk. However, the exact mechanism of this effect remains unclear. In this study, we found that the decreased miR-181a-5p expression triggered by MF treatment plays a critical role in recovering the osteogenic ability of aging hBMSCs (derived from elderly individuals). Notably, the miR-181a-5p expression in hBMSCs was significantly decreased with prolonged MF (1000 µM) treatment. Further investigation revealed that miR-181a-5p overexpression markedly impairs the osteogenic ability of hBMSCs, while miR-181a-5p inhibition reveals the opposite result. We also found that miR-181a-5p could suppress the protein translation process of plasminogen activator inhibitor-1 (PAI-1), as evidenced by luciferase assays and western blots. Additionally, low PAI-1 levels were associated with diminished osteogenic ability, whereas high levels promoted it. These findings were further validated in human umbilical cord mesenchymal stem cells (hUCMSCs). Finally, our in vivo experiment with a bone defects rat model confirmed that the agomiR-181a-5p (long-lasting miR-181a-5p mimic) undermined bone defects recovery, while the antagomiR-181a-5p (long-lasting miR-181a-5p inhibitor) significantly promoted the bone defects recovery. In conclusion, we found that MF promotes bone tissue regeneration through the miR-181a-5p/PAI-1 axis by affecting MSC osteogenic ability, providing new strategies for the treatment of age-related bone regeneration disorders.

3.
Stem Cells ; 42(7): 650-661, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38393294

ABSTRACT

Posttranslational modifications (PTMs) are crucial regulatory mechanisms for cellular differentiation and organismal development. Acylation modification is one of the main PTMs that plays a pivotal role in regulating the osteogenic differentiation of mesenchymal stem cells and is a focal point of research in bone tissue regeneration. However, its mechanism remains incompletely understood. This article aims to investigate the impact of protein crotonylation on osteogenic differentiation in periodontal ligament stem cells (PDLSCs) and elucidate its underlying mechanisms. Western blot analysis identified that the modification level of acetylation, crotonylation, and succinylation were significantly upregulated after osteogenic induction of PDLSCs. Subsequently, sodium crotonate (NaCr) was added to the medium and acyl-CoA synthetase short-chain family member 2 (ACSS2) was knocked down by short hairpin RNA plasmids to regulate the total level of protein crotonylation. The results indicated that treatment with NaCr promoted the expression of osteogenic differentiation-related factors in PDLSCs, whereas silencing ACSS2 had the opposite effect. In addition, mass spectrometry analysis was used to investigate the comprehensive analysis of proteome-wide crotonylation in PDLSCs under osteogenic differentiation. The analysis revealed that the level of protein crotonylation related to the PI3K-AKT signaling pathway was significantly upregulated in PDLSCs after osteogenic induction. Treatment with NaCr and silencing ACSS2 affected the activation of the PI3K-AKT signaling pathway. Collectively, our study demonstrates that protein crotonylation promotes osteogenic differentiation of PDLSCs via the PI3K-AKT pathway, providing a novel targeting therapeutic approach for bone tissue regeneration.


Subject(s)
Cell Differentiation , Osteogenesis , Periodontal Ligament , Signal Transduction , Stem Cells , Humans , Cell Differentiation/drug effects , Osteogenesis/drug effects , Periodontal Ligament/cytology , Periodontal Ligament/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Protein Processing, Post-Translational , Proto-Oncogene Proteins c-akt/metabolism , Stem Cells/metabolism , Stem Cells/cytology
4.
FASEB J ; 38(17): e23892, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39230563

ABSTRACT

Mesenchymal stromal stem cells (MSCs) or skeletal stem cells (SSCs) play a major role in tissue repair due to their robust ability to differentiate into osteoblasts, chondrocytes, and adipocytes. Complex cell signaling cascades tightly regulate this differentiation. In osteogenic differentiation, Runt-related transcription factor 2 (RUNX2) and ALP activity are essential. Furthermore, during the latter stages of osteogenic differentiation, mineral formation mediated by the osteoblast occurs with the secretion of a collagenous extracellular matrix and calcium deposition. Activation of nuclear factor erythroid 2-related factor 2 (NRF2), an important transcription factor against oxidative stress, inhibits osteogenic differentiation and mineralization via modulation of RUNX2 function; however, the exact role of NRF2 in osteoblastogenesis remains unclear. Here, we demonstrate that NRF2 activation in human bone marrow-derived stromal cells (HBMSCs) suppressed osteogenic differentiation. NRF2 activation increased the expression of STRO-1 and KITLG (stem cell markers), indicating NRF2 protects HBMSCs stemness against osteogenic differentiation. In contrast, NRF2 activation enhanced mineralization, which is typically linked to osteogenic differentiation. We determined that these divergent results were due in part to the modulation of cellular calcium flux genes by NRF2 activation. The current findings demonstrate a dual role for NRF2 as a HBMSC maintenance factor as well as a central factor in mineralization, with implications therein for elucidation of bone formation and cellular Ca2+ kinetics, dystrophic calcification and, potentially, application in the modulation of bone formation.


Subject(s)
Cell Differentiation , Mesenchymal Stem Cells , NF-E2-Related Factor 2 , Osteoblasts , Osteogenesis , Humans , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Osteogenesis/physiology , Cell Differentiation/physiology , Osteoblasts/metabolism , Osteoblasts/cytology , Calcification, Physiologic/physiology , Cells, Cultured , Bone Marrow Cells/metabolism , Bone Marrow Cells/cytology , Core Binding Factor Alpha 1 Subunit/metabolism , Core Binding Factor Alpha 1 Subunit/genetics
5.
FASEB J ; 38(17): e70011, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39250278

ABSTRACT

In clinical settings, addressing large bone defects remains a significant challenge for orthopedic surgeons. The use of genetically modified bone marrow mesenchymal stem cells (BMSCs) has emerged as a highly promising approach for these treatments. Signal peptide-CUB-EGF domain-containing protein 3 (SCUBE3) is a multifunctional secreted glycoprotein, the role of which remains unclear in human hBMSCs. This study used various experimental methods to elucidate the potential mechanism by which SCUBE3 influences osteogenic differentiation of hBMSCs in vitro. Additionally, the therapeutic efficacy of SCUBE3, in conjunction with porous GeLMA microspheres, was evaluated in vivo using a mouse bone defect model. Our findings indicate that SCUBE3 levels increase significantly during early osteogenic differentiation of hBMSCs, and that reducing SCUBE3 levels can hinder this differentiation. Overexpressing SCUBE3 elevated osteogenesis gene and protein levels and enhanced calcium deposition. Furthermore, treatment with recombinant human SCUBE3 (rhSCUBE3) protein boosted BMP2 and TGF-ß expression, activated mitophagy in hBMSCs, ameliorated oxidative stress, and restored osteogenic function through SMAD phosphorylation. In vivo, GELMA/OE treatment effectively accelerated bone healing in mice. In conclusion, SCUBE3 fosters osteogenic differentiation and mitophagy in hBMSCs by activating the BMP2/TGF-ß signaling pathway. When combined with engineered hydrogel cell therapy, it could offer valuable guidance for the clinical management of extensive bone defects.


Subject(s)
Bone Morphogenetic Protein 2 , Cell Differentiation , Mesenchymal Stem Cells , Mitophagy , Osteogenesis , Signal Transduction , Transforming Growth Factor beta , Humans , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Osteogenesis/physiology , Animals , Mitophagy/physiology , Mice , Bone Morphogenetic Protein 2/metabolism , Bone Morphogenetic Protein 2/genetics , Transforming Growth Factor beta/metabolism , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Cells, Cultured , Male
6.
FASEB J ; 38(13): e23776, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38958998

ABSTRACT

This study aimed to explore how mechanical stress affects osteogenic differentiation via the miR-187-3p/CNR2 pathway. To conduct this study, 24 female C57BL/6 mice, aged 8 weeks, were used and divided into four groups. The Sham and OVX groups did not undergo treadmill exercise, while the Sham + EX and OVX + EX groups received a 8-week treadmill exercise. Post-training, bone marrow and fresh femur samples were collected for further analysis. Molecular biology analysis, histomorphology analysis, and micro-CT analysis were conducted on these samples. Moreover, primary osteoblasts were cultured under osteogenic conditions and divided into GM group and CTS group. The cells in the CTS group underwent a sinusoidal stretching regimen for either 3 or 7 days. The expression of early osteoblast markers (Runx2, OPN, and ALP) was measured to assess differentiation. The study findings revealed that mechanical stress has a regulatory impact on osteoblast differentiation. The expression of miR-187-3p was observed to decrease, facilitating osteogenic differentiation, while the expression of CNR2 increased significantly. These observations suggest that mechanical stress, miR-187-3p, and CNR2 play crucial roles in regulating osteogenic differentiation. Both in vivo and in vitro experiments have confirmed that mechanical stress downregulates miR-187-3p and upregulates CNR2, which leads to the restoration of distal femoral bone mass and enhancement of osteoblast differentiation. Therefore, mechanical stress promotes osteoblasts, resulting in improved osteoporosis through the miR-187-3p/CNR2 signaling pathway. These findings have broad prospect and provide molecular biology guidance for the basic research and clinical application of exercise in the prevention and treatment of PMOP.


