Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Cell Biochem ; 119(9): 7319-7327, 2018 09.
Article in English | MEDLINE | ID: mdl-29761841

ABSTRACT

Castration-resistant prostate cancers (CRPC) that occur after the failure of androgen-blocking therapies cause most of the deaths in prostate cancer (PCa) patients. In a previous study we identified that PRKAR2B expression is upregulated in CRPC and possesses potentials to develop CRPC. Here we further investigated the underlying mechanism of PRKAR2B in regulating prostate cancer metastasis. We established an androgen-independent LNCaPcell line (LNCaP-AI), and investigated the function of PRKAR2B on regulating cell invasion in vitro and in vivo. We found that PRKAR2B expression was markedly increased in LNCaP-AI cells and metastatic CRPC (mCRPC) tissues compared to LNCaP cells and primary PCa specimens, respectively. PRKAR2B level was significantly correlated with the Gleason score and lymph nodes metastasis in PCa. In vitro, PRKAR2B overexpression promoted cell invasion, whereas knockdown of PRKAR2B in CRPC cells inhibited cell invasion. PRKAR2B overexpression also promoted tumor metastasis in vivo. PRKAR2B resulted in a decreased expression of E-cadherin and an increased expression of Vimentin, N-cadherin, Fibronectin, indicating that PRKAR2B induced epithelial-mesenchymal transition (EMT). PRKAR2B activated Wnt/ß-catenin signaling in CRPC cells. More important, inhibition of Wnt/ß-catenin attenuated PRKAR2B-induced EMT and cancer cells invasion. Our results provided novel insights to PRKAR2B-driven CRPC cell invasion and indicated that PRKAR2B might be served as a potential target for CRPC therapy.


Subject(s)
Cyclic AMP-Dependent Protein Kinase RIIbeta Subunit/metabolism , Epithelial-Mesenchymal Transition , Neoplasm Metastasis/physiopathology , Prostatic Neoplasms, Castration-Resistant/metabolism , Wnt Signaling Pathway , Aged , Animals , Antigens, CD/metabolism , Cadherins/metabolism , China , Disease Models, Animal , Fibronectins/metabolism , Hospitals, University , Humans , Male , Mice, Inbred BALB C , Mice, Nude , Middle Aged , Neoplasm Grading , Neoplasm Invasiveness/physiopathology , PC-3 Cells , Up-Regulation , Vimentin/metabolism
2.
Cell Physiol Biochem ; 45(5): 2009-2020, 2018.
Article in English | MEDLINE | ID: mdl-29518769

ABSTRACT

BACKGROUND/AIMS: Cyclic adenosine monophosphate (cAMP)-dependent type 2 regulatory subunit beta (Prkar2b) is a regulatory isoform of cAMP-dependent protein kinase (PKA), which is the primary target for cAMP actions. In oocytes, PKA and the pentose phosphate pathway (PPP) have important roles during the germinal vesicle (GV) stage arrest of development. Although the roles of the PKA signal pathway have been studied in the development of oocyte, there has been no report on the function of PRKAR2B, a key regulator of PKA. METHODS: Using reverse transcription polymerase chain reaction (RT-PCR), quantitative real-time PCR (qRT-PCR), immunohistochemistry, and immunofluorescence, we determined the relative expression of Prkar2b in various tissues, including ovarian follicles, during oocyte maturation. Prkar2b-interfering RNA (RNAi) microinjection was conducted to confirm the effect of Prkar2b knockdown, and immunofluorescence, qRT-PCR, and time-lapse video microscopy were used to analyze Prkar2b-deficient oocytes. RESULTS: Prkar2b is strongly expressed in the ovarian tissues, particularly in the growing follicle. During oocyte maturation, the highest expression of Prkar2b was during metaphase I (MI), with a significant decrease at metaphase II (MII). RNAi-mediated Prkar2b suppression resulted in MI-stage arrest during oocyte development, and these oocytes exhibited abnormal spindle formation and chromosome aggregation. Expression of other members of the PKA family (except for Prkaca) were decreased, and the majority of the PPP factors were also reduced in Prkar2b-deficient oocytes. CONCLUSION: These results suggest that Prkar2b is closely involved in the maturation of oocytes by controlling spindle formation and PPP-mediated metabolism.


Subject(s)
Cyclic AMP-Dependent Protein Kinase RIIbeta Subunit/metabolism , RNA Interference , Animals , Cyclic AMP-Dependent Protein Kinase RIIbeta Subunit/antagonists & inhibitors , Cyclic AMP-Dependent Protein Kinase RIIbeta Subunit/genetics , Cyclic AMP-Dependent Protein Kinases/genetics , Cyclic AMP-Dependent Protein Kinases/metabolism , Female , Metaphase , Mice , Mice, Inbred ICR , Microscopy, Fluorescence , Microscopy, Video , Oocytes/growth & development , Oocytes/metabolism , Oogenesis , Ovarian Follicle/metabolism , Ovarian Follicle/pathology , RNA, Double-Stranded/metabolism , Real-Time Polymerase Chain Reaction , Time-Lapse Imaging
3.
Hum Psychopharmacol ; 29(4): 330-5, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24737441

ABSTRACT

OBJECTIVE: Antipsychotics are effective in treating schizophrenia symptoms. However, the use of clozapine and olanzapine in particular are associated with significant weight gain. Mouse and human studies suggest that the protein kinase cAMP-dependent regulatory type II beta (PRKAR2B) gene may be involved in energy metabolism, and there is evidence that it is associated with clozapine's effects on triglyceride levels. We aimed at assessing PRKAR2B's role in antipsychotic-induced weight gain in schizophrenia patients. METHODS: DNA samples from adult schizophrenia or schizoaffective disorder patients of mixed ancestry were genotyped, and weight gain was assessed. We analyzed 16 tag single-nucleotide polymorphisms across the PRKAR2B gene in a Caucasian subset treated either with clozapine or olanzapine (N = 99). Linear regression based on an additive model was performed with the inclusion of relevant covariates. RESULTS: Normalized per cent weight change was analyzed, revealing that patients with the minor allele at rs9656135 had a mean weight increase of 4.1%, whereas patients without this allele had an increase of 3.4%. This association is not significant after correcting for multiple testing. CONCLUSIONS: Because of limited power, PRKAR2B's role in antipsychotic-induced weight gain is unclear, but biological evidence suggests that PRKAR2B may be involved. Further research in larger sample sizes is warranted.


Subject(s)
Antipsychotic Agents/adverse effects , Cyclic AMP-Dependent Protein Kinase RIIbeta Subunit/genetics , Polymorphism, Single Nucleotide , Weight Gain/drug effects , Weight Gain/genetics , Adolescent , Adult , Aged , Alleles , Antipsychotic Agents/therapeutic use , Benzodiazepines/adverse effects , Benzodiazepines/therapeutic use , Clozapine/adverse effects , Clozapine/therapeutic use , Female , Genetic Predisposition to Disease , Genotyping Techniques , Humans , Linkage Disequilibrium , Male , Middle Aged , Olanzapine , Psychotic Disorders/drug therapy , Psychotic Disorders/genetics , Schizophrenia/drug therapy , Schizophrenia/genetics , White People/genetics , Young Adult
4.
Genes Dis ; 11(3): 101087, 2024 May.
Article in English | MEDLINE | ID: mdl-38292203

ABSTRACT

Capsular contracture is a prevalent and severe complication that affects the postoperative outcomes of patients who receive silicone breast implants. At present, prosthesis replacement is the major treatment for capsular contracture after both breast augmentation procedures and breast reconstruction following breast cancer surgery. However, the mechanism(s) underlying breast capsular contracture remains unclear. This study aimed to identify the biological features of breast capsular contracture and reveal the potential underlying mechanism using RNA sequencing. Sample tissues from 12 female patients (15 breast capsules) were divided into low capsular contracture (LCC) and high capsular contracture (HCC) groups based on the Baker grades. Subsequently, 41 lipid metabolism-related genes were identified through enrichment analysis, and three of these genes were identified as candidate genes by SVM-RFE and LASSO algorithms. We then compared the proportions of the 22 types of immune cells between the LCC and HCC groups using a CIBERSORT analysis and explored the correlation between the candidate hub features and immune cells. Notably, PRKAR2B was positively correlated with the differentially clustered immune cells, which were M1 macrophages and follicular helper T cells (area under the ROC = 0.786). In addition, the expression of PRKAR2B at the mRNA or protein level was lower in the HCC group than in the LCC group. Potential molecular mechanisms were identified based on the expression levels in the high and low PRKAR2B groups. Our findings indicate that PRKAR2B is a novel diagnostic biomarker for breast capsular contracture and might also influence the grade and progression of capsular contracture.

5.
mSphere ; 8(2): e0052622, 2023 04 20.
Article in English | MEDLINE | ID: mdl-36847534

ABSTRACT

MicroRNAs (miRNAs) are small noncoding RNAs that can play critical roles in regulating various cellular processes, including during many parasitic infections. Here, we report a regulatory role for miR-34c-3p in cAMP-independent regulation of host cell protein kinase A (PKA) activity in Theileria annulata-infected bovine leukocytes. We identified prkar2b (cAMP-dependent protein kinase A type II-beta regulatory subunit) as a novel miR-34c-3p target gene and demonstrate how infection-induced upregulation of miR-34c-3p repressed PRKAR2B expression to increase PKA activity. As a result, the disseminating tumorlike phenotype of T. annulata-transformed macrophages is enhanced. Finally, we extend our observations to Plasmodium falciparum-parasitized red blood cells, where infection-induced augmentation in miR-34c-3p levels led to a drop in the amount of prkar2b mRNA and increased PKA activity. Collectively, our findings represent a novel cAMP-independent way of regulating host cell PKA activity in infections by Theileria and Plasmodium parasites. IMPORTANCE Small microRNA levels are altered in many diseases, including those caused by parasites. Here, we describe how infection by two important animal and human parasites, Theileria annulata and Plasmodium falciparum, induce changes in infected host cell miR-34c-3p levels to regulate host cell PKA kinase activity by targeting mammalian prkar2b. Infection-induced changes in miR-34c-3p levels provide a novel epigenetic mechanism for regulating host cell PKA activity independent of fluxes in cAMP to both aggravate tumor dissemination and improve parasite fitness.


Subject(s)
MicroRNAs , Theileria annulata , Humans , Cattle , Animals , Theileria annulata/genetics , Theileria annulata/metabolism , MicroRNAs/genetics , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Cyclic AMP-Dependent Protein Kinases/genetics , Mammals , Cyclic AMP-Dependent Protein Kinase RIIbeta Subunit
6.
Comput Struct Biotechnol J ; 21: 1292-1311, 2023.
Article in English | MEDLINE | ID: mdl-36817960

ABSTRACT

Transcriptome analysis of head and neck squamous cell carcinoma (HNSCC) has been pivotal to comprehending the convoluted biology of HNSCC tumors. MAPKAPK2 or MK2 is a critical modulator of the mRNA turnover of crucial genes involved in HNSCC progression. However, MK2-centric transcriptome profiles of tumors are not well known. This study delves into HNSCC progression with MK2 at the nexus to delineate the biological relevance and intricate crosstalk of MK2 in the tumor milieu. We performed next-generation sequencing-based transcriptome profiling of HNSCC cells and xenograft tumors to ascertain mRNA expression profiles in MK2-wild type and MK2-knockdown conditions. The findings were validated using gene expression assays, immunohistochemistry, and transcript turnover studies. Here, we identified a pool of crucial MK2-regulated candidate genes by annotation and differential gene expression analyses. Regulatory network and pathway enrichment revealed their significance and involvement in the HNSCC pathogenesis. Additionally, 3'-UTR-based filtering recognized important MK2-regulated downstream target genes and validated them by nCounter gene expression assays. Finally, immunohistochemistry and transcript stability studies revealed the putative role of MK2 in regulating the transcript turnover of IGFBP2, MUC4, and PRKAR2B in HNSCC. Conclusively, MK2-regulated candidate genes were identified in this study, and their plausible involvement in HNSCC pathogenesis was elucidated. These genes possess investigative values as targets for diagnosis and therapeutic interventions for HNSCC.

7.
Biomed Pharmacother ; 124: 109863, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31986411

ABSTRACT

The cyclic adenosine monophosphate (cAMP)-activated protein kinase A (PKA) pathway is profoundly implicated in Prostate cancer (PCa) progression. Previously, we showed that PRKAR2B, the type II-beta regulatory subunit of PKA, is highly expressed in castration-resistant prostate cancer (CRPC) and can induce epithelial-mesenchymal transition by activating Wnt/ß-catenin signaling in PCa cells. However, the molecular mechanism of dysregulated PRKAR2B expression pattern is still largely unknown. In this study, we found that the mutation, copy number alteration, and methylation status of PRKAR2B gene have no correlation with its expression level in PCa. Then, we identified two microRNAs (miR-200b-3p and miR-200c-3p) to be critical regulators of PRKAR2B expression in PCa. Notably, miR-200b-3p and miR-200c-3p expression were significantly downregulated in metastatic CRPC and negatively correlated with the expression level of PRKAR2B in PCa tissues. Moreover, we characterized X-Box Binding Protein 1 (XBP1) as a key transcription factor responsible for PRKAR2B expression in PCa. Importantly, miR-200b-3p/200c-3p or XBP1 knockdown inhibited PCa cell proliferation and promoted cell apoptosis and these inhibitory roles could be largely restored by PRKAR2B, suggesting that PRKAR2B is a functional mediator of miR-200b-3p, miR-200c-3p, and XBP1 in PCa. Collectively, our study firstly identified miR-200b-3p/200c-3p and XBP1 as the critical upstream regulators of PRKAR2B in PCa and provided novel insights to PRKAR2B-driven PCa progression.


Subject(s)
Cyclic AMP-Dependent Protein Kinase RIIbeta Subunit/genetics , MicroRNAs/genetics , Prostatic Neoplasms/genetics , X-Box Binding Protein 1/genetics , Apoptosis/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Disease Progression , Down-Regulation , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Male , Prostatic Neoplasms/pathology
8.
Oncotarget ; 8(4): 6114-6129, 2017 Jan 24.
Article in English | MEDLINE | ID: mdl-28008150

ABSTRACT

Castration-resistant prostate cancer (CRPC) is an advanced form of prostate cancer. Despite some progresses have been made, the mechanism of CRPC development is still largely unknown, including the genes involved in its development have not been well defined. Here, we identifiedPRKAR2B to be a gene over-expressingin castration-resistant prostate cancer by analyzing the different online databases. Followed functional validation experiments showed that PRKAR2B promoted CRPC cell proliferation and invasion, and inhibited CRPC cell apoptosis. Whole genome transcriptome and GO enrichment analyses of the knock-down of PRKAR2B in CRPC cells showed that PRKAR2B mainly accelerated cell cycle biological process and modulated multiple cell cycle genes, such as CCNB1, MCM2, PLK1 and AURKB. Our study firstly identified PRKAR2B as a novel oncogenic gene involved in CRPC development and suggested it is a promising target for the future investigation and the treatment of CRPC.


Subject(s)
Cell Cycle Proteins/genetics , Cyclic AMP-Dependent Protein Kinase RIIbeta Subunit/genetics , Gene Expression Profiling/methods , Prostatic Neoplasms, Castration-Resistant/genetics , Animals , Apoptosis , Cell Line, Tumor , Cell Proliferation , Disease Models, Animal , Gene Expression Regulation, Neoplastic , Humans , Male , Mice , Neoplasm Invasiveness , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL