Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
Add more filters

Publication year range
1.
Cell ; 175(5): 1289-1306.e20, 2018 11 15.
Article in English | MEDLINE | ID: mdl-30454647

ABSTRACT

Obesity is a major driver of cancer, especially hepatocellular carcinoma (HCC). The prevailing view is that non-alcoholic steatohepatitis (NASH) and fibrosis or cirrhosis are required for HCC in obesity. Here, we report that NASH and fibrosis and HCC in obesity can be dissociated. We show that the oxidative hepatic environment in obesity inactivates the STAT-1 and STAT-3 phosphatase T cell protein tyrosine phosphatase (TCPTP) and increases STAT-1 and STAT-3 signaling. TCPTP deletion in hepatocytes promoted T cell recruitment and ensuing NASH and fibrosis as well as HCC in obese C57BL/6 mice that normally do not develop NASH and fibrosis or HCC. Attenuating the enhanced STAT-1 signaling prevented T cell recruitment and NASH and fibrosis but did not prevent HCC. By contrast, correcting STAT-3 signaling prevented HCC without affecting NASH and fibrosis. TCPTP-deletion in hepatocytes also markedly accelerated HCC in mice treated with a chemical carcinogen that promotes HCC without NASH and fibrosis. Our studies reveal how obesity-associated hepatic oxidative stress can independently contribute to the pathogenesis of NASH, fibrosis, and HCC.


Subject(s)
Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Non-alcoholic Fatty Liver Disease/pathology , Obesity/pathology , STAT1 Transcription Factor/metabolism , STAT3 Transcription Factor/metabolism , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Carcinoma, Hepatocellular/metabolism , Diet, High-Fat , Disease Models, Animal , Hepatocytes/metabolism , Humans , Liver/metabolism , Liver/pathology , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Liver Neoplasms/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/metabolism , Oxidative Stress , Protein Tyrosine Phosphatase, Non-Receptor Type 2/deficiency , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism , Signal Transduction
2.
Cell Mol Life Sci ; 81(1): 329, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090270

ABSTRACT

Decidualisation of the endometrium is a key event in early pregnancy, which enables embryo implantation. Importantly, the molecular processes impairing decidualisation in obese mothers are yet to be characterised. We hypothesise that impaired decidualisation in obese mice is mediated by the upregulation of leptin modulators, the suppressor of cytokine signalling 3 (SOCS3) and the protein tyrosine phosphatase non-receptor type 2 (PTPN2), together with the disruption of progesterone (P4)-signal transducer and activator of transcription (STAT3) signalling. After feeding mice with chow diet (CD) or high-fat diet (HFD) for 16 weeks, we confirmed the downregulation of P4 and oestradiol (E2) steroid receptors in decidua from embryonic day (E) 6.5 and decreased proliferation of stromal cells from HFD. In vitro decidualised mouse endometrial stromal cells (MESCs) and E6.5 deciduas from the HFD showed decreased expression of decidualisation markers, followed by the upregulation of SOCS3 and PTPN2 and decreased phosphorylation of STAT3. In vivo and in vitro leptin treatment of mice and MESCs mimicked the results observed in the obese model. The downregulation of Socs3 and Ptpn2 after siRNA transfection of MESCs from HFD mice restored the expression level of decidualisation markers. Finally, DIO mice placentas from E18.5 showed decreased labyrinth development and vascularisation and fetal growth restricted embryos. The present study revealed major defects in decidualisation in obese mice, characterised by altered uterine response to E2 and P4 steroid signalling. Importantly, altered hormonal response was associated with increased expression of leptin signalling modulators SOCS3 and PTPN2. Elevated levels of SOCS3 and PTPN2 were shown to molecularly affect decidualisation in obese mice, potentially disrupting the STAT3-PR regulatory molecular hub.


Subject(s)
Decidua , Fetal Growth Retardation , Leptin , Placenta , Signal Transduction , Animals , Female , Mice , Pregnancy , Decidua/metabolism , Decidua/pathology , Diet, High-Fat/adverse effects , Fetal Growth Retardation/metabolism , Fetal Growth Retardation/pathology , Leptin/metabolism , Mice, Inbred C57BL , Mice, Obese , Obesity/metabolism , Obesity/pathology , Placenta/metabolism , Progesterone/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics , STAT3 Transcription Factor/metabolism , Stromal Cells/metabolism , Suppressor of Cytokine Signaling 3 Protein/metabolism , Suppressor of Cytokine Signaling 3 Protein/genetics
3.
FASEB J ; 37(8): e23085, 2023 08.
Article in English | MEDLINE | ID: mdl-37462502

ABSTRACT

Endoplasmic reticulum (ER) stress is closely associated with atherosclerosis (AS). Nevertheless, the regulatory mechanism of ER stress in endothelial cells during AS progression is unclear. Here, the role and regulatory mechanism of DNA (cytosine-5-)- methyltransferase 3 beta (DNMT3B) in ER stress during AS progression were investigated. ApoE-/- mice were fed with high fat diet to construct AS model in vivo. HE and Masson staining were performed to analyze histopathological changes and collagen deposition. HUVECs stimulated by ox-LDL were used as AS cellular model. Cell apoptosis was examined using flow cytometry. DCFH-DA staining was performed to examine ROS level. The levels of pro-inflammatory cytokines were assessed using ELISA. In addition, MSP was employed to detect PTPN2 promoter methylation level. Our results revealed that DNMT3B and FGFR3 were significantly upregulated in AS patient tissues, whereas PTPN2 was downregulated. PTPN2 overexpression attenuate ox-LDL-induced ER stress, inflammation and apoptosis in HUVECs and ameliorated AS symptoms in vivo. PTPN2 could suppress FGFR3 expression in ox-LDL-treated HUVECs, and FGFR3 knockdown inhibited ER stress to attenuate ox-LDL-induced endothelial cell apoptosis. DNMT3B could negatively regulate PTPN2 expression and positively FGFR2 expression in ox-LDL-treated HUVECs; DNMT3B activated FGFR2 expression by increasing PTPN2 promoter methylation level. DNMT3B downregulation repressed ox-LDL-induced ER stress, inflammation and cell apoptosis in endothelial cells, which was reversed by PTPN2 silencing. DNMT3B activated FGFR3-mediated ER stress by increasing PTPN2 promoter methylation level and suppressed its expression, thereby boosting ER stress to facilitate AS progression.


Subject(s)
Atherosclerosis , MicroRNAs , Animals , Humans , Mice , Apoptosis , Atherosclerosis/genetics , Atherosclerosis/metabolism , Endoplasmic Reticulum Stress , Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Inflammation/metabolism , Lipoproteins, LDL/metabolism , Methylation , MicroRNAs/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism , DNA Methyltransferase 3B
4.
Cell Biochem Funct ; 42(2): e3947, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38379221

ABSTRACT

Psoriasis is a recurrent and protracted disease that severely impacts the patient's physical and mental health. Thus, there is an urgent need to explore its pathogenesis to identify therapeutic targets. The expression level of protein tyrosine phosphatase nonreceptor type 2 (PTPN2) was analyzed by immunohistochemistry techniques in psoriatic tissues and imiquimod-induced psoriatic mouse models. PTPN2 and signal transducer and activator of transcription 3 (STAT3) were overexpressed or silenced in human keratinocytes or an interleukin (IL)-6-induced psoriasis HaCaT cell model using overexpression plasmid transfection or small interfering RNA technology in vitro, and the effects of PTPN2 on STAT3, HaCaT cell function, and autophagy levels were investigated using reverse transcription-quantitative polymerase chain reaction, Western blot, Cell Counting Kit 8, 5-ethynyl-20-deoxyuridine, flow cytometry, and transmission electron microscopy. PTPN2 expression was found to be significantly downregulated in psoriatic tissues. Then, the in vitro antipsoriatic properties of PTPN2 were investigated in an IL-6-induced psoriasis-like cell model, and the results demonstrated that inhibition of keratinocyte proliferation by PTPN2 may be associated with elevated STAT3 dephosphorylation and autophagy levels. These findings provide novel insights into the mechanisms of autophagy in psoriatic keratinocytes and may be essential for developing new therapeutic strategies to improve inflammatory homeostasis in psoriatic patients.


Subject(s)
Psoriasis , STAT3 Transcription Factor , Animals , Humans , Mice , Cell Line , Cell Proliferation , Keratinocytes/metabolism , Keratinocytes/pathology , Phosphoric Monoester Hydrolases/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 2/pharmacology , Psoriasis/drug therapy , STAT3 Transcription Factor/metabolism
5.
J Nanobiotechnology ; 22(1): 346, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898493

ABSTRACT

Chemoresistance remains a significant challenge for effective breast cancer treatment which leads to cancer recurrence. CRISPR-directed gene editing becomes a powerful tool to reduce chemoresistance by reprogramming the tumor microenvironment. Previous research has revealed that Chinese herbal extracts have significant potential to overcome tumor chemoresistance. However, the therapeutic efficacy is often limited due to their poor tumor targeting and in vivo durability. Here we have developed a tumor microenvironment responsive nanoplatform (H-MnO2(ISL + DOX)-PTPN2@HA, M(I + D)PH) for nano-herb and CRISPR codelivery to reduce chemoresistance. Synergistic tumor inhibitory effects were achieved by the treatment of isoliquiritigenin (ISL) with doxorubicin (DOX), which were enhanced by CRISPR-based gene editing to target protein tyrosine phosphatase non-receptor type 2 (PTPN2) to initiate long-term immunotherapy. Efficient PTPN2 depletion was observed after treatment with M(I + D)PH nanoparticles, which resulted in the recruitment of intratumoral infiltrating lymphocytes and an increase of proinflammatory cytokines in the tumor tissue. Overall, our nanoparticle platform provides a diverse technique for accomplishing synergistic chemotherapy and immunotherapy, which offers an effective treatment alternative for malignant neoplasms.


Subject(s)
Doxorubicin , Immunotherapy , Tumor Microenvironment , Tumor Microenvironment/drug effects , Animals , Immunotherapy/methods , Doxorubicin/pharmacology , Humans , Mice , Cell Line, Tumor , Female , Mice, Inbred BALB C , Nanoparticles/chemistry , Breast Neoplasms/therapy , Breast Neoplasms/drug therapy , Gene Editing/methods , CRISPR-Cas Systems , Manganese Compounds/chemistry , Drug Resistance, Neoplasm/drug effects , Drug Delivery Systems , Clustered Regularly Interspaced Short Palindromic Repeats , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Oxides
6.
Diabetologia ; 66(8): 1544-1556, 2023 08.
Article in English | MEDLINE | ID: mdl-36988639

ABSTRACT

AIMS/HYPOTHESIS: TNF-α plays a role in pancreatic beta cell loss in type 1 diabetes mellitus. In clinical interventions, TNF-α inhibition preserves C-peptide levels in early type 1 diabetes. In this study we evaluated the crosstalk of TNF-α, as compared with type I IFNs, with the type 1 diabetes candidate gene PTPN2 (encoding protein tyrosine phosphatase non-receptor type 2 [PTPN2]) in human beta cells. METHODS: EndoC-ßH1 cells, dispersed human pancreatic islets or induced pluripotent stem cell (iPSC)-derived islet-like cells were transfected with siRNAs targeting various genes (siCTRL, siPTPN2, siJNK1, siJNK3 or siBIM). Cells were treated for 48 h with IFN-α (2000 U/ml) or TNF-α (1000 U/ml). Cell death was evaluated using Hoechst 33342 and propidium iodide staining. mRNA levels were assessed by quantitative reverse transcription PCR (qRT-PCR) and protein expression by immunoblot. RESULTS: PTPN2 silencing sensitised beta cells to cytotoxicity induced by IFN-α and/or TNF-α by 20-50%, depending on the human cell model utilised; there was no potentiation between the cytokines. We silenced c-Jun N-terminal kinase (JNK)1 or Bcl-2-like protein 2 (BIM), and this abolished the proapoptotic effects of IFN-α, TNF-α or the combination of both after PTPN2 inhibition. We further observed that PTPN2 silencing increased TNF-α-induced JNK1 and BIM phosphorylation and that JNK3 is necessary for beta cell resistance to IFN-α cytotoxicity. CONCLUSIONS/INTERPRETATION: We show that the type 1 diabetes candidate gene PTPN2 is a key regulator of the deleterious effects of TNF-α in human beta cells. It is conceivable that people with type 1 diabetes carrying risk-associated PTPN2 polymorphisms may particularly benefit from therapies inhibiting TNF-α.


Subject(s)
Diabetes Mellitus, Type 1 , Insulin-Secreting Cells , Humans , Tumor Necrosis Factor-alpha/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 2/pharmacology , Cytokines/metabolism , Cell Death , Insulin-Secreting Cells/metabolism , Interferon-alpha/pharmacology
7.
J Biol Chem ; 298(12): 102655, 2022 12.
Article in English | MEDLINE | ID: mdl-36328244

ABSTRACT

T-cell protein tyrosine phosphatase (TC-PTP) is a negative regulator of T-cell receptor and oncogenic receptor tyrosine kinase signaling and implicated in cancer and autoimmune disease. TC-PTP activity is modulated by an intrinsically disordered C-terminal region (IDR) and suppressed in cells under basal conditions. In vitro structural studies have shown that the dynamic reorganization of IDR around the catalytic domain, driven by electrostatic interactions, can lead to TC-PTP activity inhibition; however, the process has not been studied in cells. Here, by assessing a mutant (378KRKRPR383 mutated into 378EAAAPE383, called TC45E/A) with impaired tail-PTP domain interaction, we obtained evidence that the downmodulation of TC-PTP enzymatic activity by the IDR occurs in cells. However, we found that the regulation of TC-PTP by the IDR is only recapitulated in vitro when crowding polymers that mimic the intracellular environment are present in kinetic assays using a physiological phosphopeptide. Our FRET-based assays in vitro and in cells confirmed that the effect of the mutant correlates with an impairment of the intramolecular inhibitory remodeling of TC-PTP by the IDR. This work presents an early example of the allosteric regulation of a protein tyrosine phosphatase being controlled by the cellular environment and provides a framework for future studies and targeting of TC-PTP function.


Subject(s)
Protein Tyrosine Phosphatase, Non-Receptor Type 2 , Signal Transduction , Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism , Allosteric Regulation , Signal Transduction/physiology , Phosphorylation
8.
Mol Carcinog ; 62(8): 1176-1190, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37204217

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a highly invasive tumor with a dismal prognosis. Recent studies have demonstrated PTPN2 (protein tyrosine phosphatase nonreceptor type 2) as a potential target for cancer therapy. However, the functions of PTPN2 in PDAC progression remain poorly understood. In this study, we found PTPN2 expression was downregulated in PDAC tissues, and decreased PTPN2 expression was associated with unfavorable prognosis. Functional studies indicated that PTPN2 knockdown promoted the migration and invasion abilities of PDAC cells in vitro, and the liver metastasis in vivo through epithelial-mesenchymal transition process. Mechanistically, MMP-1 was identified as a downstream target of PTPN2 via RNA-seq data and was responsible for the enhanced metastasis of PDAC cells upon PTPN2 knockdown. Moreover, according to chromatin immunoprecipitation and electrophoretic mobility shift assay, PTPN2 depletion transcriptionally activated MMP-1 via regulating the interaction of p-STAT3 with its distal promoter. This study, for the first time, demonstrated that PTPN2 inhibited PDAC metastasis, and presented a novel PTPN2/p-STAT3/MMP-1 axis in PDAC progression.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Matrix Metalloproteinase 1 , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism , Cell Proliferation , Neoplasm Invasiveness , Cell Movement , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Pancreatic Neoplasms
9.
Angew Chem Int Ed Engl ; 62(37): e202306863, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37485554

ABSTRACT

CRISPR system-assisted immunotherapy is an attractive option in cancer therapy. However, its efficacy is still less than expected due to the limitations in delivering the CRISPR system to target cancer cells. Here, we report a new CRISPR/Cas9 tumor-targeting delivery strategy based on bioorthogonal reactions for dual-targeted cancer immunotherapy. First, selective in vivo metabolic labeling of cancer and activation of the cGAS-STING pathway was achieved simultaneously through tumor microenvironment (TME)-biodegradable hollow manganese dioxide (H-MnO2 ) nano-platform. Subsequently, CRISPR/Cas9 system-loaded liposome was accumulated within the modified tumor tissue through in vivo click chemistry, resulting in the loss of protein tyrosine phosphatase N2 (PTPN2) and further sensitizing tumors to immunotherapy. Overall, our strategy provides a modular platform for precise gene editing in vivo and exhibits potent antitumor response by boosting innate and adaptive antitumor immunity.


Subject(s)
CRISPR-Cas Systems , Neoplasms , Humans , Manganese Compounds , Oxides , Neoplasms/therapy , Immunotherapy , Gene Editing/methods , Tumor Microenvironment/genetics
10.
FASEB J ; 35(7): e21708, 2021 07.
Article in English | MEDLINE | ID: mdl-34169549

ABSTRACT

Metabolic reprogramming occurs in cancer cells and is regulated partly by the opposing actions of tyrosine kinases and tyrosine phosphatases. Several members of the protein tyrosine phosphatase (PTP) superfamily have been linked to cancer as either pro-oncogenic or tumor-suppressive enzymes. In order to investigate which PTPs can modulate the metabolic state of cancer cells, we performed an shRNA screen of PTPs in HCT116 human colorectal cancer cells. Among the 72 PTPs efficiently targeted, 24 were found to regulate mitochondrial respiration, 8 as negative and 16 as positive regulators. Of the latter, we selected TC-PTP (PTPN2) for further characterization since inhibition of this PTP resulted in major functional defects in oxidative metabolism without affecting glycolytic flux. Transmission electron microscopy revealed an increase in the number of damaged mitochondria in TC-PTP-null cells, demonstrating the potential role of this PTP in regulating mitochondrial homeostasis. Downregulation of STAT3 by siRNA-mediated silencing partially rescued the mitochondrial respiration defect observed in TC-PTP-deficient cells, supporting the role of this signaling axis in regulating mitochondrial activity. In addition, mitochondrial stress prevented an increased expression of electron transport chain-related genes in cells with TC-PTP silencing, correlating with decreased ATP production, cellular proliferation, and migration. Our shRNA-based metabolic screen revealed that PTPs can serve as either positive or negative regulators of cancer cell metabolism. Taken together, our findings uncover a new role for TC-PTP as an activator of mitochondrial metabolism, validating this PTP as a key target for cancer therapeutics.


Subject(s)
Energy Metabolism/physiology , Mitochondrial Dynamics/physiology , Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism , Tyrosine/metabolism , Cell Line , Cell Line, Tumor , Cell Proliferation/physiology , HCT116 Cells , HEK293 Cells , Humans , Phosphorylation/physiology , Protein-Tyrosine Kinases/metabolism , RNA, Small Interfering/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction/physiology
11.
Proc Natl Acad Sci U S A ; 116(40): 20063-20069, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31527250

ABSTRACT

Upon cytosolic viral DNA stimulation, cGMP-AMP synthase (cGAS) catalyzes synthesis of 2'3'cGMP-AMP (cGAMP), which binds to the adaptor protein MITA (mediator of IRF3 activation, also called STING, stimulator of IFN genes) and induces innate antiviral response. How the activity of MITA/STING is regulated to avoid excessive innate immune response is not fully understood. Here we identified the tyrosine-protein phosphatase nonreceptor type (PTPN) 1 and 2 as MITA/STING-associated proteins. PTPN1 and PTPN2 are associated with MITA/STING following viral infection and dephosphorylate MITA/STING at Y245. Dephosphorylation of MITA/STING leads to its degradation via the ubiquitin-independent 20S proteasomal pathway, which is dependent on the intrinsically disordered region (IDR) of MITA/STING. Deficiencies of PTPN1 and PTPN2 enhance viral DNA-induced transcription of downstream antiviral genes and innate antiviral response. Our findings reveal that PTPN1/2-mediated dephosphorylation of MITA/STING and its degradation by the 20S proteasomal pathway is an important regulatory mechanism of innate immune response to DNA virus.


Subject(s)
Immunity, Innate , Membrane Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism , Virus Diseases/immunology , Virus Diseases/metabolism , Animals , Biomarkers , DNA, Viral/genetics , DNA, Viral/metabolism , Host-Pathogen Interactions/immunology , Humans , Immunohistochemistry , Mice , Phosphorylation , Protein Binding , Proteolysis , Signal Transduction , Virus Diseases/virology
12.
Chem Biodivers ; 19(1): e202100600, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34725898

ABSTRACT

Protein tyrosine phosphatases (PTPs) are essential modulators of signal transduction pathways and has been implicated in many human diseases such as cancer, diabetes, obesity, autoimmune disorders, and neurological diseases, indicating that PTPs are next-generation drug targets. Since PTPN1, PTPN2, and PTPN11 have been reported to be negative regulators of insulin action, the identification of PTP inhibitors may be an effective strategy to develop therapeutic agents for the treatment of type 2 diabetes. In this study, we observed for the first time that nepetin inhibits the catalytic activity of PTPN1, PTPN2, and PTPN11 in vitro, indicating that nepetin acts as a multi-targeting inhibitor of PTPN1, PTPN2, and PTPN11. Furthermore, treatment of mature 3T3-L1 adipocytes with 20 µM nepetin stimulates glucose uptake through AMPK activation. Taken together, our findings provide evidence that nepetin, a multi-targeting inhibitor of PTPN1, PTPN2, and PTPN11, could be a promising therapeutic candidate for the treatment of type 2 diabetes.


Subject(s)
Enzyme Inhibitors/chemistry , Flavones/chemistry , Protein Tyrosine Phosphatases/antagonists & inhibitors , 3T3-L1 Cells , AMP-Activated Protein Kinases/metabolism , Animals , Biocatalysis , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/pathology , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/therapeutic use , Flavones/metabolism , Flavones/therapeutic use , Glucose/metabolism , Humans , Insulin Resistance , Mice , Phosphorylation/drug effects , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 2/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism , Protein Tyrosine Phosphatases/metabolism
13.
Int J Mol Sci ; 23(17)2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36077422

ABSTRACT

PTPN2 (protein tyrosine phosphatase non-receptor 2), also called TCPTP (T cell protein tyrosine phosphatase), is a member of the PTP family signaling proteins. Phosphotyrosine-based signaling of this non-transmembrane protein is essential for regulating cell growth, development, differentiation, survival, and migration. In particular, PTPN2 received researchers' attention when Manguso et al. identified PTPN2 as a cancer immunotherapy target using in vivo CRISPR library screening. In this review, we attempt to summarize the important functions of PTPN2 in terms of its structural and functional properties, inflammatory reactions, immunomodulatory properties, and tumor immunity. PTPN2 exerts synergistic anti-inflammatory effects in various inflammatory cells and regulates the developmental differentiation of immune cells. The diversity of PTPN2 effects in different types of tumors makes it a potential target for tumor immunotherapy.


Subject(s)
Immunity , Protein Tyrosine Phosphatase, Non-Receptor Type 2 , Signal Transduction , Humans , Immunotherapy , Inflammation/pathology , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism
14.
J Biol Chem ; 295(52): 18343-18354, 2020 12 25.
Article in English | MEDLINE | ID: mdl-33122197

ABSTRACT

RAS genes are the most commonly mutated in human cancers and play critical roles in tumor initiation, progression, and drug resistance. Identification of targets that block RAS signaling is pivotal to develop therapies for RAS-related cancer. As RAS translocation to the plasma membrane (PM) is essential for its effective signal transduction, we devised a high-content screening assay to search for genes regulating KRAS membrane association. We found that the tyrosine phosphatase PTPN2 regulates the plasma membrane localization of KRAS. Knockdown of PTPN2 reduced the proliferation and promoted apoptosis in KRAS-dependent cancer cells, but not in KRAS-independent cells. Mechanistically, PTPN2 negatively regulates tyrosine phosphorylation of KRAS, which, in turn, affects the activation KRAS and its downstream signaling. Consistently, analysis of the TCGA database demonstrates that high expression of PTPN2 is significantly associated with poor prognosis of patients with KRAS-mutant pancreatic adenocarcinoma. These results indicate that PTPN2 is a key regulator of KRAS and may serve as a new target for therapy of KRAS-driven cancer.


Subject(s)
Biomarkers, Tumor/metabolism , Cell Proliferation , Gene Expression Regulation, Neoplastic , Mutation , Neoplasms/pathology , Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Apoptosis , Biomarkers, Tumor/genetics , Humans , Neoplasms/genetics , Neoplasms/metabolism , Phosphorylation , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Tumor Cells, Cultured
15.
Int J Mol Sci ; 22(13)2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34201918

ABSTRACT

Protein tyrosine phosphatase nonreceptor type 2 (PTPN2) plays a critical role in the pathogenesis of inflammatory bowel diseases (IBD). Mice lacking PTPN2 in dendritic cells (DCs) develop skin and liver inflammation by the age of 22 weeks due to a generalized loss of tolerance leading to uncontrolled immune responses. The effect of DC-specific PTPN2 loss on intestinal health, however, is unknown. The aim of this study was to investigate the DC-specific role of PTPN2 in the intestine during colitis development. PTPN2fl/flxCD11cCre mice were subjected to acute and chronic DSS colitis as well as T cell transfer colitis. Lamina propria immune cell populations were analyzed using flow cytometry. DC-specific PTPN2 deletion promoted infiltration of B and T lymphocytes, macrophages, and DCs into the lamina propria of unchallenged mice and elevated Th1 abundance during acute DSS colitis, suggesting an important role for PTPN2 in DCs in maintaining intestinal immune cell homeostasis. Surprisingly, those immune cell alterations did not translate into increased colitis susceptibility in acute and chronic DSS-induced colitis or T cell transfer colitis models. However, macrophage depletion by clodronate caused enhanced colitis severity in mice with a DC-specific loss of PTPN2. Loss of PTPN2 in DCs affects the composition of lamina propria lymphocytes, resulting in increased infiltration of innate and adaptive immune cells. However, this did not result in an elevated colitis phenotype, likely because increased infiltration of macrophages in the intestine upon loss of PTPN2 loss in DCs can compensate for the inflammatory effect of PTPN2-deficient DCs.


Subject(s)
Colitis/etiology , Colitis/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Macrophages/immunology , Macrophages/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 2/deficiency , Animals , Colitis/pathology , Dextran Sulfate/adverse effects , Disease Models, Animal , Disease Susceptibility , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Mice , Mice, Transgenic , Phosphorylation , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism , STAT1 Transcription Factor/metabolism , Severity of Illness Index , Signal Transduction , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocyte Subsets/pathology
16.
Int J Mol Sci ; 22(16)2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34445589

ABSTRACT

Crohn's Disease (CD) and Rheumatoid Arthritis (RA) share some single nucleotide polymorphisms (SNPs) in protein tyrosine phosphatase non-receptor types 2 and 22 (PTPN2/22). Recently, we reported that clinical samples from CD and RA patients associated with PTPN2:rs478582 or PTPN22:rs2476601 genotypes were linked to overactive immune response and exacerbation of inflammation. Here, we investigated in vitro the effects of these SNPs in Jurkat T-cells using CRISPR-Cas9. All cells were evaluated for PTPN22/22 loss of function and effects on cell response. We measured gene expression via RT-qPCR and cytokines by ELISA. We also measured cell proliferation using a BrdU labeling proliferation ELISA, and T-cell activation using CD-25 fluorescent immunostaining. In PTPN2 SNP-edited cells, PTPN2 expression decreased by 3.2-fold, and proliferation increased by 10.2-fold compared to control. Likewise, expression of PTPN22 decreased by 2.4-fold and proliferation increased by 8.4-fold in PTPN22 SNP-edited cells. IFN-γ and TNF-α secretions increased in both edited cell lines. CD25 expression (cell activation) was 80.32% in PTPN2 SNP-edited cells and 85.82% in PTPN22 SNP-edited cells compared to 70.48% in unedited Jurkat T-cells. Treatment of PTPN2 and PTPN22-edited cells with a maximum 20 µM spermidine restored PTPN2/22 expression and cell response including cell proliferation, activation, and cytokines secretion. Most importantly, the effect of spermidine on edited cells restored normal expression and secretion of IFN-γ and TNF-α. The data clearly demonstrated that edited SNPs in PTPN2 or PTPN22 were associated with reduced gene expression, which resulted in an increase in cell proliferation and activation and overactive immune response. The data validated our earlier observations in CD and RA clinical samples. Surprisingly, spermidine restored PTPN2/22 expression in edited Jurkat T-cells and the consequent beneficial effect on cell response and inflammation. The study supports the use of polyamines dietary supplements for management of CD and in RA patients.


Subject(s)
CRISPR-Cas Systems , Gene Expression Regulation, Leukemic/drug effects , Leukemia, T-Cell/pathology , Polymorphism, Single Nucleotide , Protein Tyrosine Phosphatase, Non-Receptor Type 22/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics , Spermidine/pharmacology , Arthritis, Rheumatoid/genetics , Crohn Disease/genetics , Genetic Predisposition to Disease , Humans , Jurkat Cells , Leukemia, T-Cell/drug therapy , Leukemia, T-Cell/genetics , Lymphocyte Activation , Protein Tyrosine Phosphatase, Non-Receptor Type 2/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 22/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 22/metabolism
17.
J Biol Chem ; 294(33): 12483-12494, 2019 08 16.
Article in English | MEDLINE | ID: mdl-31248982

ABSTRACT

Protein tyrosine phosphatase, nonreceptor type 2 (PTPN2) is mainly expressed in hematopoietic cells, where it negatively regulates growth factor and cytokine signaling. PTPN2 is an important regulator of hematopoiesis and immune/inflammatory responses, as evidenced by loss-of-function mutations of PTPN2 in leukemia and lymphoma and knockout mice studies. Benzene is an environmental chemical that causes hematological malignancies, and its hematotoxicity arises from its bioactivation in the bone marrow to electrophilic metabolites, notably 1,4-benzoquinone, a major hematotoxic benzene metabolite. Although the molecular bases for benzene-induced leukemia are not well-understood, it has been suggested that benzene metabolites alter topoisomerases II function and thereby significantly contribute to leukemogenesis. However, several studies indicate that benzene and its hematotoxic metabolites may also promote the leukemogenic process by reacting with other targets and pathways. Interestingly, alterations of cell-signaling pathways, such as Janus kinase (JAK)/signal transducer and activator of transcription (STAT), have been proposed to contribute to benzene-induced malignant blood diseases. We show here that 1,4-benzoquinone directly impairs PTPN2 activity. Mechanistic and kinetic experiments with purified human PTPN2 indicated that this impairment results from the irreversible formation (kinact = 645 m-1·s-1) of a covalent 1,4-benzoquinone adduct at the catalytic cysteine residue of the enzyme. Accordingly, cell experiments revealed that 1,4-benzoquinone exposure irreversibly inhibits cellular PTPN2 and concomitantly increases tyrosine phosphorylation of STAT1 and expression of STAT1-regulated genes. Our results provide molecular and cellular evidence that 1,4-benzoquinone covalently modifies key signaling enzymes, implicating it in benzene-induced malignant blood diseases.


Subject(s)
Benzene , Benzoquinones/metabolism , Leukemia , Neoplasm Proteins , Protein Tyrosine Phosphatase, Non-Receptor Type 2 , STAT1 Transcription Factor , Signal Transduction/drug effects , Benzene/pharmacokinetics , Benzene/pharmacology , HEK293 Cells , Humans , Jurkat Cells , Leukemia/genetics , Leukemia/metabolism , Leukemia/pathology , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 2/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism , Signal Transduction/genetics
18.
Biochem Biophys Res Commun ; 522(1): 21-25, 2020 01 29.
Article in English | MEDLINE | ID: mdl-31735335

ABSTRACT

PTPN2 is one of the members of the protein Tyrosine Phosphatases (PTPs) family. To explore the promotive effect of upregulated PTPN2 induced by inflammatory response or oxidative stress on the progression of thyroid cancer. PTPN2 level in thyroid cancer tissues and cell lines was detected. Kaplan-Meier method was applied for evaluating the prognostic value of PTPN2 in thyroid cancer patients. After stimulation of inflammatory response (treatment of IFN-γ and TNF-α), or oxidative stress (treatment of H2O2), protein level of PTPN2 in K1 cells was measured by Western blot. Regulatory effects of PTPN2 on EdU-positive staining and Ki-67 positive cell ratio in K1 cells either with H2O2 stimulation or not were determined. PTPN2 was upregulated in thyroid cancer tissues and cell lines. Its level was higher in metastatic thyroid cancer patients than those of non-metastatic ones. High level of PTPN2 predicted worse prognosis of thyroid cancer. Treatment of either IFN-γ or TNF-α upregulated protein level of PTPN2 in K1 cells. Meanwhile, H2O2 stimulation upregulated PTPN2, which was reversed by NAC administration. With the stimulation of increased doses of H2O2, EdU-positive staining and Ki-67 positive cell ratio were dose-dependently elevated. Silence of PTPN2 attenuated proliferative ability and Ki-67 expression in K1 cells either with H2O2 stimulation or not. Inflammatory response or oxidative stress induces upregulation of PTPN2, thus promoting the progression of thyroid cancer.


Subject(s)
Gene Expression Regulation, Neoplastic , Inflammation/metabolism , Oxidative Stress , Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism , Thyroid Neoplasms/enzymology , Antioxidants/pharmacology , Cell Line, Tumor , Cell Proliferation , Disease Progression , Gene Silencing , Humans , Hydrogen Peroxide/pharmacology , Kaplan-Meier Estimate , Ki-67 Antigen/metabolism , Neoplasm Metastasis , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics , Thyroid Neoplasms/pathology
19.
Int J Mol Sci ; 21(4)2020 Feb 11.
Article in English | MEDLINE | ID: mdl-32054021

ABSTRACT

Silicosis is a chronic occupational lung disease caused by long-term inhalation ofcrystalline silica particulates. We created a rat model that closely approximates the exposure and development of silicosis in humans. Isobaric tags for relative and absolute quantitation (iTRAQ) technologies weused to identify proteins differentially expressed in activated rat lung tissue. We constructed three lentiviral knockdown vectorsand an overexpression vectorfor the protein tyrosine phosphatase non-receptor type 2 (PTPN2) geneto achieve stable long-term expression.A total of 471 proteins were differentially expressed in the silicosis group compared with controls. Twenty upregulated, and eight downregulated proteins exhibited a ≥ 1.5-fold change relative to controls. We next found that the PTPN2, Factor B, and VRK1 concentrations in silicotic rats silicosis and SiO2-stimulated MLE-12 cells were significantly higher than control groups.More importantly, we found that overexpression of PTPN2 simultaneously decreased the expression of phospho-signal transducer and activator of transcription 3 (p-STAT3) and Vimentin, while increasing E-cadherin expression. The opposite pattern was observed for PTPN2-gene silencing. We identified three proteins with substantially enhanced expression in silicosis. Our study also showed that PTPN2 can inhibit epithelial-mesenchymal transition by dephosphorylating STAT3 in silicosis fibrosis.


Subject(s)
Epithelial-Mesenchymal Transition , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics , STAT3 Transcription Factor/metabolism , Silicosis/genetics , Animals , Disease Models, Animal , Male , Phosphorylation , Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism , Rats , Rats, Wistar , Silicosis/metabolism , Silicosis/pathology , Transcriptome , Up-Regulation
20.
Int J Mol Sci ; 21(15)2020 Jul 31.
Article in English | MEDLINE | ID: mdl-32751912

ABSTRACT

Inflammasomes are multi-protein complexes that mediate the activation and secretion of the inflammatory cytokines IL-1ß and IL-18. More than half a decade ago, it has been shown that the inflammasome adaptor molecule, ASC requires tyrosine phosphorylation to allow effective inflammasome assembly and sustained IL-1ß/IL-18 release. This finding provided evidence that the tyrosine phosphorylation status of inflammasome components affects inflammasome assembly and that inflammasomes are subjected to regulation via kinases and phosphatases. In the subsequent years, it was reported that activation of the inflammasome receptor molecule, NLRP3, is modulated via tyrosine phosphorylation as well, and that NLRP3 de-phosphorylation at specific tyrosine residues was required for inflammasome assembly and sustained IL-1ß/IL-18 release. These findings demonstrated the importance of tyrosine phosphorylation as a key modulator of inflammasome activity. Following these initial reports, additional work elucidated that the activity of several inflammasome components is dictated via their phosphorylation status. Particularly, the action of specific tyrosine kinases and phosphatases are of critical importance for the regulation of inflammasome assembly and activity. By summarizing the currently available literature on the interaction of tyrosine phosphatases with inflammasome components we here provide an overview how tyrosine phosphatases affect the activation status of inflammasomes.


Subject(s)
Inflammasomes/metabolism , Protein Tyrosine Phosphatases/physiology , Animals , Humans , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Phosphorylation
SELECTION OF CITATIONS
SEARCH DETAIL