Subject(s)
Cell Differentiation , MicroRNAs , Osteoblasts , Osteogenesis , Osteoporosis, Postmenopausal , Stress, Mechanical , Animals , Female , Humans , Mice , Cells, Cultured , Mice, Inbred C57BL , MicroRNAs/genetics , MicroRNAs/metabolism , Osteoblasts/metabolism , Osteoporosis, Postmenopausal/metabolism , Osteoporosis, Postmenopausal/therapy , Osteoporosis, Postmenopausal/genetics , Osteoporosis, Postmenopausal/pathology , Signal Transduction
7.
FASEB J ; 38(19): e70076, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39373973

ABSTRACT

Mesenchymal stem cells (MSCs) have gained tremendous interest due to their overall potent pro-regenerative and immunomodulatory properties. In recent years, various in vitro and preclinical studies have investigated different priming ("licensing") approaches to enhance MSC functions for specific therapeutic purposes. In this study, we primed bone marrow-derived human MSCs (hMSCs) with an inflammation cocktail designed to mimic the elevated levels of inflammatory mediators found in serum of patients with severe injuries, such as bone fractures. We observed a significantly enhanced osteogenic differentiation potential of primed hMSCs compared to untreated controls. By RNA-sequencing analysis, we identified the immediate early response 3 (IER3) gene as one of the top-regulated genes upon inflammatory priming. Small interfering RNA knockdown experiments established IER3 as a novel positive regulator of osteogenic differentiation. Mechanistic analysis further revealed that IER3 deletion significantly downregulated bone marrow stromal cell antigen 2 (BST2) expression and extracellular signal-related kinase 1/2 (ERK1/2) phosphorylation in hMSCs, suggesting that IER3 regulates osteogenic differentiation through BST2 and ERK1/2 signaling pathway activation. On the basis of these findings, we propose IER3 as a novel therapeutic target to promote hMSC osteoblastogenesis, which might be of high clinical relevance, for example, in patients with osteoporosis or compromised fracture healing.


Subject(s)
Cell Differentiation , Inflammation , Mesenchymal Stem Cells , Osteogenesis , Humans , Mesenchymal Stem Cells/metabolism , Osteogenesis/genetics , Inflammation/metabolism , Inflammation/genetics , Cells, Cultured , MAP Kinase Signaling System , Antigens, CD/metabolism , Antigens, CD/genetics
8.
Exp Cell Res ; 440(2): 114138, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38906316

ABSTRACT

Prolyl 4-hydroxylase beta subunit (P4HB) plays a vital role in bone formation. This study intends to clarify the role of P4HB in the therapeutic effect of Icariin (ICA) on osteoporosis. Herein, in vivo and in vitro models were constructed by performing ovariectomy (OVX) in rats and inducing osteogenic differentiation in bone marrow stem cells (BMSCs), respectively. Hematoxylin and eosin staining and micro-computed tomography analysis were performed to evaluate osteoporosis in OVX rats. Alizarin Red staining, alkaline phosphatase staining, and the ALP activity test were employed to assess osteogenesis. m6A dot blotting and methylated RNA immunoprecipitation were used to determine m6A modification. We found that P4HB was downregulated in bone tissues of patients with osteoporosis and OVX rats. P4HB facilitated osteogenic differentiation of BMSCs. What's more, ICA upregulated P4HB expression, promoted osteogenic differentiation of BMSCs, and alleviated osteoporosis in OVX rats, which were reversed by knocking down P4HB. ICA enhanced the stability and m6A modification of P4HB. METTL14 mediated m6A modification of P4HB mRNA. In addition, METTL14 knockdown overturned the promotive effects of ICA on P4HB m6A level and BMSC osteogenic differentiation. To sum up, ICA elevated the METTL14-mediated m6A modification of P4HB to facilitate BMSC osteogenic differentiation.


Subject(s)
Cell Differentiation , Flavonoids , Methyltransferases , Osteogenesis , Rats, Sprague-Dawley , Animals , Osteogenesis/drug effects , Cell Differentiation/drug effects , Rats , Female , Flavonoids/pharmacology , Methyltransferases/metabolism , Methyltransferases/genetics , Humans , Osteoporosis/pathology , Osteoporosis/metabolism , Osteoporosis/genetics , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Ovariectomy , Up-Regulation/drug effects , Procollagen-Proline Dioxygenase/metabolism , Procollagen-Proline Dioxygenase/genetics , Bone Marrow Cells/metabolism , Bone Marrow Cells/drug effects , Cells, Cultured , Adenosine/analogs & derivatives , Adenosine/metabolism
9.
Cell Mol Life Sci ; 81(1): 418, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39368012

ABSTRACT

The leading cause of steroid-induced femoral head osteonecrosis (ONFH) is the imbalance of bone homeostasis. Bone marrow-derived mesenchymal stem cell (BMSC) differentiation and fate are closely associated with bone homeostasis imbalance. Blocking monoacylglycerol lipase (MAGL) could effectively ameliorate ONFH by mitigating oxidative stress and apoptosis in BMSCs induced by glucocorticoids (GC). Nevertheless, whether MAGL inhibition can modulate the balance during BMSC differentiation, and therefore improve ONFH, remains elusive. Our study indicates that MAGL inhibition can effectively rescue the enhanced BMSC adipogenic differentiation caused by GC and promote their differentiation toward osteogenic lineages. Cannabinoid receptor 2 (CB2) is the direct downstream target of MAGL in BMSCs, rather than cannabinoid receptor 1(CB1). Using RNA sequencing analyses and a series of in vitro experiments, we confirm that the MAGL blockade-induced enhancement of BMSC osteogenic differentiation is primarily mediated by the phosphoinositide 3-kinases (PI3K)/ the serine/threonine kinase (AKT)/ (glycogen synthase kinase-3 beta) GSK3ß pathway. Additionally, MAGL blockade can also reduce GC-induced bone resorption by directly suppressing osteoclastogenesis and indirectly reducing the expression of receptor activator of nuclear factor kappa-Β ligand (RANKL) in BMSCs. Thus, our study proposes that the therapeutic effect of MAGL blockade on ONFH is partly mediated by restoring the balance of bone homeostasis and MAGL may be an effective therapeutic target for ONFH.


Subject(s)
Cell Differentiation , Femur Head Necrosis , Mesenchymal Stem Cells , Monoacylglycerol Lipases , Osteogenesis , Animals , Male , Rats , Adipogenesis/drug effects , Cell Differentiation/drug effects , Cells, Cultured , Femur Head Necrosis/pathology , Femur Head Necrosis/metabolism , Femur Head Necrosis/chemically induced , Glucocorticoids/pharmacology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Monoacylglycerol Lipases/metabolism , Monoacylglycerol Lipases/antagonists & inhibitors , Monoacylglycerol Lipases/genetics , Osteogenesis/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Rats, Sprague-Dawley , Receptor, Cannabinoid, CB2/metabolism , Receptor, Cannabinoid, CB2/genetics , Signal Transduction/drug effects
10.
Cell Mol Life Sci ; 81(1): 338, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39120703

ABSTRACT

Alveolar bone loss is a main manifestation of periodontitis. Human periodontal ligament stem cells (PDLSCs) are considered as optimal seed cells for alveolar bone regeneration due to its mesenchymal stem cell like properties. Osteogenic potential is the premise for PDLSCs to repair alveolar bone loss. However, the mechanism regulating osteogenic differentiation of PDLSCs remain elusive. In this study, we identified Neuron-derived orphan receptor 1 (NOR1), was particularly expressed in PDL tissue in vivo and gradually increased during osteogenic differentiation of PDLSCs in vitro. Knockdown of NOR1 in hPDLSCs inhibited their osteogenic potential while NOR1 overexpression reversed this effect. In order to elucidate the downstream regulatory network of NOR1, RNA-sequencing was used. We found that downregulated genes were mainly enriched in TGF-ß, Hippo, Wnt signaling pathway. Further, by western blot analysis, we verified that the expression level of phosphorylated-SMAD2/3 and phosphorylated-SMAD4 were all decreased after NOR1 knockdown. Additionally, ChIP-qPCR and dual luciferase reporter assay indicated that NOR1 could bind to the promoter of TGFBR1 and regulate its activity. Moreover, overexpression of TGFBR1 in PDLSCs could rescue the damaged osteogenic potential after NOR1 knockdown. Taken together, our results demonstrated that NOR1 could activate TGF-ß/SMAD signaling pathway and positively regulates the commitment of osteoblast lineages of PDLSCs by targeting TGFBR1 directly.


Subject(s)
Cell Differentiation , Osteoblasts , Osteogenesis , Periodontal Ligament , Receptor, Transforming Growth Factor-beta Type I , Signal Transduction , Transforming Growth Factor beta , Humans , Cell Differentiation/genetics , Cells, Cultured , Osteoblasts/metabolism , Osteoblasts/cytology , Osteogenesis/genetics , Periodontal Ligament/cytology , Periodontal Ligament/metabolism , Receptor, Transforming Growth Factor-beta Type I/metabolism , Receptor, Transforming Growth Factor-beta Type I/genetics , Stem Cells/metabolism , Stem Cells/cytology , Transforming Growth Factor beta/metabolism
11.
Genomics ; 116(1): 110759, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38072145

ABSTRACT

OBJECTIVE: Our study explored the function of DOT1L in osteoporosis (OP) via the microRNA (miR)-181/KAT2B/SRSF1 axis. METHODS: Osteoclast (OC) number was evaluated via TRAP staining, and serum CTXI, PINP, and ALP contents were tested by ELISA. Following identification of bone marrow mesenchymal stem cells (BMSCs), OC differentiation was induced by M-CSF and RANKL, followed by the detection of OC differentiation and the expression of bone resorption-related genes, DOT1L, miR-181, KAT2B, and SRSF1. RESULTS: Overexpressed DOT1L or miR-181 stimulated calcified nodule formation and increased alkaline phosphatase activity and osteogenic marker gene expression. KAT2B knockdown enhanced the osteogenic differentiation of BMSCs by reducing SRSF1 acetylation. The enhancement of OC differentiation induced by overexpressed SRSF1 was inhibited by simultaneous DOT1L or miR-181 overexpression. DOT1L suppressed OP development in vivo via the miR-181/KAT2B/SRSF1 axis. CONCLUSION: DOT1L overexpression slowed down bone loss and promoted bone formation via the miR-181/KAT2B/SRSF1 axis, thereby alleviating OP development.


Subject(s)
MicroRNAs , Osteoporosis , Humans , Osteogenesis/genetics , MicroRNAs/metabolism , Osteoporosis/genetics , Cell Differentiation/genetics , Cells, Cultured , Histone-Lysine N-Methyltransferase , Serine-Arginine Splicing Factors/genetics , p300-CBP Transcription Factors/metabolism
12.
Genomics ; 116(3): 110838, 2024 05.
Article in English | MEDLINE | ID: mdl-38537807

ABSTRACT

After epiphyseal fracture, the epiphyseal plate is prone to ischemia and hypoxia, leading to the formation of bone bridge and deformity. However, the exact mechanism controlling the bone bridge formation remains unclear. Notch/RBPJ signaling axis has been indicated to regulate angiogenesis and osteogenic differentiation. Our study aims to investigate the mechanism of bone bridge formation after epiphyseal plate injury, and to provide a theoretical basis for new therapeutic approaches to prevent the bone bridge formation. The expression of DLL4 and RBPJ was significantly up-regulated in HUVECs after ischemia and hypoxia treatment. Notch/RBPJ pathway positively regulated the osteogenic differentiation of BMSCs. HUVECs can induce osteogenic differentiation of BMSCs under ischemia and hypoxia. Notch/RBPJ pathway is involved in the regulation of the trans-epiphyseal bridge formation. Notch/RBPJ in HUVECs is associated with osteogenic differentiation of BMSCs and may participate in the regulation of the bone bridge formation across the epiphyseal plate.


Subject(s)
Cell Differentiation , Human Umbilical Vein Endothelial Cells , Immunoglobulin J Recombination Signal Sequence-Binding Protein , Neovascularization, Physiologic , Osteogenesis , Receptors, Notch , Signal Transduction , Humans , Human Umbilical Vein Endothelial Cells/metabolism , Receptors, Notch/metabolism , Receptors, Notch/genetics , Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism , Immunoglobulin J Recombination Signal Sequence-Binding Protein/genetics , Cell Hypoxia , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Cells, Cultured , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Angiogenesis
13.
J Struct Biol ; 216(2): 108096, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697586

ABSTRACT

The bone extracellular matrix consists of a highly organized collagen matrix that is mineralized with carbonated hydroxyapatite. Even though the structure and composition of bone have been studied extensively, the mechanisms underlying collagen matrix organization remain elusive. In this study, we used a 3D cell culture system in which osteogenic cells deposit and orient the collagen matrix that is subsequently mineralized. Using live fluorescence imaging combined with volume electron microscopy, we visualize the organization of the cells and collagen in the cell culture. We show that the osteogenically induced cells are organizing the collagen matrix during development. Based on the observation of tunnel-like structures surrounded by aligned collagen in the center of the culture, we propose that osteoblasts organize the deposited collagen during migration through the culture. Overall, we show that cell-matrix interactions are involved in collagen alignment during early-stage osteogenic differentiation and that the matrix is organized by the osteoblasts in the absence of osteoclast activity.


Subject(s)
Cell Differentiation , Collagen , Extracellular Matrix , Osteoblasts , Osteogenesis , Extracellular Matrix/metabolism , Osteoblasts/metabolism , Osteoblasts/cytology , Collagen/metabolism , Osteogenesis/physiology , Animals , Cell Culture Techniques, Three Dimensional/methods , Mice , Osteoclasts/metabolism , Osteoclasts/cytology
14.
J Cell Mol Med ; 28(9): e18287, 2024 May.
Article in English | MEDLINE | ID: mdl-38685675

ABSTRACT

Single immobilization theory cannot fully account for the extensive bone loss observed after spinal cord injury (SCI). Bone marrow mesenchymal stem cells (BMSCs) are crucial in bone homeostasis because they possess self-renewal capabilities and various types of differentiation potential. This study aimed to explore the molecular mechanism of long non-coding RNA H19 in osteoporosis after SCI and provide new research directions for existing prevention strategies. We used small interfering RNA to knockdown H19 expression and regulated miR-29b-2p expression using miR-29b-3p mimetics and inhibitors. Western blotting, real-time fluorescence quantitative PCR, Alizarin red staining, alkaline phosphatase staining and double-luciferase reporter gene assays were used to assess gene expression, osteogenic ability and binding sites. lncRNA H19 was upregulated in BMSCs from the osteoporosis group, whereas miR-29b-3p was downregulated. We identified the binding sites between miR-29b-3p and lncRNAs H19 and DKK1. H19 knockdown promoted BMSCs' osteogenic differentiation, whereas miR-29b-3p inhibition attenuated this effect. We discovered potential binding sites for miR-29b-3p in lncRNAs H19 and DKK1. Our findings suggest that long non-coding RNA H19 mediates BMSCs' osteogenic differentiation in osteoporosis after SCI through the miR-29b-3p/DKK1 axis and by directly inhibiting the ß-catenin signalling pathway.


Subject(s)
Intercellular Signaling Peptides and Proteins , Mesenchymal Stem Cells , Osteogenesis , RNA, Long Noncoding , Animals , Humans , Male , Rats , Cell Differentiation , Gene Expression Regulation , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , MicroRNAs/genetics , MicroRNAs/metabolism , Osteoporosis/genetics , Osteoporosis/pathology , Osteoporosis/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Spinal Cord Injuries/genetics , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology
15.
J Cell Mol Med ; 28(8): e18201, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38568078

ABSTRACT

Sensory nerves play a crucial role in maintaining bone homeostasis by releasing Semaphorin 3A (Sema3A). However, the specific mechanism of Sema3A in regulation of bone marrow mesenchymal stem cells (BMMSCs) during bone remodelling remains unclear. The tibial denervation model was used and the denervated tibia exhibited significantly lower mass as compared to sham operated bones. In vitro, BMMSCs cocultured with dorsal root ganglion cells (DRGs) or stimulated by Sema3A could promote osteogenic differentiation through the Wnt/ß-catenin/Nrp1 positive feedback loop, and the enhancement of osteogenic activity could be inhibited by SM345431 (Sema3A-specific inhibitor). In addition, Sema3A-stimulated BMMSCs or intravenous injection of Sema3A could promote new bone formation in vivo. To sum up, the coregulation of bone remodelling is due to the ageing of BMMSCs and increased osteoclast activity. Furthermore, the sensory neurotransmitter Sema3A promotes osteogenic differentiation of BMMSCs via Wnt/ß-catenin/Nrp1 positive feedback loop, thus promoting osteogenesis in vivo and in vitro.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Osteogenesis/genetics , Semaphorin-3A/genetics , Feedback , beta Catenin , Ganglia, Spinal , Neuropilin-1/genetics
16.
J Biol Chem ; 299(6): 104823, 2023 06.
Article in English | MEDLINE | ID: mdl-37187293

ABSTRACT

An imbalance of human mesenchymal stem cells (MSCs) adipogenic and osteogenic differentiation plays an important role in the pathogenesis of osteoporosis. Our previous study verified that Adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 1 (APPL1)/myoferlin deficiency promotes adipogenic differentiation of MSCs by blocking autophagic flux in osteoporosis. However, the function of APPL1 in the osteogenic differentiation of MSCs remains unclear. This study aimed to investigate the role of APPL1 in the osteogenic differentiation of MSCs in osteoporosis and the underlying regulatory mechanism. In this study, we demonstrated the downregulation of APPL1 expression in patients with osteoporosis and osteoporosis mice. The severity of clinical osteoporosis was negatively correlated with the expression of APPL1 in bone marrow MSCs. We found that APPL1 positively regulates the osteogenic differentiation of MSCs in vitro and in vivo. Moreover, RNA sequencing showed that the expression of MGP, an osteocalcin/matrix Gla family member, was significantly upregulated after APPL1 knockdown. Mechanistically, our study showed that reduced APPL1 impaired the osteogenic differentiation of mesenchymal stem cells by facilitating Matrix Gla protein expression to disrupt the BMP2 pathway in osteoporosis. We also evaluated the significance of APPL1 in promoting osteogenesis in a mouse model of osteoporosis. These results suggest that APPL1 may be an important target for the diagnosis and treatment of osteoporosis.


Subject(s)
Adaptor Proteins, Signal Transducing , Calcium-Binding Proteins , Mesenchymal Stem Cells , Osteoporosis , Animals , Humans , Mice , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Bone Morphogenetic Protein 2/genetics , Bone Morphogenetic Protein 2/metabolism , Cell Differentiation , Cells, Cultured , Membrane Proteins/metabolism , Mesenchymal Stem Cells/metabolism , Muscle Proteins/metabolism , Osteogenesis , Osteoporosis/metabolism , Calcium-Binding Proteins/metabolism , Matrix Gla Protein
17.
J Biol Chem ; 299(10): 105193, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37633334

ABSTRACT

Despite significant progress in our understanding of the molecular mechanism of mesenchymal stem cell (MSC) differentiation, less is known about the factors maintaining the stemness and plasticity of MSCs. Here, we show that the NFIB-MLL1 complex plays key roles in osteogenic differentiation and stemness of C3H10T1/2 MSCs. We find that depletion of either NFIB or MLL1 results in a severely hampered osteogenic potential and failed activation of key osteogenic transcription factors, such as Dlx5, Runx2, and Osx, following osteogenic stimuli. In addition, the NFIB-MLL1 complex binds directly to the promoter of Dlx5, and exogenous expression of Myc-Dlx5, but not the activation of either the BMP- or the Wnt-signaling pathway, is sufficient to restore the osteogenic potential of cells depleted of NFIB or MLL1. Moreover, chromatin immunoprecipitation (ChIP) and ChIP-sequencing analysis showed that the NFIB-MLL1 complex mediates the deposition of trimethylated histone H3K4 at both Dlx5 and Cebpa, key regulator genes that function at the early stages of osteogenic and adipogenic differentiation, respectively, in uncommitted C3H10T1/2 MSCs. Surprisingly, the depletion of either NFIB or MLL1 leads to decreased trimethylated histone H3K4 and results in elevated trimethylated histone H3K9 at those developmental genes. Furthermore, gene expression profiling and ChIP-sequencing analysis revealed lineage-specific changes in chromatin landscape and gene expression in response to osteogenic stimuli. Taken together, these data provide evidence for the hitherto unknown role of the NFIB-MLL1 complex in the maintenance and lineage-specific differentiation of C3H10T1/2 MSCs and support the epigenetic regulatory mechanism underlying the stemness and plasticity of MSCs.

18.
J Cell Physiol ; 239(3): e31062, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37357387

ABSTRACT

It has been known that periodontal ligament-associated protein-1 (PLAP-1/Asporin) not only inhibits cartilage formation in osteoarthritis, but it also influences the healing of skull defect. However, the effect and mechanism of PLAP-1/Asporin on the mutual regulation of osteoclasts and osteoblasts in periodontitis are not clear. In this study, we utilized a PLAP-1/Asporin gene knockout (KO) mouse model to research this unknown issue. We cultured mouse bone marrow mesenchymal stem cells with Porphyromonas gingivalis lipopolysaccharide (P.g. LPS) for osteogenic induction in vitro. The molecular mechanism of PLAP-1/Asporin in the regulation of osteoblasts was detected by immunoprecipitation, immunofluorescence, and inhibitors of signaling pathways. The results showed that the KO of PLAP-1/Asporin promoted osteogenic differentiation through transforming growth factor beta 1 (TGF-ß1)/Smad3 in inflammatory environments. We further found the KO of PLAP-1/Asporin inhibited osteoclast differentiation and promoted osteogenic differentiation through the TGF-ß1/Smad signaling pathway in an inflammatory coculture system. The experimental periodontitis model was established by silk ligation and the alveolar bone formation in PLAP-1/Asporin KO mice was promoted through TGF-ß1/Smad3 signaling pathway. The subcutaneous osteogenesis model in nude mice also confirmed that the KO of PLAP-1/Asporin promoted bone formation by the histochemical staining. In conclusion, PLAP-1/Asporin regulated the differentiation of osteoclasts and osteoblasts through TGF-ß1/Smad signaling pathway. The results of this study lay a theoretical foundation for the further study of the pathological mechanism underlying alveolar bone resorption, and the prevention and treatment of periodontitis.


Subject(s)
Extracellular Matrix Proteins , Osteoblasts , Osteoclasts , Osteogenesis , Periodontitis , Animals , Mice , Cell Differentiation/genetics , Cell Differentiation/physiology , Cells, Cultured , Mice, Knockout , Mice, Nude , Osteoblasts/cytology , Osteoclasts/cytology , Osteogenesis/genetics , Periodontal Ligament/metabolism , Periodontitis/genetics , Periodontitis/metabolism , Signal Transduction , Transforming Growth Factor beta1/metabolism , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Mesenchymal Stem Cells , Porphyromonas gingivalis , Lipopolysaccharides
19.
J Cell Physiol ; 239(5): e31211, 2024 May.
Article in English | MEDLINE | ID: mdl-38304971

ABSTRACT

Cataract, a leading cause of blindness, is characterised by lens opacification. Type 2 diabetes is associated with a two- to fivefold higher prevalence of cataracts. The risk of cataract formation increases with the duration of diabetes and the severity of hyperglycaemia. Hydroxyapatite deposition is present in cataractous lenses that could be the consequence of osteogenic differentiation and calcification of lens epithelial cells (LECs). We hypothesised that hyperglycaemia might promote the osteogenic differentiation of human LECs (HuLECs). Osteogenic medium (OM) containing excess phosphate and calcium with normal (1 g/L) or high (4.5 g/L) glucose was used to induce HuLEC calcification. High glucose accelerated and intensified OM-induced calcification of HuLECs, which was accompanied by hyperglycaemia-induced upregulation of the osteogenic markers Runx2, Sox9, alkaline phosphatase and osteocalcin, as well as nuclear translocation of Runx2. High glucose-induced calcification was abolished in Runx2-deficient HuLECs. Additionally, high glucose stabilised the regulatory alpha subunits of hypoxia-inducible factor 1 (HIF-1), triggered nuclear translocation of HIF-1α and increased the expression of HIF-1 target genes. Gene silencing of HIF-1α or HIF-2α attenuated hyperglycaemia-induced calcification of HuLECs, while hypoxia mimetics (desferrioxamine, CoCl2) enhanced calcification of HuLECs under normal glucose conditions. Overall, this study suggests that high glucose promotes HuLEC calcification via Runx2 and the activation of the HIF-1 signalling pathway. These findings may provide new insights into the pathogenesis of diabetic cataracts, shedding light on potential factors for intervention to treat this sight-threatening condition.


Subject(s)
Calcinosis , Cataract , Core Binding Factor Alpha 1 Subunit , Glucose , Hyperglycemia , Hypoxia-Inducible Factor 1 , Lens, Crystalline , Humans , Alkaline Phosphatase/metabolism , Alkaline Phosphatase/genetics , Calcinosis/etiology , Calcinosis/metabolism , Calcinosis/pathology , Cataract/etiology , Cataract/metabolism , Cataract/pathology , Cell Differentiation/drug effects , Cells, Cultured , Core Binding Factor Alpha 1 Subunit/metabolism , Core Binding Factor Alpha 1 Subunit/genetics , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Epithelial Cells/pathology , Glucose/metabolism , Hyperglycemia/complications , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Lens, Crystalline/metabolism , Lens, Crystalline/pathology , Osteocalcin/metabolism , Osteocalcin/genetics , Signal Transduction , SOX9 Transcription Factor/metabolism , SOX9 Transcription Factor/genetics , Hypoxia-Inducible Factor 1/genetics , Hypoxia-Inducible Factor 1/metabolism
20.
J Cell Physiol ; 239(6): e31283, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38651182

ABSTRACT

The long noncoding RNA (lncRNA) small nucleolar RNA host gene 1 (SNHG1) plays a crucial role in tumorigenesis and is frequently employed as a prognostic biomarker. However, its involvement in the osteogenic differentiation of oral stem cells, particularly human dental follicle stem cells (hDFSCs), remains unclear. Our investigation revealed that the absence of SNHG1 enhances the osteogenic differentiation of hDFSCs. Furthermore, the downregulation of SNHG1 induces autophagy in hDFSCs, leading to a reduction in intracellular oxidative stress levels. Notably, this effect is orchestrated through the epigenetic regulation of EZH2. Our study unveils a novel function of SNHG1 in governing the osteogenic differentiation of hDFSCs, offering fresh insights for an in-depth exploration of the molecular mechanisms underlying dental follicle development. These findings not only provide a foundation for advancing the understanding of SNHG1 but also present innovative perspectives for promoting the repair and regeneration of periodontal supporting tissue, ultimately contributing to the restoration of periodontal health and tooth function.


Subject(s)
Autophagy , Cell Differentiation , Dental Sac , Enhancer of Zeste Homolog 2 Protein , Osteogenesis , Oxidative Stress , RNA, Long Noncoding , Stem Cells , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Autophagy/genetics , Oxidative Stress/genetics , Osteogenesis/genetics , Cell Differentiation/genetics , Stem Cells/metabolism , Dental Sac/metabolism , Dental Sac/cytology , Enhancer of Zeste Homolog 2 Protein/metabolism , Enhancer of Zeste Homolog 2 Protein/genetics , Epigenesis, Genetic , Cells, Cultured , Gene Knockdown Techniques
SELECTION OF CITATIONS
SEARCH DETAIL