Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 228
Filter
Add more filters

Publication year range
1.
J Virol ; 98(8): e0098324, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39016561

ABSTRACT

Rift Valley fever virus (RVFV) infection causes abortions in ruminant livestock and is associated with an increased likelihood of miscarriages in women. Using sheep and human placenta explant cultures, we sought to identify tissues at the maternal-fetal interface targeted by RVFV. Sheep villi and fetal membranes were highly permissive to RVFV infection resulting in markedly higher virus titers than human cultures. Sheep cultures were most permissive to wild-type RVFV and ΔNSm infection, while live-attenuated RVFV vaccines (LAVs; MP-12, ΔNSs, and ΔNSs/ΔNSm) exhibited reduced replication. The human fetal membrane restricted wild-type and LAV replication, and when infection occurred, it was prominent on the maternal-facing side. Type I and type III interferons were induced in human villi exposed to LAVs lacking the NSs protein. This study supports the use of sheep and human placenta explants to understand vertical transmission of RVFV in mammals and whether LAVs are attenuated at the maternal-fetal interface.IMPORTANCEA direct comparison of replication of Rift Valley fever virus (RVFV) in sheep and human placental explants reveals comparative efficiencies and permissivity to infection and replication. Vaccine strains of RVFV demonstrated reduced infection and replication capacity in the mammalian placenta. This study represents the first direct cross-host comparison of the vertical transmission capacity of this high-priority emerging mosquito-transmitted virus.


Subject(s)
Infectious Disease Transmission, Vertical , Placenta , Rift Valley Fever , Rift Valley fever virus , Vaccines, Attenuated , Viral Vaccines , Virus Replication , Rift Valley fever virus/physiology , Rift Valley fever virus/immunology , Animals , Female , Pregnancy , Sheep , Placenta/virology , Humans , Rift Valley Fever/virology , Rift Valley Fever/transmission , Viral Vaccines/immunology , Sheep Diseases/virology
2.
J Biol Chem ; 299(11): 105287, 2023 11.
Article in English | MEDLINE | ID: mdl-37742919

ABSTRACT

The integrated stress response (ISR) protects cells from a variety of insults. Once elicited (e.g., by virus infections), it eventually leads to the block of mRNA translation. Central to the ISR are the interactions between translation initiation factors eIF2 and eIF2B. Under normal conditions, eIF2 drives the initiation of protein synthesis through hydrolysis of GTP, which becomes replenished by the guanine nucleotide exchange factor eIF2B. The antiviral branch of the ISR is activated by the RNA-activated kinase PKR which phosphorylates eIF2, thereby converting it into an eIF2B inhibitor. Here, we describe the recently solved structures of eIF2B in complex with eIF2 and a novel escape strategy used by viruses. While unphosphorylated eIF2 interacts with eIF2B in its "productive" conformation, phosphorylated eIF2 [eIF2(αP)] engages a different binding cavity on eIF2B and forces it into the "nonproductive" conformation that prohibits guanine nucleotide exchange factor activity. It is well established that viruses express so-called PKR antagonists that interfere with double-strand RNA, PKR itself, or eIF2. However recently, three taxonomically unrelated viruses were reported to encode antagonists targeting eIF2B instead. For one antagonist, the S segment nonstructural protein of Sandfly fever Sicilian virus, atomic structures showed that it occupies the eIF2(αP)-binding cavity on eIF2B without imposing a switch to the nonproductive conformation. S segment nonstructural protein thus antagonizes the activity of PKR by protecting eIF2B from inhibition by eIF2(αP). As the ISR and specifically eIF2B are central to neuroprotection and a wide range of genetic and age-related diseases, these developments may open new possibilities for treatments.


Subject(s)
Eukaryotic Initiation Factor-2B , Eukaryotic Initiation Factor-2 , Eukaryotic Initiation Factor-2/genetics , Eukaryotic Initiation Factor-2/metabolism , Eukaryotic Initiation Factor-2B/chemistry , Guanine Nucleotide Exchange Factors/metabolism , Phosphorylation , Protein Biosynthesis , RNA/metabolism , Humans , Animals
3.
J Clin Microbiol ; 62(3): e0043023, 2024 03 13.
Article in English | MEDLINE | ID: mdl-38305205

ABSTRACT

Rift Valley Fever phlebovirus (RVFV) is a mosquito-borne zoonotic pathogen that causes major agricultural and public health problems in Africa and the Arabian Peninsula. It is considered a potential agro-bioterrorism agent for which limited countermeasures are available. To address diagnostic needs, here we describe a rapid and sensitive molecular method immediately employable at sites of suspected outbreaks in animals that commonly precede outbreaks in humans. The strategy involves the concurrent detection of two of the three RVFV genome segments (large and medium) using reverse transcription insulated isothermal PCR (RT-iiPCR) performed on a portable, touch screen nucleic acid analyzer, POCKIT. The analytical sensitivity for both the RT-iiPCR and a laboratory-based L and M multiplex reverse transcription real-time PCR assay was estimated at approximately 0.1-3 copies/reaction using synthetic RNA or viral RNA. The diagnostic sensitivity and specificity of detection of RVFV on the POCKIT, determined using sera from sheep and cattle (n = 181) experimentally infected with two strains of RVFV (SA01 and Ken06), were 93.8% and 100% (kappa = 0.93), respectively. Testing of ruminant field sera (n = 193) in two locations in Africa demonstrated 100% diagnostic sensitivity and specificity. We conclude that the POCKIT dual-gene RVFV detection strategy can provide reliable, sensitive, and specific point-of-need viral RNA detection. Moreover, the field detection of RVFV in vectors or susceptible animal species can aid in the surveillance and epidemiological studies to better understand and control RVFV outbreaks. IMPORTANCE: The content of this manuscript is of interest to the diverse readership of the Journal of Clinical Microbiology, including research scientists, diagnosticians, healthcare professionals, and policymakers. Rift Valley Fever virus (RVFV) is a zoonotic mosquito-borne pathogen that causes major agricultural and public health problems. Current and most sensitive diagnostic approaches that are molecular-based are performed in highly specialized molecular diagnostic laboratories. To address diagnostic needs, we developed a novel, rapid, and sensitive molecular method using a portable PCR machine, POCKIT, capable of immediate deployment at sites of suspected outbreaks. Here, we demonstrate that field-deployable RVFV detection can provide reliable, sensitive, and specific point-of-need viral RNA detection that could be used for diagnostic investigations and epidemiological studies, and can be performed in the field.


Subject(s)
Rift Valley fever virus , Humans , Cattle , Sheep/genetics , Animals , Real-Time Polymerase Chain Reaction/methods , Reverse Transcription , Laboratories , RNA, Viral
4.
BMC Vet Res ; 20(1): 190, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734647

ABSTRACT

Severe fever with thrombocytopenia syndrome (SFTS) is a fatal zoonosis caused by ticks in East Asia. As SFTS virus (SFTSV) is maintained between wildlife and ticks, seroepidemiological studies in wildlife are important to understand the behavior of SFTSV in the environment. Miyazaki Prefecture, Japan, is an SFTS-endemic area, and approximately 100 feral horses, called Misaki horses (Equus caballus), inhabit Cape Toi in Miyazaki Prefecture. While these animals are managed in a wild-like manner, their ages are ascertainable due to individual identification. In the present study, we conducted a seroepidemiological survey of SFTSV in Misaki horses between 2015 and 2023. This study aimed to understand SFTSV infection in horses and its transmission to wildlife. A total of 707 samples from 180 feral horses were used to determine the seroprevalence of SFTSV using enzyme-linked immunosorbent assay (ELISA). Neutralization testing was performed on 118 samples. In addition, SFTS viral RNA was detected in ticks from Cape Toi and feral horses. The overall seroprevalence between 2015 and 2023 was 78.5% (555/707). The lowest seroprevalence was 55% (44/80) in 2016 and the highest was 92% (76/83) in 2018. Seroprevalence was significantly affected by age, with 11% (8/71) in those less than one year of age and 96.7% (435/450) in those four years of age and older (p < 0.0001). The concordance between ELISA and neutralization test results was 88.9% (105/118). SFTS viral RNA was not detected in ticks (n = 516) or feral horses. This study demonstrated that horses can be infected with SFTSV and that age is a significant factor in seroprevalence in wildlife. This study provides insights into SFTSV infection not only in horses but also in wildlife in SFTS-endemic areas.


Subject(s)
Horse Diseases , Phlebovirus , Severe Fever with Thrombocytopenia Syndrome , Animals , Horses , Seroepidemiologic Studies , Japan/epidemiology , Horse Diseases/epidemiology , Horse Diseases/virology , Horse Diseases/blood , Phlebovirus/isolation & purification , Severe Fever with Thrombocytopenia Syndrome/epidemiology , Severe Fever with Thrombocytopenia Syndrome/veterinary , Severe Fever with Thrombocytopenia Syndrome/virology , Female , Male , Antibodies, Viral/blood , Ticks/virology , Enzyme-Linked Immunosorbent Assay/veterinary , Animals, Wild/virology
5.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Article in English | MEDLINE | ID: mdl-33782133

ABSTRACT

Rift Valley fever virus (RVFV), an emerging arboviral and zoonotic bunyavirus, causes severe disease in livestock and humans. Here, we report the isolation of a panel of monoclonal antibodies (mAbs) from the B cells of immune individuals following natural infection in Kenya or immunization with MP-12 vaccine. The B cell responses of individuals who were vaccinated or naturally infected recognized similar epitopes on both Gc and Gn proteins. The Gn-specific mAbs and two mAbs that do not recognize either monomeric Gc or Gn alone but recognized the hetero-oligomer glycoprotein complex (Gc+Gn) when Gc and Gn were coexpressed exhibited potent neutralizing activities in vitro, while Gc-specific mAbs exhibited relatively lower neutralizing capacity. The two Gc+Gn-specific mAbs and the Gn domain A-specific mAbs inhibited RVFV fusion to cells, suggesting that mAbs can inhibit the exposure of the fusion loop in Gc, a class II fusion protein, and thus prevent fusion by an indirect mechanism without direct fusion loop contact. Competition-binding analysis with coexpressed Gc/Gn and mutagenesis library screening indicated that these mAbs recognize four major antigenic sites, with two sites of vulnerability for neutralization on Gn. In experimental models of infection in mice, representative mAbs recognizing three of the antigenic sites reduced morbidity and mortality when used at a low dose in both prophylactic and therapeutic settings. This study identifies multiple candidate mAbs that may be suitable for use in humans against RVFV infection and highlights fusion inhibition against bunyaviruses as a potential contributor to potent antibody-mediated neutralization.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Rift Valley fever virus/immunology , Viral Fusion Proteins/immunology , Animals , Antibodies, Monoclonal/immunology , Cell Line, Tumor , Cells, Cultured , Chlorocebus aethiops , Epitopes/chemistry , Epitopes/immunology , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Vero Cells , Viral Fusion Proteins/chemistry
6.
J Infect Dis ; 228(Suppl 6): S376-S389, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37849397

ABSTRACT

Research directed at select prototype pathogens is part of the approach put forth by the National Institute of Allergy and Infectious Disease (NIAID) to prepare for future pandemics caused by emerging viruses. We were tasked with identifying suitable prototypes for four virus families of the Bunyavirales order (Phenuiviridae, Peribunyaviridae, Nairoviridae, and Hantaviridae). This is a challenge due to the breadth and diversity of these viral groups. While there are many differences among the Bunyavirales, they generally have complex ecological life cycles, segmented genomes, and cause a range of human clinical outcomes from mild to severe and even death. Here, we delineate potential prototype species that encompass the breadth of clinical outcomes of a given family, have existing reverse genetics tools or animal disease models, and can be amenable to a platform approach to vaccine testing. Suggested prototype pathogens outlined here can serve as a starting point for further discussions.


Subject(s)
RNA Viruses , Animals , Humans
7.
Emerg Infect Dis ; 29(9): 1908-1912, 2023 09.
Article in English | MEDLINE | ID: mdl-37610254

ABSTRACT

A new phlebovirus variant was isolated from an acute febrile patient in Chanchamayo, Peru. Genome characterization and p-distance analyses based on complete open reading frames revealed that the virus is probably a natural reassortant of the Echarate virus (large and small segments) with a yet-unidentified phlebovirus (M segment).


Subject(s)
Fever , Phlebovirus , Humans , Peru/epidemiology , Open Reading Frames
8.
Emerg Infect Dis ; 29(3): 614-617, 2023 03.
Article in English | MEDLINE | ID: mdl-36823498

ABSTRACT

In Japan, 2 cats that underwent surgery in a room where a sick dog had been euthanized became ill within 9 days of surgery. Severe fever with thrombocytopenia syndrome virus was detected in all 3 animals; nucleotide sequence identity was 100%. Suspected cause was an uncleaned pulse oximeter probe used for all patients.


Subject(s)
Bunyaviridae Infections , Cross Infection , Phlebovirus , Severe Fever with Thrombocytopenia Syndrome , Animals , Dogs , Pets , Japan
9.
J Gen Virol ; 104(9)2023 09.
Article in English | MEDLINE | ID: mdl-37702592

ABSTRACT

The family Phenuiviridae comprises viruses with 2-8 segments of negative-sense or ambisense RNA, comprising 8.1-25.1 kb in total. Virions are typically enveloped with spherical or pleomorphic morphology but can also be non-enveloped filaments. Phenuivirids infect animals including livestock and humans, birds, plants or fungi, as well as arthropods that serve as single hosts or act as biological vectors for transmission to animals or plants. Phenuivirids include important pathogens of humans, livestock, seafood and agricultural crops. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Phenuiviridae, which is available at ictv.global/report/phenuiviridae.


Subject(s)
Arthropods , RNA Viruses , Animals , Humans , RNA Viruses/genetics , Virion , RNA
10.
J Virol ; 95(14): e0042921, 2021 06 24.
Article in English | MEDLINE | ID: mdl-33952635

ABSTRACT

Rift Valley fever phlebovirus (RVFV) has a single-stranded, negative-sense RNA genome, consisting of L, M, and S segments. The virion carries two envelope glycoproteins, Gn and Gc, along with ribonucleoprotein complexes (RNPs), composed of encapsidated genomes carrying N protein and the viral polymerase, L protein. A quantitative analysis of the profile of viral RNA segments packaged into RVFV particles showed that all three genomic RNA segments had similar packaging abilities, whereas among antigenomic RNA segments, the antigenomic S RNA, which serves as the template for the transcription of mRNA expressing the RVFV virulence factor, NSs, displayed a significantly higher packaging ability. To delineate the factor(s) governing the packaging of RVFV RNA segments, we characterized the interactions between Gn and viral RNPs in RVFV-infected cells. Coimmunoprecipitation analysis demonstrated the interaction of Gn with N protein, L protein, and viral RNAs in RVFV-infected cells. Furthermore, UV-cross-linking and immunoprecipitation analysis revealed, for the first time in bunyaviruses, the presence of a direct interaction between Gn and all the viral RNA segments in RVFV-infected cells. Notably, analysis of the ability of Gn to bind to RVFV RNA segments indicated a positive correlation with their respective packaging abilities and highlighted a binding preference of Gn for antigenomic S RNA, among the antigenomic RNA segments, suggesting the presence of a selection mechanism for antigenomic S RNA incorporation into infectious RVFV particles. Collectively, the results of our study illuminate the importance of a direct interaction between Gn and viral RNA segments in determining their efficiency of incorporation into RVFV particles. IMPORTANCE Rift Valley fever phlebovirus, a bunyavirus, is a mosquito-borne, segmented RNA virus that can cause severe disease in humans and ruminants. An essential step in RVFV life cycle is the packaging of viral RNA segments to produce infectious virus particles for dissemination to new hosts. However, there are key gaps in knowledge regarding the mechanisms that regulate viral RNA packaging efficiency in bunyaviruses. Our studies investigating the mechanism of RNA packaging in RVFV revealed the presence of a direct interaction between the viral envelope glycoprotein, Gn, and the viral RNA segments in infected cells, for the first time in bunyaviruses. Furthermore, our data strongly indicate a critical role for the direct interaction between Gn and viral RNAs in determining the efficiency of incorporation of viral RNA segments into RVFV particles. Clarifying the fundamental mechanisms of RNA packaging in RVFV would be valuable for the development of antivirals and live-attenuated vaccines.


Subject(s)
RNA, Viral , Rift Valley fever virus/genetics , Viral Genome Packaging , Viral Packaging Sequence , Virion/genetics , Animals , Cell Line , Chlorocebus aethiops , Ribonucleoproteins/metabolism , Vero Cells , Viral Envelope Proteins/genetics
11.
Eur J Clin Microbiol Infect Dis ; 41(1): 137-141, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34389911

ABSTRACT

Toscana virus (TOSV) is emergent in the Mediterranean region and responsible for outbreaks of encephalitis or meningoencephalitis. Sicilian phlebovirus (SFSV) cause epidemics of febrile illness during the summer. The aim of this study was to evaluate the presence of antibodies against TOSV and SFSV in humans in the southwest of Portugal. Neutralizing antibodies to TOSV and SFSV were respectively detected in 5.3% and 4.3% out of 400 human sera tested highlighting the need to increase public health awareness regarding phleboviruses and to include them in the differential diagnosis in patients presenting with fever of short duration and neurological manifestations.


Subject(s)
Antibodies, Viral/blood , Phlebotomus Fever/blood , Phlebotomus Fever/epidemiology , Phlebotomus Fever/virology , Phlebovirus/immunology , Sandfly fever Naples virus/immunology , Adolescent , Adult , Aged , Antibodies, Neutralizing/blood , Female , Humans , Male , Middle Aged , Phlebovirus/genetics , Portugal/epidemiology , Sandfly fever Naples virus/genetics , Seasons , Seroepidemiologic Studies , Young Adult
12.
Emerg Infect Dis ; 27(5): 1482-1485, 2021 05.
Article in English | MEDLINE | ID: mdl-33900182

ABSTRACT

We describe a series of severe neuroinvasive infections caused by Toscana virus, identified by real-time reverse transcription PCR testing, in 8 hospitalized patients in Bucharest, Romania, during the summer seasons of 2017 and 2018. Of 8 patients, 5 died. Sequencing showed that the circulating virus belonged to lineage A.


Subject(s)
Bunyaviridae Infections , Sandfly fever Naples virus , Humans , Romania
13.
Emerg Infect Dis ; 27(12): 3147-3150, 2021 12.
Article in English | MEDLINE | ID: mdl-34808074

ABSTRACT

Toscana virus (TOSV) is an emerging pathogen in the Mediterranean area and is neuroinvasive in its most severe form. Basic knowledge on TOSV biology is limited. We conducted a systematic review on travel-related infections to estimate the TOSV incubation period. We estimated the incubation period at 12.1 days.


Subject(s)
Bunyaviridae Infections , Infectious Disease Incubation Period , Sandfly fever Naples virus , Virus Diseases , Antibodies, Viral , Bunyaviridae Infections/epidemiology , Humans , Sandfly fever Naples virus/genetics , Travel , Travel-Related Illness
14.
J Gen Virol ; 102(11)2021 11.
Article in English | MEDLINE | ID: mdl-34797756

ABSTRACT

Sandfly-borne phleboviruses are distributed widely throughout the Mediterranean Basin, presenting a threat to public health in areas where they circulate. However, the true diversity and distribution of pathogenic and apathogenic sandfly-borne phleboviruses remains a key issue to be studied. In the Balkans, most published data rely on serology-based studies although virus isolation has occasionally been reported. Here, we report the discovery of two novel sandfly-borne phleboviruses, provisionally named Zaba virus (ZABAV) and Bregalaka virus (BREV), which were isolated in Croatia and North Macedonia, respectively. This constitutes the first isolation of phleboviruses in both countries. Genetic analysis based on complete coding sequences indicated that ZABAV and BREV are distinct from each other and belong to the genus Phlebovirus, family Phenuiviridae. Phylogenetic and amino acid modelling of viral polymerase shows that ZABAV and BREV are new members of the Salehabad phlebovirus species and the Adana phlebovirus species, respectively. Moreover, sequence-based vector identification suggests that ZABAV is mainly transmitted by Phlebotomus neglectus and BREV is mainly transmitted by Phlebotomus perfiliewi. BREV neutralizing antibodies were detected in 3.3% of human sera with rates up to 16.7% in certain districts, demonstrating that BREV frequently infects humans in North Macedonia. In vitro viral growth kinetics experiments demonstrated viral replication of both viruses in mammalian and mosquito cells. In vivo experimental studies in mice suggest that ZABAV and BREV exhibit characteristics making them possible human pathogens.


Subject(s)
Insect Vectors/virology , Phlebovirus/isolation & purification , Psychodidae/virology , Animals , Croatia , Mosquito Vectors , Phlebovirus/classification , Phlebovirus/genetics , Phylogeny , Republic of North Macedonia
15.
J Gen Virol ; 102(11)2021 11.
Article in English | MEDLINE | ID: mdl-34726591

ABSTRACT

Phleboviruses (order Bunyavirales, family Phenuiviridae) are globally emerging arboviruses with a wide spectrum of virulence. Sandfly fever Sicilian virus (SFSV) is one of the most ubiquitous members of the genus Phlebovirus and associated with a self-limited, incapacitating febrile disease in travellers and military troops. The phleboviral NSs protein is an established virulence factor, acting as antagonist of the antiviral interferon (IFN) system. Consistently, we previously reported that SFSV NSs targets the induction of IFN mRNA synthesis by specifically binding to the DNA-binding domain of the IFN transcription factor IRF3. Here, we further characterized the effect of SFSV and its NSs towards IFN induction, and evaluated its potential to affect the downstream IFN-stimulated signalling and the subsequent transactivation of antiviral interferon-stimulated genes (ISGs). We found that SFSV dampened, but did not entirely abolish type I and type III IFN induction. Furthermore, SFSV NSs did not affect IFN signalling, resulting in substantial ISG expression in infected cells. Hence, although SFSV targets IRF3 to reduce IFN induction, it is not capable of entirely disarming the IFN system in the presence of high basal IRF3 and/or IRF7 levels, and we speculate that this significantly contributes to its low level of virulence.


Subject(s)
Interferons/immunology , Phlebotomus Fever/genetics , Phlebotomus Fever/virology , Phlebovirus/immunology , Host-Pathogen Interactions , Humans , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/immunology , Interferons/genetics , Phlebotomus Fever/immunology , Phlebovirus/genetics , Phlebovirus/isolation & purification , Phlebovirus/pathogenicity , Up-Regulation , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/immunology , Virulence
16.
BMC Infect Dis ; 21(1): 25, 2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33413183

ABSTRACT

BACKGROUND: Severe fever thrombocytopenia syndrome virus (SFTSV) is the causative agent of severe fever thrombocytopenia syndrome (SFTS). SFTS is an emerging infectious disease, characterized by high fever, gastrointestinal symptoms, leukopenia, thrombocytopenia, and a high mortality rate. Until now, little importance has been given to the association of SFTS with leukocytosis and bacterial co-infection. CASE PRESENTATION: A 51-year old man visited our hospital with fever and low blood pressure. He was a farmer by occupation and often worked outdoors. He had a Foley catheter inserted due to severe BPH. Laboratory tests revealed thrombocytopenia, elevated liver function, and elevated CRP levels. He had marked leukocytosis, proteinuria, hematuria, and conjunctival hemorrhage. Initially, we thought that the patient was suffering from hemorrhagic fever with renal syndrome (HFRS). However, we confirmed SFTS through PCR and increasing antibody titer. However, his blood culture also indicated E. coli infection. CONCLUSION: SFTS displays characteristics of fever, thrombocytopenia, elevated liver function, and leukocytopenia. We described a case of SFTS with leukocytosis due to coinfection with E. coli. Since patients with SFTS usually have leukocytopenia, SFTS patients with leukocytosis are necessarily evaluated for other causes of leukocytosis. Here, we report the first case of an SFTS with concurrent E. coli bacteremia.


Subject(s)
Bacteremia/etiology , Escherichia coli Infections/etiology , Severe Fever with Thrombocytopenia Syndrome/diagnosis , Severe Fever with Thrombocytopenia Syndrome/etiology , Coinfection , Communicable Diseases, Emerging/etiology , Female , Fever/virology , Hemorrhagic Fever with Renal Syndrome/etiology , Humans , Leukocytosis/etiology , Leukopenia/etiology , Male , Middle Aged , Phlebovirus/genetics , Phylogeny , Thrombocytopenia/etiology
17.
J Biol Chem ; 294(24): 9503-9517, 2019 06 14.
Article in English | MEDLINE | ID: mdl-31040183

ABSTRACT

Heartland virus (HRTV) is a pathogenic phlebovirus recently identified in the United States and related to severe fever with thrombocytopenia syndrome virus (SFTSV) emerging in Asia. We previously reported that SFTSV disrupts host antiviral responses directed by interferons (IFNs) and their downstream regulators, signal transducer and activator of transcription (STAT) proteins. However, whether HRTV infection antagonizes the IFN-STAT signaling axis remains unclear. Here, we show that, similar to SFTSV, HRTV also inhibits IFN-α- and IFN-λ-mediated antiviral responses. As expected, the nonstructural protein (NSs) of HRTV (HNSs) robustly antagonized both type I and III IFN signaling. Protein interaction analyses revealed that a common component downstream of type I and III IFN signaling, STAT2, is the target of HNSs. Of note, the DNA-binding and linker domains of STAT2 were required for an efficient HNSs-STAT2 interaction. Unlike the NSs of SFTSV (SNSs), which blocks both STAT2 and STAT1 nuclear accumulation, HNSs specifically blocked IFN-triggered nuclear translocation only of STAT2. However, upon HRTV infection, IFN-induced nuclear translocation of both STAT2 and STAT1 was suppressed, suggesting that STAT1 is an additional HRTV target for IFN antagonism. Consistently, despite HNSs inhibiting phosphorylation only of STAT2 and not STAT1, HRTV infection diminished both STAT2 and STAT1 phosphorylation. These results suggest that HRTV antagonizes IFN antiviral signaling by dampening both STAT2 and STAT1 activities. We propose that HNSs-specific targeting of STAT2 likely plays an important role but is not all of the "tactics" of HRTV in its immune evasion.


Subject(s)
Antiviral Agents/pharmacology , Bunyaviridae Infections/immunology , Cell Nucleus/metabolism , Interferon Type I/pharmacology , Interferons/pharmacology , Phlebovirus/immunology , STAT1 Transcription Factor/antagonists & inhibitors , STAT2 Transcription Factor/antagonists & inhibitors , Bunyaviridae Infections/drug therapy , Bunyaviridae Infections/metabolism , Bunyaviridae Infections/virology , Cell Nucleus/drug effects , Host-Pathogen Interactions , Humans , Immune Evasion , Phlebovirus/drug effects , Phlebovirus/pathogenicity , Phosphorylation , Protein Transport , STAT1 Transcription Factor/metabolism , STAT2 Transcription Factor/metabolism , Signal Transduction , Interferon Lambda
18.
Emerg Infect Dis ; 26(7): 1548-1552, 2020 07.
Article in English | MEDLINE | ID: mdl-32568061

ABSTRACT

In 2018, Heartland disease virus infected 2 persons in Illinois, USA. In 2019, ticks were collected at potential tick bite exposure locations and tested for Heartland and Bourbon viruses. A Heartland virus-positive pool of adult male Amblyomma americanum ticks was found at 2 locations, 439 km apart, suggesting widespread distribution in Illinois.


Subject(s)
Ixodidae , Phlebovirus , Thogotovirus , Ticks , Animals , Humans , Illinois/epidemiology , Male
19.
Emerg Infect Dis ; 26(10): 2435-2438, 2020 10.
Article in English | MEDLINE | ID: mdl-32946723

ABSTRACT

We isolated 17 viral strains capable of causing cytopathic effects in mammalian cells and death in neonatal mice from sand flies in China. Phylogenetic analysis showed that these strains belonged to the genus Phlebovirus. These findings highlight the need to control this potentially emerging virus to help safeguard public health.


Subject(s)
Phlebovirus , Psychodidae , Animals , China/epidemiology , Mice , Phlebovirus/genetics , Phylogeny
20.
J Virol ; 93(6)2019 03 15.
Article in English | MEDLINE | ID: mdl-30567991

ABSTRACT

Bunyaviruses have a tripartite negative-sense RNA genome. Due to the segmented nature of these viruses, if two closely related viruses coinfect the same host or vector cell, it is possible that RNA segments from either of the two parental viruses will be incorporated into progeny virions to give reassortant viruses. Little is known about the ability of tick-borne phleboviruses to reassort. The present study describes the development of minigenome assays for the tick-borne viruses Uukuniemi phlebovirus (UUKV) and Heartland phlebovirus (HRTV). We used these minigenome assays in conjunction with the existing minigenome system of severe fever with thrombocytopenia syndrome (SFTS) phlebovirus (SFTSV) to assess the abilities of viral N and L proteins to recognize, transcribe, and replicate the M segment-based minigenome of a heterologous virus. The highest minigenome activity was detected with the M segment-based minigenomes of cognate viruses. However, our findings indicate that several combinations utilizing N and L proteins of heterologous viruses resulted in M segment minigenome activity. This suggests that the M segment untranslated regions (UTRs) are recognized as functional promoters of transcription and replication by the N and L proteins of related viruses. Further, virus-like particle assays demonstrated that HRTV glycoproteins can package UUKV and SFTSV S and L segment-based minigenomes. Taken together, these results suggest that coinfection with these viruses could lead to the generation of viable reassortant progeny. Thus, the tools developed in this study could aid in understanding the role of genome reassortment in the evolution of these emerging pathogens in an experimental setting.IMPORTANCE In recent years, there has been a large expansion in the number of emerging tick-borne viruses that are assigned to the Phlebovirus genus. Bunyaviruses have a tripartite segmented genome, and infection of the same host cell by two closely related bunyaviruses can, in theory, result in eight progeny viruses with different genome segment combinations. We used genome analogues expressing reporter genes to assess the abilities of Phlebovirus nucleocapsid protein and RNA-dependent RNA polymerase to recognize the untranslated region of a genome segment of a related phlebovirus, and we used virus-like particle assays to assess whether viral glycoproteins can package genome analogues of related phleboviruses. Our results provide strong evidence that these emerging pathogens could reassort their genomes if they were to meet in nature in an infected host or vector. This reassortment process could result in viruses with new pathogenic properties.


Subject(s)
Genome, Viral/genetics , Phlebovirus/genetics , Animals , Bunyaviridae Infections/virology , Cell Line , Mesocricetus , Phylogeny , Promoter Regions, Genetic/genetics , Ticks/virology , Viral Nonstructural Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL