Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.721
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 121(24): e2400711121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38833476

ABSTRACT

Understanding how microbial lipidomes adapt to environmental and nutrient stress is crucial for comprehending microbial survival and functionality. Certain anaerobic bacteria can synthesize glycerolipids with ether/ester bonds, yet the complexities of their lipidome remodeling under varying physicochemical and nutritional conditions remain largely unexplored. In this study, we thoroughly examined the lipidome adaptations of Desulfatibacillum alkenivorans strain PF2803T, a mesophilic anaerobic sulfate-reducing bacterium known for its high proportions of alkylglycerol ether lipids in its membrane, under various cultivation conditions including temperature, pH, salinity, and ammonium and phosphorous concentrations. Employing an extensive analytical and computational lipidomic methodology, we identified an assemblage of nearly 400 distinct lipids, including a range of glycerol ether/ester lipids with various polar head groups. Information theory-based analysis revealed that temperature fluctuations and phosphate scarcity profoundly influenced the lipidome's composition, leading to an enhanced diversity and specificity of novel lipids. Notably, phosphorous limitation led to the biosynthesis of novel glucuronosylglycerols and sulfur-containing aminolipids, termed butyramide cysteine glycerols, featuring various ether/ester bonds. This suggests a novel adaptive strategy for anaerobic heterotrophs to thrive under phosphorus-depleted conditions, characterized by a diverse array of nitrogen- and sulfur-containing polar head groups, moving beyond a reliance on conventional nonphospholipid types.


Subject(s)
Lipidomics , Nitrogen , Phosphorus , Sulfur , Phosphorus/metabolism , Sulfur/metabolism , Nitrogen/metabolism , Adaptation, Physiological , Sulfates/metabolism , Bacteria, Anaerobic/metabolism , Anaerobiosis
2.
Proc Natl Acad Sci U S A ; 121(20): e2312892121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38713622

ABSTRACT

Marine picocyanobacteria of the genera Prochlorococcus and Synechococcus, the two most abundant phototrophs on Earth, thrive in oligotrophic oceanic regions. While it is well known that specific lineages are exquisitely adapted to prevailing in situ light and temperature regimes, much less is known of the molecular machinery required to facilitate occupancy of these low-nutrient environments. Here, we describe a hitherto unknown alkaline phosphatase, Psip1, that has a substantially higher affinity for phosphomonoesters than other well-known phosphatases like PhoA, PhoX, or PhoD and is restricted to clade III Synechococcus and a subset of high light I-adapted Prochlorococcus strains, suggesting niche specificity. We demonstrate that Psip1 has undergone convergent evolution with PhoX, requiring both iron and calcium for activity and likely possessing identical key residues around the active site, despite generally very low sequence homology. Interrogation of metagenomes and transcriptomes from TARA oceans and an Atlantic Meridional transect shows that psip1 is abundant and highly expressed in picocyanobacterial populations from the Mediterranean Sea and north Atlantic gyre, regions well recognized to be phosphorus (P)-deplete. Together, this identifies psip1 as an important oligotrophy-specific gene for P recycling in these organisms. Furthermore, psip1 is not restricted to picocyanobacteria and is abundant and highly transcribed in some α-proteobacteria and eukaryotic algae, suggesting that such a high-affinity phosphatase is important across the microbial taxonomic world to occupy low-P environments.


Subject(s)
Alkaline Phosphatase , Prochlorococcus , Alkaline Phosphatase/metabolism , Alkaline Phosphatase/genetics , Prochlorococcus/genetics , Prochlorococcus/metabolism , Phosphorus/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Synechococcus/genetics , Synechococcus/metabolism , Phylogeny , Seawater/microbiology
3.
Proc Natl Acad Sci U S A ; 121(19): e2319022121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38683986

ABSTRACT

Growth is a function of the net accrual of resources by an organism. Energy and elemental contents of organisms are dynamically linked through their uptake and allocation to biomass production, yet we lack a full understanding of how these dynamics regulate growth rate. Here, we develop a multivariate imbalance framework, the growth efficiency hypothesis, linking organismal resource contents to growth and metabolic use efficiencies, and demonstrate its effectiveness in predicting consumer growth rates under elemental and food quantity limitation. The relative proportions of carbon (%C), nitrogen (%N), phosphorus (%P), and adenosine triphosphate (%ATP) in consumers differed markedly across resource limitation treatments. Differences in their resource composition were linked to systematic changes in stoichiometric use efficiencies, which served to maintain relatively consistent relationships between elemental and ATP content in consumer tissues and optimize biomass production. Overall, these adjustments were quantitatively linked to growth, enabling highly accurate predictions of consumer growth rates.


Subject(s)
Biomass , Carbon , Nitrogen , Phosphorus , Phosphorus/metabolism , Nitrogen/metabolism , Carbon/metabolism , Adenosine Triphosphate/metabolism , Models, Biological , Animals
4.
Proc Natl Acad Sci U S A ; 120(30): e2307524120, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37459508

ABSTRACT

Of the six elements incorporated into the major polymers of life, phosphorus is the least abundant on a global scale [E. Anders, M. Ebihara, Geochim. Cosmochim. Acta 46, 2363-2380 (1982)] and has been described as the "ultimate limiting nutrient" [T. Tyrrell, Nature 400, 525-531 (1999)]. In the modern ocean, the supply of dissolved phosphorus is predominantly sustained by the oxidative remineralization/recycling of organic phosphorus in seawater. However, in the Archean Eon (4 to 2.5 Ga), surface waters were anoxic and reducing. Here, we conducted photochemical experiments to test whether photodegradation of ubiquitous dissolved organic phosphorus could facilitate phosphorus recycling under the simulated Archean conditions. Our results strongly suggest that organic phosphorus compounds, which were produced by marine biota (e.g., adenosine monophosphate and phosphatidylserine) or delivered by meteorites (e.g., methyl phosphonate) can undergo rapid photodegradation and release inorganic phosphate into solution under anoxic conditions. Our experimental results and theoretical calculations indicate that photodegradation of organic phosphorus could have been a significant source of bioavailable phosphorus in the early ocean and would have fueled primary production during the Archean eon.

5.
Plant J ; 119(4): 1880-1899, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38924231

ABSTRACT

Due to the chelation of phosphorus in the soil, it becomes unavailable for plant growth and development. The mechanisms by which phosphorus-solubilizing bacteria activate immobilized phosphorus to promote the growth and development of woody plants, as well as the intrinsic molecular mechanisms, are not clear. Through the analysis of microbial communities in the rhizosphere 16S V3-V4 and a homologous gene encoding microbial alkaline phosphomonoesterase (phoD) in phosphate-efficient (PE) and phosphate-inefficient apple rootstocks, it was found that PE significantly enriched beneficial rhizobacteria. The best phosphorus-solubilizing bacteria, Bacillus sp. strain 7DB1 (B2), was isolated, purified, and identified from the rhizosphere soil of PE rootstocks. Incubating with Bacillus B2 into the rhizosphere of apple rootstocks significantly increased the soluble phosphorus and flavonoid content in the rhizosphere soil. Simultaneously, this process stimulates the root development of the rootstocks and enhances plant phosphorus uptake. After root transcriptome sequencing, candidate transcription factor MhMYB15, responsive to Bacillus B2, was identified through heatmap and co-expression network analysis. Yeast one-hybrid, electrophoretic mobility shift assay, and LUC assay confirmed that MhMYB15 can directly bind to the promoter regions of downstream functional genes, including chalcone synthase MhCHS2 and phosphate transporter MhPHT1;15. Transgenic experiments with MhMYB15 revealed that RNAi-MhMYB15 silenced lines failed to induce an increase in flavonoid content and phosphorus levels in the roots under the treatment of Bacillus B2, and plant growth was slower than the control. In conclusion, MhMYB15 actively responds to Bacillus B2, regulating the accumulation of flavonoids and the uptake of phosphorus, thereby influencing plant growth and development.


Subject(s)
Bacillus , Malus , Phosphorus , Plant Roots , Rhizosphere , Malus/genetics , Malus/metabolism , Malus/growth & development , Malus/microbiology , Phosphorus/metabolism , Plant Roots/microbiology , Plant Roots/growth & development , Plant Roots/genetics , Plant Roots/metabolism , Bacillus/metabolism , Bacillus/genetics , Soil Microbiology , Transcription Factors/metabolism , Transcription Factors/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Gene Expression Regulation, Plant
6.
Plant J ; 117(3): 729-746, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37932930

ABSTRACT

Stylo (Stylosanthes guianensis) is a tropical legume known for its exceptional tolerance to low phosphate (Pi), a trait believed to be linked to its high acid phosphatase (APase) activity. Previous studies have observed genotypic variations in APase activity in stylo; however, the gene encoding the crucial APase responsible for this variation remains unidentified. In this study, transcriptomic and proteomic analyses were employed to identify eight Pi starvation-inducible (PSI) APases belonging to the purple APase (PAP) family in the roots of stylo and seven in the leaves. Among these PSI-PAPs, SgPAP7 exhibited a significantly positive correlation in its expression levels with the activities of both internal APase and root-associated APase across 20 stylo genotypes under low-Pi conditions. Furthermore, the recombinant SgPAP7 displayed high catalytic activity toward adenosine 5'-diphosphate (ADP) and phosphoenolpyruvate (PEP) in vitro. Overexpression (OE) of SgPAP7 in Arabidopsis facilitated exogenous organic phosphorus utilization. Moreover, SgPAP7 OE lines showed lower shoot ADP and PEP levels than the wild type, implying that SgPAP7 is involved in the catabolism and recycling of endogenous ADP and PEP, which could be beneficial for plant growth in low-Pi soils. In conclusion, SgPAP7 is a key gene with a major role in stylo adaptation to low-Pi conditions by facilitating the utilization of both exogenous and endogenous organic phosphorus sources. It may also function as a PEP phosphatase involved in a glycolytic bypass pathway that minimizes the need for adenylates and Pi. Thus, SgPAP7 could be a promising target for improving tolerance of crops to low-Pi availability.


Subject(s)
Arabidopsis , Fabaceae , Fabaceae/genetics , Fabaceae/metabolism , Multiomics , Proteomics , Phosphorus/metabolism , Vegetables/metabolism , Acid Phosphatase/genetics , Acid Phosphatase/metabolism , Arabidopsis/genetics , Plant Roots/genetics , Plant Roots/metabolism , Gene Expression Regulation, Plant
7.
Plant J ; 117(1): 33-52, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37731059

ABSTRACT

Chromatin in eukaryotes folds into a complex three-dimensional (3D) structure that is essential for controlling gene expression and cellular function and is dynamically regulated in biological processes. Studies on plant phosphorus signaling have concentrated on single genes and gene interactions. It is critical to expand the existing signaling pathway in terms of its 3D structure. In this study, low-Pi treatment led to greater chromatin volume. Furthermore, low-Pi stress increased the insulation score and the number of TAD-like domains, but the effects on the A/B compartment were not obvious. The methylation levels of target sites (hereafter as RdDM levels) peaked at specific TAD-like boundaries, whereas RdDM peak levels at conserved TAD-like boundaries shifted and decreased sharply. The distribution pattern of RdDM sites originating from the Helitron transposons matched that of genome-wide RdDM sites near TAD-like boundaries. RdDM pathway genes were upregulated in the middle or early stages and downregulated in the later stages under low-Pi conditions. The RdDM pathway mutant ddm1a showed increased tolerance to low-Pi stress, with shortened and thickened roots contributing to higher Pi uptake from the shallow soil layer. ChIP-seq results revealed that ZmDDM1A could bind to Pi- and root development-related genes. Strong associations were found between interacting genes in significantly different chromatin-interaction regions and root traits. These findings not only expand the mechanisms by which plants respond to low-Pi stress through the RdDM pathway but also offer a crucial framework for the analysis of biological issues using 3D genomics.


Subject(s)
Chromatin , Zea mays , Chromatin/genetics , Zea mays/genetics , DNA Methylation , Chromatin Assembly and Disassembly/genetics , Gene Silencing , Gene Expression Regulation, Plant
8.
Plant Physiol ; 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39288198

ABSTRACT

Phosphorus (P), an essential macronutrient, is crucial for plant growth and development. However, available inorganic phosphate (Pi) is often scarce in soil, and its limited mobility exacerbates P deficiency in plants. Plants have developed complex mechanisms to adapt to Pi-limited soils. The root, the primary interface of the plant with soil, plays an essential role in plant adaptation to Pi-limited soil environments. Root system architecture significantly influences Pi acquisition via the dynamic modulation of primary root and/or crown root length, lateral root proliferation and length, root hair development, and root growth angle in response to Pi availability. This review focuses on the physiological, anatomical, and molecular mechanisms underpinning changes in root development in response to Pi starvation in cereals, mainly focusing on the model monocot plant rice (Oryza sativa). We also review recent efforts to modify root architecture to enhance P uptake efficiency in crops and propose future research directions aimed at the genetic improvement of Pi uptake and use efficiency in crops based on root system architecture.

9.
Plant Physiol ; 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39250753

ABSTRACT

Soybean (Glycine max) is a globally important crop; however, its productivity is severely impacted by phosphorus (P) deficiency. Understanding the transcriptional regulation of low P (LP) response mechanisms is essential for enhancing soybean P use efficiency. In this study, we found that the Nuclear Factor-Y (NF-Y) transcription factor GmNF-YC4, in addition to its previously discovered role in regulating flowering time, possesses another functions in modulating root morphology and P uptake. Knockout of GmNF-YC4 notably boosted root proliferation and P uptake while also influencing the expression of genes related to LP stress. GmNF-YC4 acts as a specific DNA-binding transcriptional repressor, modulating the expression of the soybean α-EXPANSIN 7 (GmEXPA7) gene, which encodes a cell wall-loosening factor, through direct binding to its promoter region. Further investigation revealed that GmEXPA7 expression is predominantly root-specific and induced by LP. Moreover, overexpression of GmEXPA7 in soybean hairy roots enhanced LP tolerance by stimulating root growth and P uptake. We further screened and obtained more potential target genes of GmNF-YC4 via DNA affinity purification sequencing, including those related to LP stress. These findings underscore the pivotal role of the GmNF-YC4-GmEXPA7 module as a key regulator in mitigating LP stress in soybean.

10.
Brain ; 147(1): 267-280, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38059801

ABSTRACT

The heterogenous aetiology of Parkinson's disease is increasingly recognized; both mitochondrial and lysosomal dysfunction have been implicated. Powerful, clinically applicable tools are required to enable mechanistic stratification for future precision medicine approaches. The aim of this study was to characterize bioenergetic dysfunction in Parkinson's disease by applying a multimodal approach, combining standardized clinical assessment with midbrain and putaminal 31-phosphorus magnetic resonance spectroscopy (31P-MRS) and deep phenotyping of mitochondrial and lysosomal function in peripheral tissue in patients with recent-onset Parkinson's disease and control subjects. Sixty participants (35 patients with Parkinson's disease and 25 healthy controls) underwent 31P-MRS for quantification of energy-rich metabolites [ATP, inorganic phosphate (Pi) and phosphocreatine] in putamen and midbrain. In parallel, skin biopsies were obtained from all research participants to establish fibroblast cell lines for subsequent quantification of total intracellular ATP and mitochondrial membrane potential (MMP) as well as mitochondrial and lysosomal morphology, using high content live cell imaging. Lower MMP correlated with higher intracellular ATP (r = -0.55, P = 0.0016), higher mitochondrial counts (r = -0.72, P < 0.0001) and higher lysosomal counts (r = -0.62, P = 0.0002) in Parkinson's disease patient-derived fibroblasts only, consistent with impaired mitophagy and mitochondrial uncoupling. 31P-MRS-derived posterior putaminal Pi/ATP ratio variance was considerably greater in Parkinson's disease than in healthy controls (F-tests, P = 0.0036). Furthermore, elevated 31P-MRS-derived putaminal, but not midbrain Pi/ATP ratios (indicative of impaired oxidative phosphorylation) correlated with both greater mitochondrial (r = 0.37, P = 0.0319) and lysosomal counts (r = 0.48, P = 0.0044) as well as lower MMP in both short (r = -0.52, P = 0.0016) and long (r = -0.47, P = 0.0052) mitochondria in Parkinson's disease. Higher 31P-MRS midbrain phosphocreatine correlated with greater risk of rapid disease progression (r = 0.47, P = 0.0384). Our data suggest that impaired oxidative phosphorylation in the striatal dopaminergic nerve terminals exceeds mitochondrial dysfunction in the midbrain of patients with early Parkinson's disease. Our data further support the hypothesis of a prominent link between impaired mitophagy and impaired striatal energy homeostasis as a key event in early Parkinson's disease.


Subject(s)
Parkinson Disease , Humans , Phosphocreatine/metabolism , Mitochondria/metabolism , Corpus Striatum/metabolism , Adenosine Triphosphate/metabolism
11.
Proc Natl Acad Sci U S A ; 119(11): e2113386119, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35254902

ABSTRACT

SignificancePhosphonates are a class of phosphorus metabolites characterized by a highly stable C-P bond. Phosphonates accumulate to high concentrations in seawater, fuel a large fraction of marine methane production, and serve as a source of phosphorus to microbes inhabiting nutrient-limited regions of the oligotrophic ocean. Here, we show that 15% of all bacterioplankton in the surface ocean have genes phosphonate synthesis and that most belong to the abundant groups Prochlorococcus and SAR11. Genomic and chemical evidence suggests that phosphonates are incorporated into cell-surface phosphonoglycoproteins that may act to mitigate cell mortality by grazing and viral lysis. These results underscore the large global biogeochemical impact of relatively rare but highly expressed traits in numerically abundant groups of marine bacteria.


Subject(s)
Aquatic Organisms/metabolism , Organophosphonates/metabolism , Aquatic Organisms/genetics , Bacteria/genetics , Bacteria/metabolism , Gene Expression Regulation, Bacterial , Gene Transfer, Horizontal , Genes, Bacterial , Models, Biological , Prochlorococcus/genetics , Prochlorococcus/metabolism , Quantitative Trait, Heritable , Seawater/microbiology
12.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Article in English | MEDLINE | ID: mdl-35082153

ABSTRACT

The regeneration of bioavailable phosphate from immobilized organophosphorus represents a key process in the global phosphorus cycle and is facilitated by enzymes known as phosphatases. Most bacteria possess at least one of three phosphatases with broad substrate specificity, known as PhoA, PhoX, and PhoD, whose activity is optimal under alkaline conditions. The production and activity of these phosphatases is repressed by phosphate availability. Therefore, they are only fully functional when bacteria experience phosphorus-limiting growth conditions. Here, we reveal a previously overlooked phosphate-insensitive phosphatase, PafA, prevalent in Bacteroidetes, which is highly abundant in nature and represents a major route for the regeneration of environmental phosphate. Using the enzyme from Flavobacterium johnsoniae, we show that PafA is highly active toward phosphomonoesters, is fully functional in the presence of excess phosphate, and is essential for growth on phosphorylated carbohydrates as a sole carbon source. These distinct properties of PafA may expand the metabolic niche of Bacteroidetes by enabling the utilization of abundant organophosphorus substrates as C and P sources, providing a competitive advantage when inhabiting zones of high microbial activity and nutrient demand. PafA, which is constitutively synthesized by soil and marine flavobacteria, rapidly remineralizes phosphomonoesters releasing bioavailable phosphate that can be acquired by neighboring cells. The pafA gene is highly diverse in plant rhizospheres and is abundant in the global ocean, where it is expressed independently of phosphate availability. PafA therefore represents an important enzyme in the context of global biogeochemical cycling and has potential applications in sustainable agriculture.


Subject(s)
Bacterial Proteins/metabolism , Phosphates/metabolism , Phosphoric Monoester Hydrolases/metabolism , Phosphorus/metabolism , Bacteroidetes/metabolism , Biodiversity , Flavobacterium/metabolism
13.
Proc Natl Acad Sci U S A ; 119(30): e2202268119, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35858403

ABSTRACT

Considerable attention is given to absolute nutrient levels in lakes, rivers, and oceans, but less is paid to their relative concentrations, their nitrogen:phosphorus (N:P) stoichiometry, and the consequences of imbalanced stoichiometry. Here, we report 38 y of nutrient dynamics in Flathead Lake, a large oligotrophic lake in Montana, and its inflows. While nutrient levels were low, the lake had sustained high total N: total P ratios (TN:TP: 60 to 90:1 molar) throughout the observation period. N and P loading to the lake as well as loading N:P ratios varied considerably among years but showed no systematic long-term trend. Surprisingly, TN:TP ratios in river inflows were consistently lower than in the lake, suggesting that forms of P in riverine loading are removed preferentially to N. In-lake processes, such as differential sedimentation of P relative to N or accumulation of fixed N in excess of denitrification, likely also operate to maintain the lake's high TN:TP ratios. Regardless of causes, the lake's stoichiometric imbalance is manifested in P limitation of phytoplankton growth during early and midsummer, resulting in high C:P and N:P ratios in suspended particulate matter that propagate P limitation to zooplankton. Finally, the lake's imbalanced N:P stoichiometry appears to raise the potential for aerobic methane production via metabolism of phosphonate compounds by P-limited microbes. These data highlight the importance of not only absolute N and P levels in aquatic ecosystems, but also their stoichiometric balance, and they call attention to potential management implications of high N:P ratios.


Subject(s)
Ecosystem , Lakes , Nitrogen , Phosphorus , Phytoplankton , Zooplankton , Animals , China , Environmental Monitoring , Eutrophication , Lakes/chemistry , Lakes/microbiology , Methane/biosynthesis , Nitrogen/analysis , Nitrogen/metabolism , Organophosphonates/metabolism , Phosphorus/analysis , Phosphorus/metabolism , Phytoplankton/growth & development , Phytoplankton/metabolism , Zooplankton/growth & development , Zooplankton/metabolism
14.
Proc Natl Acad Sci U S A ; 119(48): e2214343119, 2022 11 29.
Article in English | MEDLINE | ID: mdl-36409916

ABSTRACT

Extreme daily values of precipitation (1939-2021), discharge (1991-2021), phosphorus (P) load (1994-2021), and phycocyanin, a pigment of Cyanobacteria (June 1-September 15 of 2008-2021) are clustered as multi-day events for Lake Mendota, Wisconsin. Long-range dependence, or memory, is the shortest for precipitation and the longest for phycocyanin. Extremes are clustered for all variates and those of P load and phycocyanin are most strongly clustered. Extremes of P load are predictable from extremes of precipitation, and precipitation and P load are correlated with later concentrations of phycocyanin. However, time delays from 1 to 60 d were found between P load extremes and the next extreme phycocyanin event within the same year of observation. Although most of the lake's P enters in extreme events, blooms of Cyanobacteria may be sustained by recycling and food web processes.


Subject(s)
Cyanobacteria , Phosphorus , Phosphorus/analysis , Phycocyanin , Lakes/microbiology , Wisconsin
15.
Proc Natl Acad Sci U S A ; 119(36): e2203057119, 2022 09 06.
Article in English | MEDLINE | ID: mdl-36037375

ABSTRACT

Phosphorus (P) is a key nutrient limiting bacterial growth and primary production in the oceans. Unsurprisingly, marine microbes have evolved sophisticated strategies to adapt to P limitation, one of which involves the remodeling of membrane lipids by replacing phospholipids with non-P-containing surrogate lipids. This strategy is adopted by both cosmopolitan marine phytoplankton and heterotrophic bacteria and serves to reduce the cellular P quota. However, little, if anything, is known of the biological consequences of lipid remodeling. Here, using the marine bacterium Phaeobacter sp. MED193 and the ciliate Uronema marinum as a model, we sought to assess the effect of remodeling on bacteria-protist interactions. We discovered an important trade-off between either escape from ingestion or resistance to digestion. Thus, Phaeobacter grown under P-replete conditions was readily ingested by Uronema, but not easily digested, supporting only limited predator growth. In contrast, following membrane lipid remodeling in response to P depletion, Phaeobacter was less likely to be captured by Uronema, thanks to the reduced expression of mannosylated glycoconjugates. However, once ingested, membrane-remodeled cells were unable to prevent phagosome acidification, became more susceptible to digestion, and, as such, allowed rapid growth of the ciliate predator. This trade-off between adapting to a P-limited environment and susceptibility to protist grazing suggests the more efficient removal of low-P prey that potentially has important implications for the functioning of the marine microbial food web in terms of trophic energy transfer and nutrient export efficiency.


Subject(s)
Food Chain , Models, Biological , Phosphorus , Aquatic Organisms , Ciliophora/physiology , Membrane Lipids/metabolism , Phospholipids/metabolism , Phosphorus/metabolism , Phytoplankton/metabolism , Rhodobacteraceae/physiology
16.
Proc Natl Acad Sci U S A ; 119(39): e2201388119, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36122219

ABSTRACT

Saturn's moon Enceladus has a potentially habitable subsurface water ocean that contains canonical building blocks of life (organic and inorganic carbon, ammonia, possibly hydrogen sulfide) and chemical energy (disequilibria for methanogenesis). However, its habitability could be strongly affected by the unknown availability of phosphorus (P). Here, we perform thermodynamic and kinetic modeling that simulates P geochemistry based on recent insights into the geochemistry of the ocean-seafloor system on Enceladus. We find that aqueous P should predominantly exist as orthophosphate (e.g., HPO42-), and total dissolved inorganic P could reach 10-7 to 10-2 mol/kg H2O, generally increasing with lower pH and higher dissolved CO2, but also depending upon dissolved ammonia and silica. Levels are much higher than <10-10 mol/kg H2O from previous estimates and close to or higher than ∼10-6 mol/kg H2O in modern Earth seawater. The high P concentration is primarily ascribed to a high (bi)carbonate concentration, which decreases the concentrations of multivalent cations via carbonate mineral formation, allowing phosphate to accumulate. Kinetic modeling of phosphate mineral dissolution suggests that geologically rapid release of P from seafloor weathering of a chondritic rocky core could supply millimoles of total dissolved P per kilogram of H2O within 105 y, much less than the likely age of Enceladus's ocean (108 to 109 y). These results provide further evidence of habitable ocean conditions and show that any oceanic life would not be inhibited by low P availability.


Subject(s)
Hydrogen Sulfide , Phosphorus , Ammonia , Carbon , Carbon Dioxide , Minerals , Oceans and Seas , Phosphates , Silicon Dioxide , Water
17.
BMC Biol ; 22(1): 211, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39294668

ABSTRACT

BACKGROUND: Phosphorus-solubilizing bacteria (PSB) are vital in converting insoluble phosphorus into a soluble form that plants can readily absorb and utilize in soil. While previous studies have mainly focused on the extracellular secretion of microorganisms, few have explored the intricate intracellular metabolic processes involved in PSB-mediated phosphorus solubilization. RESULTS: Here, we uncovered that Ca3(PO4)2 could serve as a source of insoluble phosphorus for the PSB, Pseudomonas sp. NK2. High-performance liquid chromatography (HPLC) results indicated higher levels of organic acids released from insoluble phosphorus compared to a soluble phosphorus source (KH2PO4), with acetic acid released exclusively under insoluble phosphorus condition. Moreover, non-target metabolomics was employed to delve into the intracellular metabolic profile. It unveiled that insoluble phosphorus significantly enhanced the tricarboxylic acid cycle, glycolysis, glyoxylic acid metabolism, and other pathways, leading to the production of acetic acid, gluconic acid, oxalic acid, and citric acid for insoluble phosphorus solubilization. In our quest to identify suitable biochar carriers, we assessed seven types of biochar through the conjoint analysis of NBRIP medium culture and application to soil for 30 days, with cotton straw-immobilized NK2 emerging as the most potent phosphorus content provider. Lastly, NK2 after cotton straw immobilization demonstrated the ability to enhance biomass, plant height, and root development of Solanum lycopersicum L. cv. Micro Tom. CONCLUSIONS: Pseudomonas sp. NK2 with cotton straw biochar could enhance phosphorus availability and tomato growth. These findings bear significant implications for the practical application of phosphorus-solubilizing bacteria in agricultural production and the promotion of environmentally sustainable farming practices.


Subject(s)
Charcoal , Phosphorus , Pseudomonas , Solanum lycopersicum , Phosphorus/metabolism , Pseudomonas/metabolism , Pseudomonas/growth & development , Solanum lycopersicum/microbiology , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Charcoal/chemistry , Soil Microbiology , Stress, Physiological , Solubility
18.
Nano Lett ; 24(1): 479-485, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38147351

ABSTRACT

Black phosphorus (Black P), a layered semiconductor with a layer-dependent bandgap and high carrier mobility, is a promising candidate for next-generation electronics and optoelectronics. However, the synthesis of large-area, layer-precise, single crystalline Black P films remains a challenge due to their high nucleation energy. Here, we report the molecular beam heteroepitaxy of single crystalline Black P films on a tin monosulfide (SnS) buffer layer grown on Au(100). The layer-by-layer growth mode enables the preparation of monolayer to trilayer films, with band gaps that reflect layer-dependent quantum confinement.

19.
Nano Lett ; 24(1): 326-330, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38146954

ABSTRACT

Infrared spectrometers with the ability to resolve the spectral intensity and wavelength simultaneously are widely used in industry and the laboratory. However, their huge volume, high price, and cryogenic operating temperature limit their applications in the rapidly developing field of portable devices. Here, we demonstrate a room-temperature self-powered infrared spectrometer based on a single black phosphorus (BP) heterojunction diode. The nonlinearly gate-tunable photocurrent spectrum involving quantum-confined Franz-Keldysh and Burstein-Moss effects in a single BP/MoS2 diode instead of using space-consuming detector arrays provides a new dimension for resolving the intensity and wavelength information of spectra simultaneously. The active area for spectral sensing is only 1500 µm2, and the photodetection range is from 1.7 to 3.6 µm. Room-temperature operation, micrometer-scale size, and silicon-compatible technology make the BP/MoS2 heterojunction a promising configuration for portable spectrometer applications.

20.
Nano Lett ; 24(4): 1052-1061, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-37955335

ABSTRACT

Epilepsy is a prevalent and severe neurological disorder and generally requires prolonged electrode implantation and tether brain stimulation in refractory cases. However, implants may cause potential chronic immune inflammation and permanent tissue damage due to material property mismatches with soft brain tissue. Here, we demonstrated a nanomaterial-enabled near-infrared (NIR) neuromodulation approach to provide nongenetic and nonimplantable therapeutic benefits in epilepsy mouse models. Our study showed that crystal-exfoliated photothermal black phosphorus (BP) flakes could enhance neural activity by altering the membrane capacitive currents in hippocampus neurons through NIR photothermal neuromodulation. Optical stimulation facilitated by BP flakes in hippocampal slices evoked action potentials with a high spatiotemporal resolution. Furthermore, BP flake-enabled NIR neuromodulation of hippocampus neural circuits can suppress epileptic signals in epilepsy model mice with minimal invasiveness and high biocompatibility. Consequently, nanomaterial-enabled NIR neuromodulation may open up opportunities for nonimplantable optical therapy of epilepsy in nontransgenic organisms.


Subject(s)
Epilepsy , Nanostructures , Mice , Animals , Phosphorus/therapeutic use , Epilepsy/therapy , Hippocampus , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL