Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters

Publication year range
1.
Mol Cell ; 83(10): 1552-1572, 2023 05 18.
Article in English | MEDLINE | ID: mdl-37119811

ABSTRACT

PARPs catalyze ADP-ribosylation-a post-translational modification that plays crucial roles in biological processes, including DNA repair, transcription, immune regulation, and condensate formation. ADP-ribosylation can be added to a wide range of amino acids with varying lengths and chemical structures, making it a complex and diverse modification. Despite this complexity, significant progress has been made in developing chemical biology methods to analyze ADP-ribosylated molecules and their binding proteins on a proteome-wide scale. Additionally, high-throughput assays have been developed to measure the activity of enzymes that add or remove ADP-ribosylation, leading to the development of inhibitors and new avenues for therapy. Real-time monitoring of ADP-ribosylation dynamics can be achieved using genetically encoded reporters, and next-generation detection reagents have improved the precision of immunoassays for specific forms of ADP-ribosylation. Further development and refinement of these tools will continue to advance our understanding of the functions and mechanisms of ADP-ribosylation in health and disease.


Subject(s)
ADP-Ribosylation , Poly(ADP-ribose) Polymerases , Poly(ADP-ribose) Polymerases/metabolism , Protein Processing, Post-Translational , Adenosine Diphosphate Ribose/metabolism
2.
Mol Cell ; 81(4): 767-783.e11, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33333017

ABSTRACT

Chromatin is a barrier to efficient DNA repair, as it hinders access and processing of certain DNA lesions. ALC1/CHD1L is a nucleosome-remodeling enzyme that responds to DNA damage, but its precise function in DNA repair remains unknown. Here we report that loss of ALC1 confers sensitivity to PARP inhibitors, methyl-methanesulfonate, and uracil misincorporation, which reflects the need to remodel nucleosomes following base excision by DNA glycosylases but prior to handover to APEX1. Using CRISPR screens, we establish that ALC1 loss is synthetic lethal with homologous recombination deficiency (HRD), which we attribute to chromosome instability caused by unrepaired DNA gaps at replication forks. In the absence of ALC1 or APEX1, incomplete processing of BER intermediates results in post-replicative DNA gaps and a critical dependence on HR for repair. Hence, targeting ALC1 alone or as a PARP inhibitor sensitizer could be employed to augment existing therapeutic strategies for HRD cancers.


Subject(s)
Chromatin Assembly and Disassembly , DNA Helicases/metabolism , DNA-Binding Proteins/metabolism , Neoplasm Proteins/metabolism , Neoplasms, Experimental/metabolism , Nucleosomes/metabolism , Poly(ADP-ribose) Polymerases/metabolism , Animals , DNA Helicases/genetics , DNA Replication/drug effects , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , DNA-Binding Proteins/genetics , Homologous Recombination/drug effects , Mice , Mice, Knockout , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Neoplasms, Experimental/genetics , Nucleosomes/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerases/genetics
3.
Genes Dev ; 2020 Feb 06.
Article in English | MEDLINE | ID: mdl-32040441

ABSTRACT

Work on PARPs-a family of enzymes that catalyze ADP-ribosylation, a posttranslational modification of proteins-has resulted in major advances and reached important milestones. The past decade has seen new discoveries in areas well beyond the historical focus on DNA repair, which are having impacts on the understanding and treatment of human disease. This special focus section of Genes & Development includes seven reviews that highlight these discoveries and point the way forward for future advances in the field.

4.
Trends Biochem Sci ; 47(5): 390-402, 2022 05.
Article in English | MEDLINE | ID: mdl-34366182

ABSTRACT

Poly-ADP-ribose-polymerases (PARPs) are a family of 17 enzymes that regulate a diverse range of cellular processes in mammalian cells. PARPs catalyze the transfer of ADP-ribose from NAD+ to target molecules, most prominently amino acids on protein substrates, in a process known as ADP-ribosylation. Identifying the direct protein substrates of individual PARP family members is an essential first step for elucidating the mechanism by which PARPs regulate a particular pathway in cells. Two distinct chemical genetic (CG) strategies have been developed for identifying the direct protein substrates of individual PARP family members. In this review, we discuss the design principles behind these two strategies and how target identification has provided novel insight into the cellular function of individual PARPs and PARP-mediated ADP-ribosylation.


Subject(s)
ADP-Ribosylation , Poly(ADP-ribose) Polymerase Inhibitors , Adenosine Diphosphate Ribose/metabolism , Animals , Mammals , Poly(ADP-ribose) Polymerase Inhibitors/chemistry , Poly(ADP-ribose) Polymerases/chemistry , Poly(ADP-ribose) Polymerases/genetics , Poly(ADP-ribose) Polymerases/metabolism , Proteins/metabolism
5.
Trends Genet ; 38(8): 793-796, 2022 08.
Article in English | MEDLINE | ID: mdl-35491358

ABSTRACT

Proper function of structure-specific nucleases is key for faithful Okazaki fragment maturation (OFM) process completion. Deregulation of such nucleases leads to aberrant OFM and causes a spectrum of mutations, some of which may confer survival outcomes under specific stresses and serve as attractive targets for therapeutic intervention in human cancers.


Subject(s)
DNA Replication , DNA , DNA/genetics , DNA Polymerase III/genetics , Humans
6.
Expert Rev Mol Med ; 26: e21, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39375922

ABSTRACT

ADP-ribosylation (ADPRylation), which encompasses poly(ADP-ribosyl)ation and mono(ADP-ribosyl)ation, is an important post-translational modification catalysed by the poly(ADP-ribose) polymerase (PARP) enzyme superfamily. The process involves writers (PARPs) and erasers (ADP-ribose hydrolases), which work together to precisely regulate diverse cellular and molecular responses. Although the PARP-mediated synthesis of ADP-ribose (ADPr) has been well studied, ADPr degradation by degrading enzymes deserves further investigation. Nonetheless, recent studies have provided important new insights into the biology and functions of ADPr hydrolases. Notably, research has illuminated the significance of the poly(ADP-ribose) degradation pathway and its activation by the coordinated actions of poly(ADP-ribose) glycohydrolase and other ADPr hydrolases, which have been identified as key components of ADPRylation signalling networks. The degradation pathway has been proposed to play crucial roles in key cellular processes, such as DNA damage repair, chromatin dynamics, transcriptional regulation and cell death. A deep understanding of these ADPr erasing enzymes provides insights into the biological roles of ADPRylation in human health and disease aetiology and paves the road for the development of novel therapeutic strategies. This review article provides a summary of current knowledge about the biochemical and molecular functions of ADPr erasers and their physiological implications in human pathology.


Subject(s)
ADP-Ribosylation , Humans , Animals , Glycoside Hydrolases/metabolism , Adenosine Diphosphate Ribose/metabolism , Protein Processing, Post-Translational , Hydrolases/metabolism , Poly(ADP-ribose) Polymerases/metabolism , DNA Repair , Signal Transduction , Molecular Targeted Therapy
7.
Expert Rev Mol Med ; 26: e17, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39189367

ABSTRACT

ADP-ribosyltransferases of the PARP family encompass a group of enzymes with variegated regulatory functions in cells, ranging from DNA damage repair to the control of cell-cycle progression and immune response. Over the years, this knowledge has led to the use of PARP1/2 inhibitors as mainstay pharmaceutical strategies for the treatment of ovarian, pancreatic, prostate and breast cancers, holding mutations in genes encoding for proteins involved in the DNA repair mechanisms (synthetic lethality). Meanwhile, the last decade has witnessed significant progress in comprehending cellular pathways regulated by mono-ADP-ribosylation, with a huge effort in the development of novel selective compounds to inhibit those PARPs endowed with mono-ADP-ribosylation activity. This review focuses on the progress achieved in the cancer field, delving into most recent findings regarding the role of a subset of enzymes - the interferon-stimulated PARPs - in cancer progression.


Subject(s)
ADP-Ribosylation , Interferons , Neoplasms , Poly(ADP-ribose) Polymerase Inhibitors , Poly(ADP-ribose) Polymerases , Signal Transduction , Humans , Neoplasms/metabolism , Neoplasms/drug therapy , Neoplasms/pathology , Signal Transduction/drug effects , Interferons/metabolism , Poly(ADP-ribose) Polymerases/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Animals , DNA Repair
8.
Insect Mol Biol ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961541

ABSTRACT

Animal silk is economically important, while silk secretion is a complex and subtle mechanism regulated by many genes. We identified the poly (ADP-ribose) polymerase (PARP1) gene of the silkworm and successfully cloned its coding sequence (CDS) sequence. Using clustered regularly interspaced short palindromic repeat (CRISPR/Cas9) technology, we screened single guide RNA (sgRNA) with high knockout efficiency by cellular experiments and obtained PARP1 mutants by knocking out the PARP1 gene of the silkworm at the individual level. We found that the mutants mainly exhibited phenotypes such as smaller cocoon size and reduced cocoon shell rate than the wild type. We also detected the expression of silk protein genes in the mutant by quantitative real-time PCR (qPCR) and found that the expression of some silk protein genes was slightly down-regulated. Meanwhile, together with the results of transcriptomic analysis, we hypothesized that PARP1 may affect the synthesis of silk proteins, resulting in their failure to function properly. Our study may provide an important reference for future in-depth refinement of the molecular mechanism of silk protein expression in silk-producing animals, as well as a potential idea for future development of molecular breeding lines of silkworms to improve silk production.

9.
J Biol Chem ; 298(6): 102037, 2022 06.
Article in English | MEDLINE | ID: mdl-35595095

ABSTRACT

NAD+ is a versatile biomolecule acting as a master regulator and substrate in various cellular processes, including redox regulation, metabolism, and various signaling pathways. In this article, we concisely and critically review the role of NAD+ in mechanisms promoting genome maintenance. Numerous NAD+-dependent reactions are involved in the preservation of genome stability, the cellular DNA damage response, and other pathways regulating nucleic acid metabolism, such as gene expression and cell proliferation pathways. Of note, NAD+ serves as a substrate to ADP-ribosyltransferases, sirtuins, and potentially also eukaryotic DNA ligases, all of which regulate various aspects of DNA integrity, damage repair, and gene expression. Finally, we critically analyze recent developments in the field as well as discuss challenges associated with therapeutic actions intended to raise NAD+ levels.


Subject(s)
DNA , Genomic Instability , NAD , ADP Ribose Transferases/metabolism , DNA/chemistry , DNA Ligases/metabolism , NAD/metabolism , Signal Transduction , Sirtuins/metabolism
10.
Int J Mol Sci ; 24(9)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37175631

ABSTRACT

The World Health Organization has identified oncological diseases as one of the most serious health concerns of the current century. Current research on oncogenesis is focused on the molecular mechanisms of energy-biochemical reprogramming in cancer cell metabolism, including processes contributing to the Warburg effect and the pro-oncogenic and anti-oncogenic roles of sirtuins (SIRTs) and poly-(ADP-ribose) polymerases (PARPs). However, a clear understanding of the interaction between NAD+, SIRTs in cancer development, as well as their effects on carcinogenesis, has not been established, and literature data vary greatly. This work aims to provide a summary and structure of the available information on NAD+, SIRTs interactions in both stimulating and countering carcinogenesis, and to discuss potential approaches for pharmacological modulation of these interactions to achieve an anticancer effect.


Subject(s)
NAD , Sirtuins , Humans , NAD/metabolism , Sirtuins/metabolism , Poly(ADP-ribose) Polymerases/metabolism , Carcinogenesis
11.
Molecules ; 28(15)2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37570820

ABSTRACT

The identification of new targets to address unmet medical needs, better in a personalized way, is an urgent necessity. The introduction of PARP1 inhibitors into therapy, almost ten years ago, has represented a step forward this need being an innovate cancer treatment through a precision medicine approach. The PARP family consists of 17 members of which PARP1 that works by poly-ADP ribosylating the substrate is the sole enzyme so far exploited as therapeutic target. Most of the other members are mono-ADP-ribosylating (mono-ARTs) enzymes, and recent studies have deciphered their pathophysiological roles which appear to be very extensive with various potential therapeutic applications. In parallel, a handful of mono-ARTs inhibitors emerged that have been collected in a perspective on 2022. After that, additional very interesting compounds were identified highlighting the hot-topic nature of this research field and prompting an update. From the present review, where we have reported only mono-ARTs inhibitors endowed with the appropriate profile of pharmacological tools or drug candidate, four privileged scaffolds clearly stood out that constitute the basis for further drug discovery campaigns.


Subject(s)
ADP Ribose Transferases , Poly(ADP-ribose) Polymerases , Poly(ADP-ribose) Polymerases/chemistry , Drug Discovery , Precision Medicine
12.
J Reprod Dev ; 68(6): 345-354, 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36171094

ABSTRACT

Oocyte quality is the limiting factor in female fertility. It is well known that maternal nutrition plays a role in reproductive function, and manipulating nutrition to improve fertility in livestock has been common practice in the past, particularly with respect to negative energy balance in cattle. A deficiency in nicotinamide adenine dinucleotide (NAD+) production has been associated with increased incidences of miscarriage and congenital defects in humans and mice, while elevating NAD+ through dietary supplements in aged subjects improved oocyte quality and embryo development. NAD+ is consumed by Sirtuins and poly-ADP-ribose polymerases (PARPs) within the cell and thus need constant replenishment in order to maintain various cellular functions. Sirtuins and PARPs play important roles in oocyte maturation and embryo development, and their activation may prove beneficial to in vitro embryo production and livestock breeding programs. This review examines the roles of NAD+, Sirtuins and PARPs in aspects of fertility, providing insights into the potential use of NAD+-elevating treatments in livestock breeding and embryo production programs.


Subject(s)
Sirtuins , Animals , Cattle , Female , Humans , Mice , Energy Metabolism , NAD/metabolism , Oocytes/metabolism , Poly(ADP-ribose) Polymerases/metabolism , Sirtuins/metabolism
13.
Int J Mol Sci ; 23(17)2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36077221

ABSTRACT

Poly ADP-ribosylation (PARylation) is a post-translational modification process. Following the discovery of PARP-1, numerous studies have demonstrated the role of PARylation in the DNA damage and repair responses for cellular stress and DNA damage. Originally, studies on PARylation were confined to PARP-1 activation in the DNA repair pathway. However, the interplay between PARylation and DNA repair suggests that PARylation is important for the efficiency and accuracy of DNA repair. PARylation has contradicting roles; however, recent evidence implicates its importance in inflammation, metabolism, and cell death. These differences might be dependent on specific cellular conditions or experimental models used, and suggest that PARylation may play two opposing roles in cellular homeostasis. Understanding the role of PARylation in cellular function is not only important for identifying novel therapeutic approaches; it is also essential for gaining insight into the mechanisms of unexplored diseases. In this review, we discuss recent reports on the role of PARylation in mediating diverse cellular functions and homeostasis, such as DNA repair, inflammation, metabolism, and cell death.


Subject(s)
Poly ADP Ribosylation , Poly(ADP-ribose) Polymerases , DNA Repair , Humans , Inflammation , Poly ADP Ribosylation/genetics , Poly(ADP-ribose) Polymerase Inhibitors , Poly(ADP-ribose) Polymerases/genetics , Poly(ADP-ribose) Polymerases/metabolism
14.
J Neurovirol ; 27(1): 101-115, 2021 02.
Article in English | MEDLINE | ID: mdl-33405206

ABSTRACT

Despite improvements in antiretroviral therapy, human immunodeficiency virus type 1 (HIV-1)-associated neurocognitive disorders (HAND) remain prevalent in subjects undergoing therapy. HAND significantly affects individuals' quality of life, as well as adherence to therapy, and, despite the increasing understanding of neuropathogenesis, no definitive diagnostic or prognostic marker has been identified. We investigated transcriptomic profiles in frontal cortex tissues of Simian immunodeficiency virus (SIV)-infected Rhesus macaques sacrificed at different stages of infection. Gene expression was compared among SIV-infected animals (n = 11), with or without CD8+ lymphocyte depletion, based on detectable (n = 6) or non-detectable (n = 5) presence of the virus in frontal cortex tissues. Significant enrichment in activation of monocyte and macrophage cellular pathways was found in animals with detectable brain infection, independently from CD8+ lymphocyte depletion. In addition, transcripts of four poly (ADP-ribose) polymerases (PARPs) were up-regulated in the frontal cortex, which was confirmed by real-time polymerase chain reaction. Our results shed light on involvement of PARPs in SIV infection of the brain and their role in SIV-associated neurodegenerative processes. Inhibition of PARPs may provide an effective novel therapeutic target for HIV-related neuropathology.


Subject(s)
Cognition Disorders/virology , Frontal Lobe/metabolism , Frontal Lobe/virology , Poly(ADP-ribose) Polymerases/metabolism , Simian Acquired Immunodeficiency Syndrome/metabolism , Animals , Cognition Disorders/metabolism , Macaca mulatta , Male , Simian Acquired Immunodeficiency Syndrome/virology
15.
Neurochem Res ; 44(10): 2423-2434, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31065944

ABSTRACT

In this review, we summarize the available published information on the neuroprotective effects of increasing nicotinamide adenine dinucleotide (NAD+) levels in Huntington's disease models. We discuss the rationale of potential therapeutic benefit of administering nicotinamide riboside (NR), a safe and effective NAD+ precursor. We discuss the agonistic effect on the Sirtuin1-PGC-1α-PPAR pathway as well as Sirtuin 3, which converge in improving mitochondrial function, decreasing ROS production and ameliorating bioenergetics deficits. Also, we discuss the potential synergistic effect of increasing NAD+ combined with PARPs inhibitors, as a clinical therapeutic option not only in HD, but other neurodegenerative conditions.


Subject(s)
Neurodegenerative Diseases/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Poly (ADP-Ribose) Polymerase-1/metabolism , Sirtuins/metabolism , Animals , Humans , Mitochondria/metabolism , NAD/metabolism
16.
J Cell Sci ; 129(20): 3845-3858, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27587838

ABSTRACT

ADP-ribosylation by ADP-ribosyltransferases (ARTs) has a well-established role in DNA strand break repair by promoting enrichment of repair factors at damage sites through ADP-ribose interaction domains. Here, we exploit the simple eukaryote Dictyostelium to uncover a role for ADP-ribosylation in regulating DNA interstrand crosslink repair and redundancy of this pathway with non-homologous end-joining (NHEJ). In silico searches were used to identify a protein that contains a permutated macrodomain (which we call aprataxin/APLF-and-PNKP-like protein; APL). Structural analysis reveals that this permutated macrodomain retains features associated with ADP-ribose interactions and that APL is capable of binding poly(ADP-ribose) through this macrodomain. APL is enriched in chromatin in response to cisplatin treatment, an agent that induces DNA interstrand crosslinks (ICLs). This is dependent on the macrodomain of APL and the ART Adprt2, indicating a role for ADP-ribosylation in the cellular response to cisplatin. Although adprt2- cells are sensitive to cisplatin, ADP-ribosylation is evident in these cells owing to redundant signalling by the double-strand break (DSB)-responsive ART Adprt1a, promoting NHEJ-mediated repair. These data implicate ADP-ribosylation in DNA ICL repair and identify that NHEJ can function to resolve this form of DNA damage in the absence of Adprt2.


Subject(s)
Cross-Linking Reagents/metabolism , DNA Repair , DNA/metabolism , Dictyostelium/metabolism , Poly Adenosine Diphosphate Ribose/metabolism , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Chromatin/metabolism , Cisplatin/pharmacology , DNA Damage , DNA End-Joining Repair/drug effects , DNA Repair/drug effects , Dictyostelium/drug effects , Models, Molecular , Protein Binding/drug effects , Protein Domains , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism
17.
Biochem Soc Trans ; 46(6): 1681-1695, 2018 12 17.
Article in English | MEDLINE | ID: mdl-30420415

ABSTRACT

The poly(ADP-ribose) polymerase (PARP) superfamily of enzymes catalyses the ADP-ribosylation (ADPr) of target proteins by using nicotinamide adenine dinucleotide (NAD+) as a donor. ADPr reactions occur either in the form of attachment of a single ADP-ribose nucleotide unit on target proteins or in the form of ADP-ribose chains, with the latter called poly(ADP-ribosyl)ation. PARPs regulate many cellular processes, including the maintenance of genome stability and signal transduction. In this review, we focus on the PARP family members that possess the ability to modify proteins by poly(ADP-ribosyl)ation, namely PARP1, PARP2, Tankyrase-1, and Tankyrase-2. Here, we detail the cellular functions of PARP1 and PARP2 in the regulation of DNA damage response and describe the function of Tankyrases in Wnt-mediated signal transduction. Furthermore, we discuss how the understanding of these pathways has provided some major breakthroughs in the treatment of human cancer.


Subject(s)
Adenosine Diphosphate Ribose/metabolism , Neoplasms/metabolism , Poly(ADP-ribose) Polymerases/metabolism , Adenosine Diphosphate Ribose/genetics , Animals , DNA Damage/genetics , DNA Damage/physiology , Genomic Instability/genetics , Genomic Instability/physiology , Humans , Neoplasms/genetics , Poly(ADP-ribose) Polymerases/genetics
18.
J Cell Sci ; 126(Pt 15): 3452-61, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23750002

ABSTRACT

ADP-ribosylation of proteins at DNA lesions by ADP-ribosyltransferases (ARTs) is an early response to DNA damage. The best defined role of ADP-ribosylation in the DNA damage response is in repair of single strand breaks (SSBs). Recently, we initiated a study of how ADP-ribosylation regulates DNA repair in Dictyostelium and found that two ARTs (Adprt1b and Adprt2) are required for tolerance of cells to SSBs, and a third ART (Adprt1a) promotes nonhomologous end-joining (NHEJ). Here we report that disruption of adprt2 results in accumulation of DNA damage throughout the cell cycle following exposure to agents that induce base damage and DNA SSBs. Although ADP-ribosylation is evident in adprt2(-) cells exposed to methylmethanesulfonate (MMS), disruption of adprt1a and adprt2 in combination abolishes this response and further sensitises cells to this agent, indicating that in the absence of Adprt2, Adprt1a signals MMS-induced DNA lesions to promote resistance of cells to DNA damage. As a consequence of defective signalling of SSBs by Adprt2, Adprt1a is required to assemble NHEJ factors in chromatin, and disruption of the NHEJ pathway in combination with adprt2 increases sensitivity of cells to MMS. Taken together, these data indicate overlapping functions of different ARTs in signalling DNA damage, and illustrate a critical requirement for NHEJ in maintaining cell viability in the absence of an effective SSB response.


Subject(s)
ADP Ribose Transferases/metabolism , DNA Breaks, Single-Stranded , DNA End-Joining Repair , Poly(ADP-ribose) Polymerases/deficiency , ADP Ribose Transferases/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/physiology , Dictyostelium/genetics , Dictyostelium/metabolism , Dictyostelium/physiology , Enterobacter aerogenes/genetics , Enterobacter aerogenes/metabolism , Enterobacter aerogenes/physiology , Poly(ADP-ribose) Polymerases/genetics , Poly(ADP-ribose) Polymerases/metabolism , Signal Transduction
19.
Bioorg Med Chem Lett ; 25(21): 4770-4773, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26231158

ABSTRACT

The lack of inhibitors that are selective for individual poly-ADP-ribose polymerase (PARP) family members has limited our understanding of their roles in cells. Here, we describe a chemical genetics approach for generating selective inhibitors of an engineered variant of PARP10. We synthesized a series of C-7 substituted 3,4-dihydroisoquinolin-1(2H)-one (dq) analogues designed to selectively inhibit a mutant of PARP10 (LG-PARP10) that contains a unique pocket in its active site. A dq analogue containing a bromo at the C-7 position demonstrated a 10-fold selectivity for LG-PARP10 compared to its WT counterpart. This study provides a platform for the development of selective inhibitors of individual PARP family members that will be useful for decoding their cellular functions.


Subject(s)
Isoquinolines/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/chemistry , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerases/genetics , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/genetics , Catalytic Domain/drug effects , Dose-Response Relationship, Drug , Genetic Engineering , Humans , Isoquinolines/chemical synthesis , Isoquinolines/chemistry , Molecular Structure , Mutation , Poly(ADP-ribose) Polymerase Inhibitors/chemical synthesis , Poly(ADP-ribose) Polymerases/chemistry , Poly(ADP-ribose) Polymerases/metabolism , Proto-Oncogene Proteins/chemistry , Proto-Oncogene Proteins/metabolism , Structure-Activity Relationship
20.
Ageing Res Rev ; 98: 102347, 2024 07.
Article in English | MEDLINE | ID: mdl-38815933

ABSTRACT

Aging, a complex biological process, plays key roles the development of multiple disorders referred as aging-related diseases involving cardiovascular diseases, stroke, neurodegenerative diseases, cancers, lipid metabolism-related diseases. ADP-ribosylation is a reversible modification onto proteins and nucleic acids to alter their structures and/or functions. Growing evidence support the importance of ADP-ribosylation and ADP-ribosylation-associated enzymes in aging and age-related diseases. In this review, we summarized ADP-ribosylation-associated proteins including ADP-ribosyl transferases, the ADP-ribosyl hydrolyses and ADP-ribose binding domains. Furthermore, we outlined the latest knowledge about regulation of ADP-ribosylation in the pathogenesis and progression of main aging-related diseases, organism aging and cellular senescence, and we also speculated the underlying mechanisms to better disclose this novel molecular network. Moreover, we discussed current issues and provided an outlook for future research, aiming to revealing the unknown bio-properties of ADP-ribosylation, and establishing a novel therapeutic perspective in aging-related diseases and health aging via targeting ADP-ribosylation.


Subject(s)
ADP-Ribosylation , Aging , Humans , Aging/metabolism , Aging/physiology , ADP-Ribosylation/physiology , Animals , Cellular Senescence/physiology , Neurodegenerative Diseases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL