Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 249
Filter
Add more filters

Publication year range
1.
Immunity ; 52(4): 620-634.e6, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32268121

ABSTRACT

Innate lymphoid cells (ILCs) play an important role in the control and maintenance of barrier immunity. However, chronic activation of ILCs results in immune-mediated pathology. Here, we show that tissue-resident type 2 ILCs (ILC2s) display a distinct metabolic signature upon chronic activation. In the context of allergen-driven airway inflammation, ILC2s increase their uptake of both external lipids and glucose. Externally acquired fatty acids are transiently stored in lipid droplets and converted into phospholipids to promote the proliferation of ILC2s. This metabolic program is imprinted by interleukin-33 (IL-33) and regulated by the genes Pparg and Dgat1, which are both controlled by glucose availability and mTOR signaling. Restricting dietary glucose by feeding mice a ketogenic diet largely ablated ILC2-mediated airway inflammation by impairing fatty acid metabolism and the formation of lipid droplets. Together, these results reveal that pathogenic ILC2 responses require lipid metabolism and identify ketogenic diet as a potent intervention strategy to treat airway inflammation.


Subject(s)
Allergens/administration & dosage , Asthma/diet therapy , Diacylglycerol O-Acyltransferase/immunology , Diet, Ketogenic/methods , Interleukin-33/immunology , Lipid Droplets/metabolism , T-Lymphocyte Subsets/immunology , Alternaria/chemistry , Animals , Asthma/chemically induced , Asthma/immunology , Asthma/pathology , Cell Lineage/drug effects , Cell Lineage/genetics , Cell Lineage/immunology , Cytokines/administration & dosage , Diacylglycerol O-Acyltransferase/genetics , Disease Models, Animal , Fatty Acids/immunology , Fatty Acids/metabolism , Gene Expression Regulation , Glucose/immunology , Glucose/metabolism , Immunity, Innate , Interleukin-33/administration & dosage , Interleukin-33/genetics , Interleukins/administration & dosage , Lipid Droplets/immunology , Lung/drug effects , Lung/immunology , Lung/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , PPAR gamma/genetics , PPAR gamma/immunology , Papain/administration & dosage , Phospholipids/immunology , Phospholipids/metabolism , Primary Cell Culture , T-Lymphocyte Subsets/classification , T-Lymphocyte Subsets/drug effects , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/immunology , Thymic Stromal Lymphopoietin
2.
Article in English | MEDLINE | ID: mdl-39259162

ABSTRACT

Elevated glucocorticoids alter the skeletal muscle transcriptome to induce a myopathy characterized by muscle atrophy, muscle weakness, and decreased metabolic function. These effects are more likely to occur and be more severe in aged muscle. Resistance exercise can blunt development of glucocorticoid myopathy in young muscle, but the potential to oppose the signals initiating myopathy in aged muscle is unknown. To answer this, young (4-month-old) and aged (24-25-month-old) male C57BL/6 mice were randomized to receive either an intraperitoneal (IP) injection of dexamethasone (DEX; 2 mg/kg) or saline as a control. Two hours post-injections, tibialis anterior (TA) muscles of mice were subjected to unilateral high force contractions. Muscles were harvested four hours later. The glucocorticoid- and contraction-sensitive genes were determined by RNA sequencing. The number of glucocorticoid-sensitive genes was similar between young and aged muscle. Contractions opposed changes to more glucocorticoid-sensitive genes in aged muscle, with this outcome primarily occurring when hormone levels were elevated. Glucocorticoid-sensitive gene programs opposed by contractions were primarily related to metabolism in young mice and muscle size regulation and inflammation in aged mice. In silico analysis implied Peroxisome proliferator-activated receptor gamma-1 (PPARG) contributed to the contraction-induced opposition of glucocorticoid-sensitive genes in aged muscle. Increasing PPARG expression in the TA of aged mice using Adeno-associated virus serotype 9 partially counteracted the glucocorticoid-induced reduction in Runt-related transcription factor 1 (Runx1) mRNA content, recapitulating the effects observed by contractions. Overall, these data contribute to our understanding of the contractile regulation of the glucocorticoid transcriptome in aged skeletal muscle.

3.
Am J Physiol Endocrinol Metab ; 327(3): E357-E370, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39017680

ABSTRACT

Familial partial lipodystrophy 3 (FPLD3) is a rare genetic disorder caused by loss-of-function mutations in the PPARG gene, characterized by a selective absence of subcutaneous fat and associated metabolic complications. However, the molecular mechanisms of FPLD3 remain unclear. In this study, we recruited a 17-yr-old Chinese female with FPLD3 and her family, identifying a novel PPARG frameshift mutation (exon 4: c.418dup: p.R140Kfs*7) that truncates the PPARγ protein at the seventh amino acid, significantly expanding the genetic landscape of FPLD3. By performing next-generation sequencing of circular RNAs (circRNAs), microRNAs (miRNAs), and mRNAs in plasma exosomes, we discovered 59 circRNAs, 57 miRNAs, and 299 mRNAs were significantly altered in the mutation carriers compared with the healthy controls. Integration analysis highlighted that the circ_0001597-miR-671-5p pair and 18 mRNAs might be incorporated into the metabolic regulatory networks of the FPLD3 induced by the novel PPARG mutation. Functional annotation suggested that these genes were significantly enriched in glucose- and lipid metabolism-related pathways. Among the circRNA-miRNA-mRNA network, we identified two critical regulators, early growth response-1 (EGR1), a key transcription factor known for its role in insulin signaling pathways and lipid metabolism, and 1-acylglycerol-3-phosphate O-acyltransferase 3 (AGPAT3), which gets involved in the biosynthesis of triglycerides and lipolysis. Circ_0001597 regulates the expression of these genes through miR-671-5p, potentially contributing to the pathophysiology of FPLD3. Overall, this study clarified a circulating exosomal circRNA-miRNA-mRNA network in a FPLD3 family with a novel PPARG mutation, providing evidence for exploring promising biomarkers and developing novel therapeutic strategies for this rare genetic disorder.NEW & NOTEWORTHY Through the establishment of a ceRNA regulatory networks in a novel PPARG frameshift mutation c.418dup-induced FPLD3 pedigree, this study reveals that circ_0001597 may contribute to the pathophysiology of FPLD3 by sequestering miR-671-5p to regulate the expression of EGR1 and AGPAT3, pivotal genes situated in the triglyceride (TG) synthesis and lipolysis pathways. Current findings expand our molecular understanding of adipose tissue dysfunction, providing potential blood biomarkers and therapeutic avenues for lipodystrophy and associated metabolic complications.


Subject(s)
Exosomes , Frameshift Mutation , Lipodystrophy, Familial Partial , MicroRNAs , PPAR gamma , RNA, Circular , RNA, Messenger , Humans , Female , MicroRNAs/genetics , MicroRNAs/blood , PPAR gamma/genetics , RNA, Circular/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics , Adolescent , Lipodystrophy, Familial Partial/genetics , Exosomes/genetics , Exosomes/metabolism , Pedigree , Gene Regulatory Networks
4.
Oncologist ; 29(8): e1094-e1097, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38908022

ABSTRACT

HER2, encoded by the ERBB2 gene, is an important druggable driver of human cancer gaining increasing importance as a therapeutic target in urothelial carcinoma (UC). The genomic underpinnings of HER2 overexpression in ERBB2 nonamplified UC are poorly defined. To address this knowledge gap, we investigated 172 UC tumors from patients treated at the University of California San Francisco, using immunohistochemistry and next-generation sequencing. We found that GATA3 and PPARG copy number gains individually predicted HER2 protein expression independently of ERBB2 amplification. To validate these findings, we interrogated the Memorial Sloan Kettering/The Cancer Genome Atlas (MSK/TCGA) dataset and found that GATA3 and PPARG copy number gains individually predicted ERBB2 mRNA expression independently of ERBB2 amplification. Our findings reveal a potential link between the luminal marker HER2 and the key transcription factors GATA3 and PPARG in UC and highlight the utility of examining GATA3 and PPARG copy number states to identify UC tumors that overexpress HER2 in the absence of ERBB2 amplification. In summary, we found that an increase in copy number of GATA3 and PPARG was independently associated with higher ERBB2 expression in patient samples of UC. This finding provides a potential explanation for HER2 overexpression in UC tumors without ERBB2 amplification and a way to identify these tumors for HER2-targeted therapies.


Subject(s)
DNA Copy Number Variations , GATA3 Transcription Factor , PPAR gamma , Receptor, ErbB-2 , Aged , Female , Humans , Male , Middle Aged , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , GATA3 Transcription Factor/genetics , GATA3 Transcription Factor/metabolism , Gene Amplification , Gene Expression Regulation, Neoplastic , PPAR gamma/genetics , PPAR gamma/metabolism , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Urologic Neoplasms/genetics , Urologic Neoplasms/pathology
5.
Biol Reprod ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38832705

ABSTRACT

Following blastocyst hatching, ungulate embryos undergo a prolonged preimplantation period termed conceptus elongation. Conceptus elongation constitutes a highly susceptible period for embryonic loss and the embryonic requirements during this process are largely unknown, but multiple lipid compounds have been identified in the fluid nourishing the elongating conceptuses. Peroxisome proliferator-activated receptors (PPARs) mediate the signaling actions of prostaglandins and other lipids and, between them, PPARG has been pointed out to play a relevant role on conceptus elongation by a functional study that depleted PPARG in both uterus and conceptus. The objective of this study has been to determine if embryonic PPARG is required for bovine embryo development. To that aim, we have generated bovine PPARG KO embryos in vitro by two independent gene ablation strategies and assess their developmental ability. In vitro development to Day (D) 8 blastocyst was unaffected by PPARG ablation, as total, inner cell mass and trophectoderm cell numbers were similar between WT and KO D8 embryos. In vitro post-hatching development to D12 was also comparable between different genotypes, as embryo diameter, epiblast cell number, and embryonic disc formation and hypoblast migration rates were unaffected by the ablation. The development to tubular stages equivalent to E14 was assessed in vivo, following a heterologous embryo transfer experiment, observing that the development of extra-embryonic membranes and of the embryonic disc was not altered by PPARG ablation. In conclusion, PPARG ablation did not impaired bovine embryo development up to tubular stages.

6.
J Transl Med ; 22(1): 86, 2024 01 21.
Article in English | MEDLINE | ID: mdl-38246999

ABSTRACT

BACKGROUND: Obesity, a condition associated with the development of widespread cardiovascular disease, metabolic disorders, and other health complications, has emerged as a significant global health issue. Oleanolic acid (OA), a pentacyclic triterpenoid compound that is widely distributed in various natural plants, has demonstrated potential anti-inflammatory and anti-atherosclerotic properties. However, the mechanism by which OA fights obesity has not been well studied. METHOD: Network pharmacology was utilized to search for potential targets and pathways of OA against obesity. Molecular docking and molecular dynamics simulations were utilized to validate the interaction of OA with core targets, and an animal model of obesity induced by high-fat eating was then employed to confirm the most central of these targets. RESULTS: The network pharmacology study thoroughly examined 42 important OA targets for the treatment of obesity. The key biological processes (BP), cellular components (CC), and molecular functions (MF) of OA for anti-obesity were identified using GO enrichment analysis, including intracellular receptor signaling, intracellular steroid hormone receptor signaling, chromatin, nucleoplasm, receptor complex, endoplasmic reticulum membrane, and RNA polymerase II transcription Factor Activity. The KEGG/DAVID database enrichment study found that metabolic pathways, PPAR signaling pathways, cancer pathways/PPAR signaling pathways, insulin resistance, and ovarian steroidogenesis all play essential roles in the treatment of obesity and OA. The protein-protein interaction (PPI) network was used to screen nine main targets: PPARG, PPARA, MAPK3, NR3C1, PTGS2, CYP19A1, CNR1, HSD11B1, and AGTR1. Using molecular docking technology, the possible binding mechanism and degree of binding between OA and each important target were validated, demonstrating that OA has a good binding potential with each target. The molecular dynamics simulation's Root Mean Square Deviation (RMSD), and Radius of Gyration (Rg) further demonstrated that OA has strong binding stability with each target. Additional animal studies confirmed the significance of the core target PPARG and the core pathway PPAR signaling pathway in OA anti-obesity. CONCLUSION: Overall, our study utilized a multifaceted approach to investigate the value and mechanisms of OA in treating obesity, thereby providing a novel foundation for the identification and development of natural drug treatments.


Subject(s)
Cardiovascular Diseases , Oleanolic Acid , Animals , Molecular Docking Simulation , Network Pharmacology , Oleanolic Acid/pharmacology , Oleanolic Acid/therapeutic use , PPAR gamma
7.
J Autoimmun ; 146: 103214, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38648706

ABSTRACT

INTRODUCTION: Rheumatoid arthritis (RA) is a systemic inflammatory autoimmune disease characterized by joint inflammation and bone damage, that not only restricts patient activity but also tends to be accompanied by a series of complications, seriously affecting patient prognosis. Peroxisome proliferator-activated receptor gamma (PPARG), a receptor that controls cellular metabolism, regulates the function of immune cells and stromal cells. Previous studies have shown that PPARG is closely related to the regulation of inflammation. However, the role of PPARG in regulating the pathological processes of RA is poorly understood. MATERIALS AND METHODS: PPARG expression was examined in the synovial tissues and peripheral blood mononuclear cells (PBMCs) from RA patients and the paw of collagen-induced arthritis (CIA) model rats. Molecular biology experiments were designed to examine the effect of PPARG and cannabidiol (CBD) on RAW264.7 cells and CIA rats. RESULTS: The results reveal that PPARG accelerates reactive oxygen species (ROS) clearance by promoting autophagy, thereby inhibiting ROS-mediated macrophage polarization and NLRP3 inflammasome activation. Notably, CBD may be a promising candidate for understanding the mechanism by which PPARG regulates autophagy-mediated inflammation. CONCLUSIONS: Taken together, these findings indicate that PPARG may have a role for distinguishing between RA patients and healthy control, and for distinguishing RA activity; moreover, PPARG could be a novel pharmacological target for alleviating RA through the mediation of autophagy. CBD can act as a PPARG agonist that alleviates the inflammatory progression of RA.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Autophagy , Inflammation , PPAR gamma , Reactive Oxygen Species , Animals , Female , Humans , Male , Mice , Rats , Arthritis, Experimental/immunology , Arthritis, Experimental/metabolism , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/immunology , Autophagy/drug effects , Cannabidiol/pharmacology , Disease Models, Animal , Inflammasomes/metabolism , Inflammation/metabolism , Inflammation/immunology , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/immunology , Macrophages/immunology , Macrophages/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , PPAR gamma/metabolism , RAW 264.7 Cells , Reactive Oxygen Species/metabolism
8.
BMC Cancer ; 24(1): 234, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38378472

ABSTRACT

BACKGROUND: Peroxisome proliferator-activated receptor gamma (PPARG) is a member of the nuclear receptor family. It is involved in the regulation of adipogenesis, lipid metabolism, insulin sensitivity, vascular homeostasis and inflammation. In addition, PPARG agonists, known as thiazolidinediones, are well established in the treatment of type 2 diabetes mellitus. PPARGs role in cancer is a matter of debate, as pro- and anti-tumour properties have been described in various tumour entities. Currently, the specific role of PPARG in patients with colorectal cancer (CRC) is not fully understood. MATERIAL AND METHODS: The prognostic impact of PPARG expression was investigated by immunohistochemistry in a case-control study using a matched pair selection of CRC tumours (n = 246) with either distant metastases to the liver (n = 82), lung (n = 82) or without distant metastases (n = 82). Its effect on proliferation as well as the sensitivity to the chemotherapeutic drug 5-fluorouracil (5-FU) was examined after activation, inhibition, and transient gene knockdown of PPARG in the CRC cell lines SW403 and HT29. RESULTS: High PPARG expression was significantly associated with pulmonary metastasis (p = 0.019). Patients without distant metastases had a significantly longer overall survival with low PPARG expression in their tumours compared to patients with high PPARG expression (p = 0.045). In the pulmonary metastasis cohort instead, a trend towards longer survival was observed for patients with high PPARG expression in their tumour (p = 0.059). Activation of PPARG by pioglitazone and rosiglitazone resulted in a significant dose-dependent increase in proliferation of CRC cell lines. Inhibition of PPARG by its specific inhibitor GW9662 and siRNA-mediated knockdown of PPARG significantly decreased proliferation. Activating PPARG significantly increased the CRC cell lines sensitivity to 5-FU while its inhibition decreased it. CONCLUSION: The prognostic effect of PPARG expression depends on the metastasis localization in advanced CRC patients. Activation of PPARG increased malignancy associated traits such as proliferation in CRC cell lines but also increases sensitivity towards the chemotherapeutic agent 5-FU. Based on this finding, a combination therapy of PPARG agonists and 5-FU-based chemotherapy constitutes a promising strategy which should be further investigated.


Subject(s)
Colorectal Neoplasms , Diabetes Mellitus, Type 2 , Humans , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , PPAR gamma/agonists , Diabetes Mellitus, Type 2/drug therapy , Case-Control Studies , Cell Line, Tumor , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Cell Proliferation , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic
9.
Diabetes Obes Metab ; 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39171574

ABSTRACT

AIM: To assess the disease burden of familial partial lipodystrophy (FPLD) caused by LMNA (FPLD2) and PPARG (FPLD3) variants to augment the knowledge of these rare disorders characterized by selective fat loss and metabolic complications. MATERIALS AND METHODS: An observational longitudinal study, including 157 patients (FPLD2: 139 patients, mean age 46 ± 17 years, 70% women; FPLD3: 18 patients, mean age: 44 ± 17 years, 78% women) from 66 independent families in two countries (83 from Turkey and 74 from Spain), was conducted. RESULTS: Patients were diagnosed at a mean age of 39 ± 19 years, 20 ± 16 years after the first clinical signs appeared. Men reported symptoms later than women. Symptom onset was earlier in FPLD2. Fat loss was less prominent in FPLD3. In total, 92 subjects (59%) had diabetes (age at diagnosis: 34 ± 1 years). Retinopathy was more commonly detected in FPLD3 (P < .05). Severe hypertriglyceridaemia was more frequent among patients with FPLD3 (44% vs. 17%, P = .01). Hepatic steatosis was detected in 100 subjects (66%) (age at diagnosis: 36 ± 2 years). Coronary artery disease developed in 26 patients (17%) and 17 (11%) suffered from a myocardial infarction. Turkish patients had a lower body mass index, a higher prevalence of hepatic steatosis, greater triglyceride levels and a tendency towards a higher prevalence of coronary artery disease. A total of 17 patients died, with a mean time to death of 75 ± 3 years, which was shorter in the Turkish cohort (68 ± 2 vs. 83 ± 4 years, P = .01). Cardiovascular events were a major cause of death. CONCLUSIONS: Our analysis highlights severe organ complications in patients with FPLD, showing differences between genotypes and Mediterranean countries. FPLD3 presents a milder phenotype than FPLD2, but with comparable or even greater severity of metabolic disturbances.

10.
Lipids Health Dis ; 23(1): 76, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38468335

ABSTRACT

BACKGROUND: Atherosclerosis (AS) is a persistent inflammatory condition triggered and exacerbated by several factors including lipid accumulation, endothelial dysfunction and macrophages infiltration. Nobiletin (NOB) has been reported to alleviate atherosclerosis; however, the underlying mechanism remains incompletely understood. METHODS: This study involved comprehensive bioinformatic analysis, including multidatabase target prediction; GO and KEGG enrichment analyses for function and pathway exploration; DeepSite and AutoDock for drug binding site prediction; and CIBERSORT for immune cell involvement. In addition, target intervention was verified via cell scratch assays, oil red O staining, ELISA, flow cytometry, qRT‒PCR and Western blotting. In addition, by establishing a mouse model of AS, it was demonstrated that NOB attenuated lipid accumulation and the extent of atherosclerotic lesions. RESULTS: (1) Altogether, 141 potentially targetable genes were identified through which NOB could intervene in atherosclerosis. (2) Lipid and atherosclerosis, fluid shear stress and atherosclerosis may be the dominant pathways and potential mechanisms. (3) ALB, AKT1, CASP3 and 7 other genes were identified as the top 10 target genes. (4) Six genes, including PPARG, MMP9, SRC and 3 other genes, were related to the M0 fraction. (5) CD36 and PPARG were upregulated in atherosclerosis samples compared to the normal control. (6) By inhibiting lipid uptake in RAW264.7 cells, NOB prevents the formation of foam cell. (7) In RAW264.7 cells, the inhibitory effect of oxidized low-density lipoprotein on foam cells formation and lipid accumulation was closely associated with the PPARG signaling pathway. (8) In vivo validation showed that NOB significantly attenuated intra-arterial lipid accumulation and macrophage infiltration and reduced CD36 expression. CONCLUSIONS: Nobiletin alleviates atherosclerosis by inhibiting lipid uptake via the PPARG/CD36 pathway.


Subject(s)
Atherosclerosis , Flavones , PPAR gamma , Animals , Mice , PPAR gamma/genetics , PPAR gamma/metabolism , Atherosclerosis/drug therapy , Atherosclerosis/genetics , Atherosclerosis/metabolism , Macrophages , Foam Cells , Lipoproteins, LDL/pharmacology , CD36 Antigens/genetics , CD36 Antigens/metabolism
11.
Ecotoxicol Environ Saf ; 272: 116068, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38330871

ABSTRACT

The inflammatory response induced by fine particulate matter (PM2.5), a common class of air pollutants, is an important trigger for the development of pulmonary fibrosis. However, the specific mechanisms responsible for this phenomenon are yet to be fully understood. To investigate the mechanisms behind the onset and progression of lung fibrosis owing to PM2.5 exposure, both rats and human bronchial epithelial cells were subjected to varying concentrations of PM2.5. The involvement of the PPARG/HMGB1/NLRP3 signaling pathway in developing lung fibrosis caused by PM2.5 was validated through the utilization of a PPARG agonist (rosiglitazone), a PPARG inhibitor (GW9662), and an HMGB1 inhibitor (glycyrrhizin). These outcomes highlighted the downregulation of PPARG expression and activation of the HMGB1/NLRP3 signaling pathway triggered by PM2.5, thereby eliciting inflammatory responses and promoting pulmonary fibrosis. Additionally, PM2.5 exposure-induced DNA hypermethylation of PPARG-encoding gene promoter downregulated PPARG expression. Moreover, the DNA methyltransferase inhibitor 5-azacytidine mitigated the hypermethylation of the PPARG-encoding gene promoter triggered by PM2.5. In conclusion, the HMGB1/NLRP3 signaling pathway was activated in pulmonary fibrosis triggered by PM2.5 through the hypermethylation of the PPARG-encoding gene promoter.


Subject(s)
HMGB1 Protein , Pulmonary Fibrosis , Rats , Humans , Animals , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/genetics , Particulate Matter/toxicity , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , PPAR gamma , HMGB1 Protein/genetics , DNA
12.
Bull Exp Biol Med ; 176(4): 481-485, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38492104

ABSTRACT

We performed complex analysis of the association of polymorphic variants rs7903146 of the TCF7L2 gene and rs1801282 of the PPARG gene with metabolic parameters, insulin resistance, and ß-cell function in a group of patients with early signs of carbohydrate metabolism disturbances in a sample of Tyumen citizens. The study group consisted of 64 people (39 women, 25 men) aged 40-70 years. The distribution of frequencies of alleles and genotypes of the polymorphic markers rs7903146 and rs1801282 was analyzed and associations of carriage of major homozygous polymorphisms with various phenotypic traits were identified. Genotyping for polymorphic variants of TCF7L2 and PPARG genes was performed using allele-specific PCR with primers provided by Synthol company. Carriers of homozygotes for allele C of the polymorphic marker rs7903146 significantly differed from other respondents by a higher level of C-peptide, as well as by the presence of associations with waist circumference, elevated level of glycated hemoglobin, and arterial hypertension. Carriers of homozygotes for the allele C of the rs1801282 polymorphism of the PPARG gene differed from the group of carriers of homozygotes for the allele G and the group of heterozygote carriers by higher levels of triglycerides, as well as the presence of associations with waist circumference and the level of glycated hemoglobin.


Subject(s)
Diabetes Mellitus, Type 2 , PPAR gamma , Transcription Factor 7-Like 2 Protein , Female , Humans , Male , Carbohydrate Metabolism , Diabetes Mellitus, Type 2/genetics , Genotype , Glycated Hemoglobin/genetics , Polymorphism, Genetic/genetics , Polymorphism, Single Nucleotide/genetics , PPAR gamma/genetics , Transcription Factor 7-Like 2 Protein/genetics
13.
J Lipid Res ; 64(11): 100444, 2023 11.
Article in English | MEDLINE | ID: mdl-37730163

ABSTRACT

White adipose tissue regulation is key to metabolic health, yet still perplexing. The chief endocannabinoid anandamide metabolite, prostaglandin F2α ethanolamide (PGF2αEA), inhibits adipogenesis, that is, the formation of mature adipocytes. We observed that adipocyte progenitor cells-preadipocytes-following treatment with PGF2αEA yielded larger pellet sizes. Thus, we hypothesized that PGF2αEA might augment preadipocyte proliferation. Cell viability MTT and crystal violet assays, cell counting, and 5-bromo-2'-deoxyuridine incorporation in cell proliferation ELISA analyses confirmed our prediction. Additionally, we discovered that PGF2αEA promotes cell cycle progression through suppression of the expression of cell cycle inhibitors, p21 and p27, as shown by flow cytometry and qPCR. Enticingly, concentrations of this compound that showed no visible effect on cell proliferation or basal transcriptional activity of peroxisome proliferator-activated receptor gamma could, in contrast, reverse the anti-proliferative and peroxisome proliferator-activated receptor gamma-transcription activating effects of rosiglitazone (Rosi). MTT and luciferase reporter examinations supported this finding. The PGF2αEA pharmaceutical analog, bimatoprost, was also investigated and showed very similar effects. Importantly, we suggest the implication of the mitogen-activated protein kinase pathway in these effects, as they were blocked by the selective mitogen-activated protein kinase kinase inhibitor, PD98059. We propose that PGF2αEA is a pivotal regulator of white adipose tissue plasticity, acting as a regulator of the preadipocyte pool in adipose tissue.


Subject(s)
Endocannabinoids , PPAR gamma , Mice , Animals , Endocannabinoids/pharmacology , PPAR gamma/genetics , PPAR gamma/metabolism , Adipogenesis , Cell Proliferation , Prostaglandins , 3T3-L1 Cells , Cell Differentiation
14.
Diabetologia ; 66(8): 1481-1500, 2023 08.
Article in English | MEDLINE | ID: mdl-37171501

ABSTRACT

AIMS/HYPOTHESIS: Epidemiological studies have generated conflicting findings on the relationship between glucose-lowering medication use and cancer risk. Naturally occurring variation in genes encoding glucose-lowering drug targets can be used to investigate the effect of their pharmacological perturbation on cancer risk. METHODS: We developed genetic instruments for three glucose-lowering drug targets (peroxisome proliferator activated receptor γ [PPARG]; sulfonylurea receptor 1 [ATP binding cassette subfamily C member 8 (ABCC8)]; glucagon-like peptide 1 receptor [GLP1R]) using summary genetic association data from a genome-wide association study of type 2 diabetes in 148,726 cases and 965,732 controls in the Million Veteran Program. Genetic instruments were constructed using cis-acting genome-wide significant (p<5×10-8) SNPs permitted to be in weak linkage disequilibrium (r2<0.20). Summary genetic association estimates for these SNPs were obtained from genome-wide association study (GWAS) consortia for the following cancers: breast (122,977 cases, 105,974 controls); colorectal (58,221 cases, 67,694 controls); prostate (79,148 cases, 61,106 controls); and overall (i.e. site-combined) cancer (27,483 cases, 372,016 controls). Inverse-variance weighted random-effects models adjusting for linkage disequilibrium were employed to estimate causal associations between genetically proxied drug target perturbation and cancer risk. Co-localisation analysis was employed to examine robustness of findings to violations of Mendelian randomisation (MR) assumptions. A Bonferroni correction was employed as a heuristic to define associations from MR analyses as 'strong' and 'weak' evidence. RESULTS: In MR analysis, genetically proxied PPARG perturbation was weakly associated with higher risk of prostate cancer (for PPARG perturbation equivalent to a 1 unit decrease in inverse rank normal transformed HbA1c: OR 1.75 [95% CI 1.07, 2.85], p=0.02). In histological subtype-stratified analyses, genetically proxied PPARG perturbation was weakly associated with lower risk of oestrogen receptor-positive breast cancer (OR 0.57 [95% CI 0.38, 0.85], p=6.45×10-3). In co-localisation analysis, however, there was little evidence of shared causal variants for type 2 diabetes liability and cancer endpoints in the PPARG locus, although these analyses were likely underpowered. There was little evidence to support associations between genetically proxied PPARG perturbation and colorectal or overall cancer risk or between genetically proxied ABCC8 or GLP1R perturbation with risk across cancer endpoints. CONCLUSIONS/INTERPRETATION: Our drug target MR analyses did not find consistent evidence to support an association of genetically proxied PPARG, ABCC8 or GLP1R perturbation with breast, colorectal, prostate or overall cancer risk. Further evaluation of these drug targets using alternative molecular epidemiological approaches may help to further corroborate the findings presented in this analysis. DATA AVAILABILITY: Summary genetic association data for select cancer endpoints were obtained from the public domain: breast cancer ( https://bcac.ccge.medschl.cam.ac.uk/bcacdata/ ); and overall prostate cancer ( http://practical.icr.ac.uk/blog/ ). Summary genetic association data for colorectal cancer can be accessed by contacting GECCO (kafdem at fredhutch.org). Summary genetic association data on advanced prostate cancer can be accessed by contacting PRACTICAL (practical at icr.ac.uk). Summary genetic association data on type 2 diabetes from Vujkovic et al (Nat Genet, 2020) can be accessed through dbGAP under accession number phs001672.v3.p1 (pha004945.1 refers to the European-specific summary statistics). UK Biobank data can be accessed by registering with UK Biobank and completing the registration form in the Access Management System (AMS) ( https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access ).


Subject(s)
Breast Neoplasms , Colorectal Neoplasms , Diabetes Mellitus, Type 2 , Prostatic Neoplasms , Male , Humans , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/complications , Risk Factors , Glucose , Genome-Wide Association Study , PPAR gamma/genetics , Breast Neoplasms/genetics , Prostatic Neoplasms/complications , Colorectal Neoplasms/genetics , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide/genetics
15.
Am J Physiol Heart Circ Physiol ; 324(6): H866-H880, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37083466

ABSTRACT

The transmembrane protein 43 (TMEM43/LUMA) p.S358L mutation causes arrhythmogenic cardiomyopathy named as ARVC5, a fully penetrant disease with high risk of ventricular arrhythmias, sudden death, and heart failure. Male gender and vigorous exercise independently predicted deleterious outcome. Our systems genetics analysis revealed the importance of Tmem43 for cardiac and metabolic pathways associated with elevated lipid absorption from small intestine. This study sought to delineate gender-specific cardiac, intestinal, and metabolic phenotypes in vivo and investigate underlying pathophysiological mechanisms of S358L mutation. Serial echocardiography, surface electrocardiography (ECG), treadmill running, and body EchoMRI have been used in knock-in heterozygous (Tmem43WT/S358L), homozygous (Tmem43S358L), and wildtype (Tmem43WT) littermate mice. Electron microscopy, histology, immunohistochemistry, transcriptome, and protein analysis have been performed in cardiac and intestinal tissues. Systolic dysfunction was apparent in 3-mo-old Tmem43S358L and 6-mo-old Tmem43WT/S358L mutants. Both mutant lines displayed intolerance to acute stress at 6 mo of age, arrhythmias, fibro-fatty infiltration, and subcellular abnormalities in the myocardium. Microarray analysis found significantly differentially expressed genes between left ventricular (LV) and right ventricular (RV) myocardium. Mutants displayed diminished PPARG activities and significantly reduced TMEM43 and ß-catenin expression in the heart, whereas junctional plakoglobin (JUP) translocated into nuclei of mutant cardiomyocytes. Conversely, elongated villi, fatty infiltration, and overexpression of gut epithelial proliferation markers, ß-catenin and Ki-67, were evident in small intestine of mutants. We defined Tmem43 S358L-induced pathological effects on cardiac and intestinal homeostasis via distinctly disturbed WNT-ß-catenin and PPARG signaling thereby contributing to ARVC5 pathophysiology. Results suggest that cardiometabolic assessment in mutation carriers may be important for predictive and personalized care.NEW & NOTEWORTHY This manuscript describes the findings of our investigation of cardiac, small intestine, and metabolic features of Tmem43-S358L mouse model. By investigating interorgan pathologies, we uncovered multiple mechanisms of the S358L-induced disease, and these unique mechanisms likely appear to contribute to the disease pathogenesis. We hope our findings are important and novel and open new avenues in the hunting for additional diagnostic and therapeutic targets in subjects carrying TMEM43 mutation.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia , beta Catenin , Animals , Male , Mice , Arrhythmias, Cardiac/metabolism , Arrhythmogenic Right Ventricular Dysplasia/genetics , Arrhythmogenic Right Ventricular Dysplasia/diagnosis , beta Catenin/metabolism , Homeostasis , Intestine, Small , Mutation , Myocytes, Cardiac/metabolism , PPAR gamma/metabolism
16.
Anal Biochem ; 675: 115214, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37353066

ABSTRACT

Fructus Choerospondiatis (FC), a Mongolian medicine, was mainly used in Mongolian medical theory for the treatment of coronary heart disease (CHD). Nonetheless, the main components and mechanisms of action of FC in the treatment of coronary artery disease have not been studied clearly. AIM OF THE STUDY: The aim of this study is to identify the components of FC and analyze the pathways affected by the targets of these components to probe into the potential mechanisms of action of FC on coronary heart disease. MATERIALS AND METHODS: Identification of compounds in FC employing high performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (HPLC-QTOF-MS) method, then further investigate the network pharmacology and molecular docking to obtain potential targets and elucidate the potential mechanism of action of FC in the therapy of CHD. Experimental validation was established to verify the mechanism of FC in vitro. RESULTS: 21 FC components were identified and 65 overlapping targets were gained. In addition, these ingredients regulated AMPK and PPAR signaling pathway by 65 target genes including IL6, AKT1 and PPARg, etc. Molecular docking displayed that the binding ability of the key target PPARg to FC components turned out to be better. Experimental validation proved that FC treatment decreased the expression of PPARg (p < 0.05) compare with model group, which may be involved in the PPAR signaling pathway. CONCLUSIONS: This study was the first to elucidate the mechanism of action of components of FC for the treatment of CHD using network pharmacology. It alleviated CHD by inhibiting the expression of PPARg to attenuate hypoxia/reoxygenation injury, and the results give a basis for elucidating the molecular mechanism of action of FC for the treatment of coronary heart disease.


Subject(s)
Coronary Disease , Drugs, Chinese Herbal , Humans , Molecular Docking Simulation , Network Pharmacology , PPAR gamma , Coronary Disease/drug therapy , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use
17.
Mol Cell Probes ; 71: 101926, 2023 10.
Article in English | MEDLINE | ID: mdl-37567321

ABSTRACT

BACKGROUND: Non-alcohol fatty liver disease (NAFLD) is the most prevalent hepatopathy in China, with few effective cures currently. This work aimed to confirm the effect of DHM in vivo/vitro and explore the potential mechanism based on a network pharmacology-based approach. METHODS: The rats were fed using a high-fat diet (HFD) to accumulate lipid. DHM at different concentrations was used to treat the HFD rats. The serum total cholesterol (TC), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) were detected using ELISA kits. The target genes of DHM against NAFLD were screened by online databases. Then, the cytotoxicity of DHM in primary hepatocytes and HepG2 cells was determined by MTT reagent. qRT-PCR was used to quantify the expression level of PPAGR and CASP3 mRNA. Cell apoptosis and intracellular triglyceride (TG) were detected. RESULTS: HFD diet increased rat liver weight/body weight ratio, serum TC, ALT, and AST. But DHM treatment can reduce these elevated indicators. DHM targeted 14 potential genes in NAFLD. PPARG and CASP3 were two hub genes for DHM against NAFLD, with score factor coefficients of -7.1 and -6.8 kcal/mol. DHM reduced the increased PPARG mRNA level and intracellular TG induced by palmitic acid. DHM can reduce the increased CASP3 mRNA level and cell apoptosis induced by palmitic acid. CONCLUSION: This work demonstrates a mechanism of DHM that alleviates lipid metabolism disorder and cell apoptosis for the treatment of NAFLD, evidencing the potential application of DHM in NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Rats , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Liver/metabolism , PPAR gamma/metabolism , Palmitic Acid/metabolism , Palmitic Acid/pharmacology , Caspase 3/metabolism , Network Pharmacology , Lipid Metabolism/genetics , Triglycerides/metabolism
18.
Bioorg Med Chem ; 78: 117130, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36542958

ABSTRACT

PPAR gamma (PPARG) is a ligand activated transcription factor that regulates genes involved in inflammation, bone biology, lipid homeostasis, as well as a master regulator of adipogenesis and a potential lineage driver of luminal bladder cancer. While PPARG agonists lead to transcriptional activation of canonical target genes, inverse agonists have the opposite effect through inducing a transcriptionally repressive complex leading to repression of canonical target gene expression. While many agonists have been described and tested clinically, inverse agonists offer an underexplored avenue to modulate PPARG biology in vivo. Current inverse agonists lack favorable in vivo properties; herein we describe the discovery and characterization of a series of orally bioavailable 4-chloro-6-fluoroisophthalamides as covalent PPARG inverse-agonists, BAY-5516, BAY-5094, and BAY-9683. Structural studies of this series revealed distinct pre- and post-covalent binding positions, which led to the hypothesis that interactions in the pre-covalent conformation are primarily responsible for driving affinity, while interactions in the post-covalent conformation are more responsible for cellular functional effects by enhancing PPARG interactions with its corepressors. The need to simultaneously optimize for two distinct states may partially explain the steep SAR observed. Exquisite selectivity was achieved over related nuclear receptors in the subfamily due in part to a covalent warhead with low reactivity through an SNAr mechanism in addition to the specificity gained through covalent binding to a reactive cysteine uniquely positioned within the PPARG LBD. BAY-5516, BAY-5094, and BAY-9683 lead to pharmacodynamic regulation of PPARG target gene expression in vivo comparable to known inverse agonist SR10221 and represent new tools for future in vivo studies to explore their potential utility for treatment of disorders of hyperactivated PPARG including luminal bladder cancer and other disorders.


Subject(s)
PPAR gamma , Urinary Bladder Neoplasms , Humans , PPAR gamma/agonists , Drug Inverse Agonism , PPAR-gamma Agonists , Gene Expression Regulation
19.
Int J Med Sci ; 20(4): 468-481, 2023.
Article in English | MEDLINE | ID: mdl-37057206

ABSTRACT

Diabetic wound is one of the most common and serious complications of diabetes, which is characterized by abnormal number and quality of wound repair related cells. Previous studies have shown that human endothelial progenitor cells derived exosomes (EPCs-EXO) can promote diabetic wound healing through modulating vascular endothelial cell function. The purpose of this study was to investigate the biological effects and molecular mechanisms of EPCs-EXO on diabetic wound healing. The regulation of EPCs-EXO on human immortalized epidermal cell line HaCaT in high glucose (HG) environment was evaluated. Our data showed that EPCs-EXO promoted the proliferation, migration, while inhibited apoptosis of HaCaTs challenged by HG via elevating miR-182-5p expression level in vitro. Skin wound healing was significantly enhanced by EPCs-EXO in diabetic mice. Moreover, bioinformatics analyses and luciferase reporter assay indicated that exosomal miR-182-5p was bound to PPARG 3' UTR sequence and inhibited the expression of PPARG. Collectively, our findings provided a new role of EPCs-EXO in the clinical treatment of diabetic skin wounds. Diabetic wound is one of the most common and serious complications of diabetes, which is characterized by abnormal number and quality of wound repair related cells. Previous studies have shown that human endothelial progenitor cells derived exosomes (EPCs-EXO) can promote diabetic wound healing through modulating vascular endothelial cell function. The purpose of this study was to investigate the biological effects and molecular mechanisms of EPCs-EXO on diabetic wound healing. The regulation of EPCs-EXO on human immortalized epidermal cell line HaCaT in high glucose (HG) environment was evaluated. Our data showed that EPCs-EXO promoted the proliferation, migration, while inhibited apoptosis of HaCaTs challenged by HG via elevating miR-182-5p expression level in vitro. Skin wound healing was significantly enhanced by EPCs-EXO in diabetic mice. Moreover, bioinformatics analyses and luciferase reporter assay indicated that exosomal miR-182-5p was bound to PPARG 3' UTR sequence and inhibited the expression of PPARG. Collectively, our findings provided a new role of EPCs-EXO in the clinical treatment of diabetic skin wounds.


Subject(s)
Endothelial Progenitor Cells , Exosomes , MicroRNAs , PPAR gamma , Skin Ulcer , Humans , HaCaT Cells , Male , Animals , Mice , Mice, Inbred C57BL , Wound Healing , MicroRNAs/therapeutic use , PPAR gamma/metabolism , Diabetes Mellitus, Experimental , Wounds and Injuries , Skin Ulcer/therapy
20.
Endocr J ; 70(1): 69-76, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36171144

ABSTRACT

Familial partial lipodystrophy (FPLD) 3 is a rare genetic disorder caused by peroxisome proliferator-activated receptor γ gene (PPARG) mutations. Most cases have been reported in Western patients. Here, we describe a first pedigree of FPLD 3 in Japanese. The proband was a 51-year-old woman. She was diagnosed with fatty liver at age 32 years, dyslipidemia at age 37 years, and diabetes mellitus at age 41 years. Her body mass index was 18.5 kg/m2, and body fat percentage was 19.2%. On physical examination, she had less subcutaneous fat in the upper limbs than in other sites. On magnetic resonance imaging, atrophy of subcutaneous adipose tissue was seen in the upper limbs and lower legs. Fasting serum C-peptide immunoreactivity was high (3.4 ng/mL), and the plasma glucose disappearance rate was low (2.07%/min) on an insulin tolerance test, both suggesting apparent insulin resistance. The serum total adiponectin level was low (2.3 µg/mL). Mild fatty liver was seen on abdominal computed tomography. On genetic analysis, a P495L mutation in PPARG was identified. The same mutation was also seen in her father, who had non-obese diabetes mellitus, and FPLD 3 was diagnosed. Modest increases in body fat and serum total adiponectin were seen with pioglitazone treatment. Attention should be paid to avoid overlooking lipodystrophy syndromes even in non-obese diabetic patients if they show features of insulin resistance.


Subject(s)
Diabetes Mellitus , Insulin Resistance , Lipodystrophy, Familial Partial , Humans , Female , Adult , Middle Aged , Lipodystrophy, Familial Partial/drug therapy , Lipodystrophy, Familial Partial/genetics , Lipodystrophy, Familial Partial/diagnosis , PPAR gamma/genetics , Pioglitazone/therapeutic use , Insulin Resistance/genetics , Adiponectin , East Asian People , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL