Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Chemistry ; 30(51): e202401380, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-38987889

ABSTRACT

Photocatalytic ozonation is considered to be a promising approach for the treatment of refractory organic pollutants, but the design of efficient catalyst remains a challenge. Surface modification provides a potential strategy to improve the activity of photocatalytic ozonation. In this work, density functional theory (DFT) calculations were first performed to check the interaction between O3 and TiO2-OH (surface hydroxylated TiO2) or TiO2-F (surface fluorinated TiO2), and the results suggest that TiO2-OH displays better O3 adsorption and activation than does TiO2-F, which is confirmed by experimental results. The surface hydroxyl groups greatly promote the O3 activation, which is beneficial for the generation of reactive oxygen species (ROS). Importantly, TiO2-OH displays better performance towards pollutants (such as berberine hydrochloride) removal than does TiO2-F and most reported ozonation photocatalysts. The total organic carbon (TOC) removal efficiency reaches 84.4 % within two hours. This work highlights the effect of surface hydroxylation on photocatalytic ozonation and provides ideas for the design of efficient photocatalytic ozonation catalysts.

2.
J Environ Manage ; 318: 115515, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35949077

ABSTRACT

The purpose of this study was to evaluate the performance of synthesized TiO2 nanotube arrays (NTAs) for the removal of the COVID-19 aided antibiotic ciprofloxacin (CIP) and the textile dye methylene blue (MB) from model wastewater. Synthesis of TiO2 NTAs showed that anodization potential and calcination temperatures directly influence nanotube formation. The increased anodization potential from 10 to 40 V resulted in the development of larger porous nanotubes with a diameter of 36-170 nm, while the collapse of the tubular structure was registered at the highest applied potential. Furthermore, it was found that the 500 °C calcination temperature was the most prominent for the formation of the most photocatalytically active TiO2 NTAs, due to the optimal anatase/rutile ratio of 4.60. The degradation of both model compounds was achieved with all synthesized TiO2 NTAs; however, the most photocatalytically active NTA sample was produced at 30 V and 500 °C. Compared to photocatalysis, CIP degradation was greatly enhanced by 5-25 times when ozone was introduced to the photocatalytic cell (rates 0.4-4.2 × 10-1 min-1 versus 0.07-0.2 × 10-1 min-1). This resulted in the formation of CIP degradation by-products, with different mass-to-charge ratios from [M+H]+ 346 to 273 m/z. Even though the CIP degradation pathway is rather complex, three main mechanisms, decarboxylation, hydroxylation reaction, and piperazine ring cleavage, were proposed and explained. Furthermore, treated samples were placed in contact with the crustaceans Daphnia magna. It was found that 100% mortality was achieved when approximately 60% of the remaining TOC was present in the samples, indicating that toxic degradation by-products were formed.


Subject(s)
COVID-19 , Nanotubes , Ozone , Anti-Bacterial Agents/analysis , Ciprofloxacin , Humans , Nanotubes/chemistry , Titanium/chemistry , Water
3.
J Environ Manage ; 300: 113808, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34649316

ABSTRACT

The removal of endocrine disrupting compounds (EDCs) remains a big challenge in water treatment in terms of public health. The aim of the study was evaluating the performance of nano TiO2, ozone, and UV system for removal of EDCs. In this study, the efficiency of the nano TiO2 to degrade target EDCs under catalytic and photocatalytic ozonation was examined at different operational conditions. The maximum removal of target pollutant was obtained with pH 6.8; ozone concentration 10 mg/L; catalyst dosage 0.050 g/L and the duration time of the photocatalytic performances was 10 min showing the most treatment conditions respectively. In addition, the surface reaction mechanism of endocrine disrupting compound removal by catalytic and photocatalytic ozonation was investigated. The results showed that the catalyst can significantly enhance the removal of target compound. The 99.0%, 88.3% and 51.8% removal rates were obtained at photocatalytic ozonation, catalytic ozonation and sole ozonation, respectively. These results indicated that the Ozone/TiO2/UV process was favorable for engineering applications for removal of endocrine disrupting compounds such as steroid hormone and likely similar micro pollutants.


Subject(s)
Ozone , Pharmaceutical Preparations , Water Pollutants, Chemical , Water Purification , Catalysis , Water Pollutants, Chemical/analysis
4.
J Environ Manage ; 272: 111044, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32669252

ABSTRACT

Herein, TiO2 nanoparticles were immobilized on the ceramic surface using the sol-gel dip-coating method, which confirmed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Then, a semi-batch reactor containing the prepared ceramic plates, which irradiated by the various UV lights was used for the degradation of the albendazole (ALZ) and metronidazole (MTZ) pharmaceuticals by the photocatalytic ozonation process. The control experiments were performed to compare the photocatalysis, ozonation, photo-ozonation and photocatalytic ozonation processes under the same operational conditions with the UV-A, UV-B and UV-C irradiations. The synergistic effect of photocatalysis and ozonation was observed; moreover, the results revealed that the UV-A/TiO2/O3 had the highest efficiency for the ALZ and MTZ degradation owing to the synergistic heterogeneous reactions (SHRs), which led to more reactive oxygen species (ROS). The MTZ and ALZ degradation were probed by monitoring the dissolved ozone, oxygen and hydrogen peroxide concentrations during the various processes including the UV-A/TiO2/O3 process. The obtained results disclose that the ALZ degradation is lower than the MTZ due to its resistant nature with more direct attacks of the ozone in the bulk solution compared to the MTZ. Furthermore, the various compounds as the holes (h+) and ROS scavengers or ozone solubility enhancers were added to the reaction bulk to investigate the exact mechanism of the photocatalytic-ozonation. Eventually, the degradation intermediates of the pharmaceuticals generated in the photocatalytic-ozonation process were successfully recognized by the Gas chromatography-mass spectrometry (GC-MS) and the possible degradation paths were suggested for the degradation of pollutants considering the responsible ROS in each case.


Subject(s)
Ozone , Water Pollutants, Chemical/analysis , Albendazole , Catalysis , Metronidazole , Titanium , Ultraviolet Rays
5.
Molecules ; 24(19)2019 Sep 22.
Article in English | MEDLINE | ID: mdl-31546708

ABSTRACT

The use of graphene-based materials as catalysts in both ozone and ozone/radiation processes is creating interest among researchers devoted to the study of advanced oxidation processes (AOPs) for the degradation of organic pollutants in water. In this review, detailed explanations of catalytic and photocatalytic ozonation processes mediated by graphene-based materials are presented, focusing on aspects related to the preparation and characterization of catalysts, the nature of the water pollutants treated, the type of reactors and radiation sources applied, the influence of the main operating variables, catalyst activity and stability, and kinetics and mechanisms.


Subject(s)
Graphite/chemistry , Ozone/chemistry , Water Pollutants, Chemical/chemistry , Catalysis , Oxidation-Reduction , Water Pollutants/chemistry , Water Purification/methods
6.
Molecules ; 24(9)2019 May 03.
Article in English | MEDLINE | ID: mdl-31058864

ABSTRACT

In this work, primidone, a high persistent pharmacological drug typically found in urban wastewaters, was degraded by different ozone combined AOPs using TiO2 P25 and commercial WO3 as photocatalyst. The comparison of processes, kinetics, nature of transformation products, and ecotoxicity of treated water samples, as well as the influence of the water matrix (ultrapure water or a secondary effluent), is presented and discussed. In presence of ozone, primidone is rapidly eliminated, with hydroxyl radicals being the main species involved. TiO2 was the most active catalyst regardless of the water matrix and the type of solar (global or visible) radiation applied. The synergy between ozone and photocatalysis (photocatalytic ozonation) for TOC removal was more evident at low O3 doses. In spite of having a lower band gap than TiO2 P25, WO3 did not bring any beneficial effects compared to TiO2 P25 regarding PRM and TOC removal. Based on the transformation products identified during ozonation and photocatalytic ozonation of primidone (hydroxyprimidone, phenyl-ethyl-malonamide, and 5-ethyldihydropirimidine-4,6(1H,5H)-dione), a degradation pathway is proposed. The application of the different processes resulted in an environmentally safe effluent for Daphnia magna.


Subject(s)
Oxides/chemistry , Ozone/chemistry , Primidone/analysis , Titanium/chemistry , Tungsten/chemistry , Water Pollutants, Chemical/analysis , Animals , Catalysis , Daphnia/drug effects , Daphnia/growth & development , Hydroxyl Radical/chemistry , Kinetics , Oxidation-Reduction , Photochemical Processes , Sunlight , Ultraviolet Rays , Water/chemistry , Water Purification
7.
J Environ Manage ; 195(Pt 2): 208-215, 2017 Jun 15.
Article in English | MEDLINE | ID: mdl-27570144

ABSTRACT

The photocatalytic ozonation of aniline (ANL) aqueous solutions was carried out in the presence of neat titanium dioxide (TiO2), multi-walled carbon nanotubes (MWCNT) and a composite of TiO2 and MWCNT. Independent tests for catalytic ozonation and photocatalysis were also carried out in order to explore the potential occurrence of a synergetic effect. Photocatalytic and catalytic ozonation carried out with an ozone dose of 50 g m-3 converted ANL in 15 min. Photocatalysis using P25, commercial TiO2, and an 80:20 (w/w) composite of P25 and MWCNT also led to total ANL conversion, but at longer reaction times. Removal of TOC was higher than 70% for all photocatalytic ozonation systems at 1 h of reaction. With the exception of neat MWCNT, photocatalytic ozonation in the presence of the selected samples led to nearly complete mineralization after 3 h of reaction. Photocatalytic ozonation completely removed oxalic acid (OXA) formed during ANL degradation. The concentration of oxamic acid (OMA, other ANL degradation by-product more refractory than OXA) generally increased with time, and in the photocatalytic ozonation with P25 based materials its concentration decreased earlier. The presence of nitrates and ammonium was confirmed during ANL degradation by all tested treatments, with the exception of the cation in TiO2 catalysed reactions.


Subject(s)
Nanotubes, Carbon , Water Pollutants, Chemical , Aniline Compounds , Catalysis , Oxalic Acid , Ozone , Titanium
8.
Molecules ; 22(7)2017 Jul 14.
Article in English | MEDLINE | ID: mdl-28708117

ABSTRACT

An incipient advanced oxidation process, solar photocatalytic ozonation (SPO), is reviewed in this paper with the aim of clarifying the importance of this process as a more sustainable water technology to remove priority or emerging contaminants from water. The synergism between ozonation and photocatalytic oxidation is well known to increase the oxidation rate of water contaminants, but this has mainly been studied in photocatalytic ozonation systems with lamps of different radiation wavelength, especially of ultraviolet nature (UVC, UVB, UVA). Nowadays, process sustainability is critical in environmental technologies including water treatment and reuse; the application of SPO systems falls into this category, and contributes to saving energy and water. In this review, we summarized works published on photocatalytic ozonation where the radiation source is the Sun or simulated solar light, specifically, lamps emitting radiation to cover the UVA and visible light spectra. The main aspects of the review include photoreactors used and radiation sources applied, synthesis and characterization of catalysts applied, influence of main process variables (ozone, catalyst, and pollutant concentrations, light intensity), type of water, biodegradability and ecotoxicity, mechanism and kinetics, and finally catalyst activity and stability.


Subject(s)
Ozone/chemistry , Sunlight , Ultraviolet Rays , Water Pollutants, Chemical/chemistry , Water Purification/methods , Biodegradation, Environmental , Catalysis , Kinetics , Oxidation-Reduction , Wastewater/chemistry , Water
9.
J Environ Sci (China) ; 26(3): 662-72, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-25079280

ABSTRACT

Photocatalytic ozonation of phenol and oxalic acid (OA) was conducted with a Ag(+)/TiO2 catalyst and different pathways were found for the degradation of different compounds. Ag(+) greatly promoted the photocatalytic degradation of contaminants due to its role as an electron scavenger. It also accelerated the removal rate of OA in ozonation and the simultaneous process for its complex reaction with oxalate. Phenol could be degraded both in direct ozonation and photolysis, but the TOC removal rates were much higher in the simultaneous processes due to the oxidation of hydroxyl radicals resulting from synergetic effects. The sequence of photo-illumination and ozone exposure in the combined process showed quite different effects in phenol degradation and TOC removal. The synergetic effects in different combined processes were found to be highly related to the properties of the target pollutants. The color change of the solution and TEM result confirmed that Ag(+) was easily reduced and deposited on the surface of TiO2 under photo-illumination, and dissolved again into solution in the presence of ozone. This simple cycle of enrichment and distribution of Ag(+) can greatly benefit the design of advanced oxidation processes, in which the sequences of ozone and photo-illumination can be varied according to the needs for catalyst recycling and the different properties of pollutants.


Subject(s)
Oxalic Acid/chemistry , Ozone/chemistry , Phenol/chemistry , Silver/chemistry , Titanium/chemistry , Catalysis , Environmental Pollutants/chemistry , Photolysis , Ultraviolet Rays
10.
Chemosphere ; 346: 140594, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37914050

ABSTRACT

In this study, monoclinic BiPO4 nanorods were fabricated by one-pot solvothermal method. Its catalytic capability in photocatalytic ozonation process was tested by degradation and mineralization of sodium dodecyl benzene sulfonate (SDBS) solution. The results demonstrated that the TOC removal rate was dramatically improved to 90.0% at 75 min for UV/O3/BiPO4 process, which was 4.9 and 3.8 times more than that of UV/BiPO4 and O3. Moreover, the pseudo-first-order kinetic constant (0.337 min-1) and mineralization rate (90.0%) for SDBS degradation using BiPO4 in UV/O3 process were 1.6 and 1.3 times as great as that of conventional TiO2 photocatalyst (0.206 min-1, 67.3%). The influence of BiPO4 dosage, O3 concentration initial pH and coexisted ions on SDBS degradation in UV/O3/BiPO4 process were also investigated. The outcome of quenching studies illustrated both ·OH and h+ contributed prominently to SDBS degradation in UV/O3/BiPO4 process, implying that high valence band position of BiPO4 could promote the synergism between photocatalysis and ozonation. The degradation pathway of SBDS was proposed by combination of intermediates analysis and DFT calculation. Real carwash wastewater was chosen as typical surfactant containing wastewater to explore the practical application of UV/O3/BiPO4 technology. During 30 min, COD and LAS removal efficiency reached 59.7% and 70.6%, respectively. The quality indices of effluent could meet the requirements for reuse of carwash water in Water Quality Standard for Urban Miscellaneous Use in China. Energy consumption in the process was calculated as 13.9 kW h m-3, which was about 3.6 and 2.2 times less than that of UV/BiPO4 and O3 process, respectively. The results suggest that UV/O3/BiPO4 system has an application potential for surfactant containing wastewater treatment or recycle.


Subject(s)
Nanotubes , Ozone , Pulmonary Surfactants , Water Pollutants, Chemical , Water Purification , Wastewater , Surface-Active Agents , Water Pollutants, Chemical/analysis , Ozone/analysis , Water Purification/methods , Oxidation-Reduction
11.
Sci Rep ; 14(1): 22897, 2024 10 02.
Article in English | MEDLINE | ID: mdl-39358462

ABSTRACT

Antibiotics are extensively used in human medicine, aquaculture, and animal husbandry, leading to the release of antimicrobial resistance into the environment. This contributes to the rapid spread of antibiotic-resistant genes (ARGs), posing a significant threat to human health and aquatic ecosystems. Conventional wastewater treatment methods often fail to eliminate ARGs, prompting the adoption of advanced oxidation processes (AOPs) to address this growing risk. The study investigates the efficacy of visible light-driven photocatalytic systems utilizing two catalyst types (TiO2-Pd/Cu and g-C3N4-Pd/Cu), with a particular emphasis on their effectiveness in eliminating blaTEM, ermB, qnrS, tetM. intl1, 16 S rDNA and 23 S rDNA through photocatalytic ozonation and peroxone processes. Incorporating O3 into photocatalytic processes significantly enhances target removal efficiency, with the photocatalyst-assisted peroxone process emerging as the most effective AOP. The reemergence of targeted contaminants following treatment highlights the pivotal importance of AOPs and the meticulous selection of catalysts in ensuring sustained treatment efficacy. Furthermore, Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE) analysis reveals challenges in eradicating GC-rich bacteria with TiO2 and g-C3N4 processes, while slight differences in Cu/Pd loadings suggest g-C3N4-based ozonation improved antibacterial effectiveness. Terminal Restriction Fragment Length Polymorphism analysis highlights the efficacy of the photocatalyst-assisted peroxone process in treating diverse samples.


Subject(s)
Titanium , Titanium/chemistry , Titanium/pharmacology , Catalysis , Wastewater/microbiology , Wastewater/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Water Purification/methods , Ozone/chemistry , Ozone/pharmacology , Drug Resistance, Microbial/genetics , Nitrogen Compounds/chemistry , Light , Nitriles/chemistry , Nitriles/pharmacology , Copper/chemistry , Copper/pharmacology , Genes, Bacterial , Drug Resistance, Bacterial/genetics , Oxidation-Reduction , Graphite
12.
Heliyon ; 10(3): e25451, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38352774

ABSTRACT

This study aimed to investigate the potential of the photocatalytic ozonation process (PCO) for decolorizing DB1(direct blue) dye, a commonly used dye in the textile industry known for its resistance to removal from wastewater. To address this challenge, a ZnSnO3@S-doped g-C3N4 nano photocatalyst was synthesized using a simple hydrothermal method. In a novel approach, a light/O3/ZnSnO3@S-doped g-C3N4 system was employed for the first time to degrade the DB1 dye. BET analysis indicated that the synthesized catalyst exhibited the fifth type of isotherm, typically associated with materials containing mesopores. Under optimized conditions, the PCO process achieved complete decolorization of 70 ppm DB1 dye within just 15 min at a temperature of 25 °C, a gas flow rate of 2.83 ml/s, and a catalyst dosage of 0.003 g, encompassing both removal and photocatalytic contributions. Importantly, the catalyst demonstrated excellent stability and could be reused up to five times. These findings highlight the promising potential of the light/O3/ZnSnO3@S-doped g-C3N4 system in effectively decolorizing DB1 dye, overcoming its resistance, and addressing an important challenge faced by the textile industry in wastewater treatment. The formative nature of this study provides valuable insights into the development of advanced oxidation processes for efficient dye removal.

13.
J Environ Manage ; 127: 114-24, 2013 Sep 30.
Article in English | MEDLINE | ID: mdl-23685272

ABSTRACT

Aqueous solutions of four pharmaceutical compounds, belonging to the group of emergent contaminants of water: atenolol (ATL), hydrochlorothiazide (HCT), ofloxacin (OFX) and trimethoprim (TMP), have been treated with different oxidation systems, mainly, photocatalytic oxidation, ozonation and photocatalytic ozonation. TiO2 has been used as semiconductor for photocatalytic reactions both in the presence of air, oxygen or ozone-oxygen gas mixtures. Black light lamps mainly emitting at 365 nm were the source of radiation. In all cases, the influence of some variables (concentrations of semiconductor, ozone gas and pharmaceuticals and pH) on the removal of pharmaceuticals, total polyphenol content (TPC) and total organic carbon (TOC) was investigated. A discussion on the possible routes of pharmaceutical and intermediates (as TPC and TOC) elimination has been developed. Thus, OFX TiO2/UVA degradation mechanism seems to develop through the participation of non-hydroxyl free radical species. Furthermore, the presence of OFX inhibits the formation of hydroxyl radicals in the photocatalytic process. The most effective processes were those involving ozone that lead to complete disappearance of parent compounds in less than 30 min for initial pharmaceutical concentrations lower than 2.5 mg L(-1). In the ozonation systems, regardless of the pH and the presence of TiO2, pharmaceuticals are degraded through their direct reaction with ozone. Photocatalytic ozonation was the most efficient process for TPC and TOC removals (≥ 80% and ≥60% elimination after 2 h of treatment, respectively) as well as in terms of the ozone consumption efficiency (1, 5.5 and 4 mol of ozone consumed per mol of TOC mineralized, at pH 4, 7 and 9, respectively). Weakly acid conditions (pH 4) resulted to be the most convenient ones for TPC and TOC removal by photocatalytic ozonation. This was likely due to formation of hydroxyl radicals through the ozonide generated at these conditions.


Subject(s)
Atenolol/chemistry , Hydrochlorothiazide/chemistry , Ofloxacin/chemistry , Ozone/chemistry , Trimethoprim/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Atenolol/analysis , Environmental Restoration and Remediation/methods , Hydrochlorothiazide/analysis , Hydrogen-Ion Concentration , Ofloxacin/analysis , Oxidation-Reduction , Oxygen/chemistry , Photochemical Processes , Semiconductors , Titanium/chemistry , Trimethoprim/analysis , Ultraviolet Rays , Water Pollutants, Chemical/analysis
14.
Environ Sci Pollut Res Int ; 30(43): 98211-98230, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37606781

ABSTRACT

This paper proposes the study of a solar-based photocatalytic ozonation process for the degradation of salicylic acid (SA) using a novel S-scheme ZnO/Cu2O/CuO/carbon xerogel photocatalyst. The incorporation of CuO and Cu2O aims to enhance charge mobility through the formation of p-n heterojunctions with ZnO, whereas the carbon xerogel (XC) was selected due to its eco-friendly nature, capacity to stabilize S-scheme heterojunctions as a solid-state electron mediator, and ability to function as a reducing agent under high temperatures. The characterization of the composites demonstrates that the presence of the XC during the calcination step led to the reduction of a fraction of the CuO into Cu2O, forming a ternary semiconductor heterojunction system. In terms of photocatalysis, the XC/ZnO-CuxO 5% composite achieved the best efficiency for salicylic acid degradation, mainly due to the stabilization of the S-scheme charge transfer pathway between the ZnO/CuO/Cu2O semiconductors by the XC. The total organic carbon (TOC) removal during heterogeneous photocatalysis was 80% for the solar-based process and 68% for the visible light process, after 300 min. The solar-based photocatalytic ozonation process was highly successful regarding the degradation of SA, achieving a 75% increase in the apparent reaction rate constant when compared to heterogeneous photocatalysis. Furthermore, a 78% TOC removal was achieved after 150 min, which is half the time required by the heterogeneous photocatalysis to obtain the same result. Temperature, salinity, and turbidity had major effects on the efficiency of the photocatalytic ozonation process; the system's pH did not cause any major performance variation, which holds relevance for industrial applications.


Subject(s)
Ozone , Zinc Oxide , Temperature , Salinity , Carbon , Salicylic Acid , Hydrogen-Ion Concentration
15.
Chemosphere ; 340: 139907, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37633615

ABSTRACT

Phosphorus-modified copper ferrite (P-CuFe2O4) nanoparticles were prepared by a simple sol-gel auto-combustion process and used for the photocatalytic ozonation of lomefloxacin (LOM). The morphology, crystallinity, and structure of the synthesized CuFe2O4 and P-CuFe2O4 nanoparticles were investigated using various techniques. The high-performance liquid chromatography (HPLC) analysis revealed that the degradation of LOM achieved a 99% reduction after a duration of 90 min in the photocatalytic ozonation system. In accordance with the charge-to-mass ratio, four intermediates were proposed with the help of their fragments obtained in LC-MS/MS. The degradation kinetics of lomefloxacin followed a pseudo-first order reaction, and the degradation mechanism was proposed based on the results. P0.035Cu0.965Fe2O4 showed the highest total organic carbon (TOC) removal with 20.15% in 90 min, highest specific surface area and the highest fluoride and ammonium production using the ion chromatography (IC). The experimental results obtained from the electron paramagnetic resonance (EPR) analysis indicated that the modified P-CuFe2O4 samples exhibited significantly elevated levels of superoxide (.O2-) production compared to the CuFe2O4 samples. The findings of this study demonstrate that the introduction of phosphorus modification into the copper ferrite photocatalyst led to an augmentation of both the specific surface area and the total pore volume. Furthermore, the incorporation of phosphorus served to promote the efficient separation of electron-hole pairs by effectively trapping electrons in the conduction band, hence enhancing the degradation efficiency.


Subject(s)
Nanoparticles , Ozone , Chromatography, Liquid , Copper , Tandem Mass Spectrometry
16.
Sci Total Environ ; 887: 164000, 2023 Aug 20.
Article in English | MEDLINE | ID: mdl-37169186

ABSTRACT

Pharmaceutical and personal care products (PPCPs) have been consumed in great extension and most of these are found in water bodies, owing to the inefficiency of conventional wastewater treatments. To face against these recalcitrant contaminants, advanced oxidation processes such as photocatalysis and ozonation have been studied. Moreover, the combination of these technologies can improve the degradation of PPCPs, reducing the ozone consumption and the effluent toxicity with the presence of photocatalysts. In particular, this study aimed to evaluate the effects of different N and Ce loads in co-doping TiO2 catalysts on the efficiency of photocatalytic oxidation and photocatalytic ozonation for PPCPs abatement, as well as on the resultant toxicity to aquatic species. Different radiation sources (UVA and solar radiation) were considered for the photocatalytic oxidation. A mixture of 5 PPCPs: paracetamol, sulfamethoxazole, carbamazepine, methylparaben and propylparaben was used as a model synthetic effluent. Photocatalysis showed a low efficiency on the PPCPs removal (<20 %), which was not affected by the radiation source. In general, the tested catalysts showed no or low added-value for reducing the toxicity of the synthetic effluent. Concerning photocatalytic ozonation, the lowest N amount (2.5 % w/w) promoted the best results for PPCPs removal, achieving values up to 100 % with significant reduction of ozone dose compared to photolytic ozonation. In general, photocatalytic ozonation showed better ecotoxicological performance than single photocatalysis. Compared to single photolytic ozonation, a benefitial effect was observed for two aquatic species, using a specific catalyst. This catalyst, prepared by doping TiO2 with 2.5 % w/w N and 1.2 % w/w Ce, showed to be the most promisong one, with potential to be used in photocatalytic ozonation. Hence, this work highlights the potential role of N and Ce co-doped TiO2-based catalysts in photocatalytic ozonation for wastewater treatment.

17.
Chemosphere ; 313: 137411, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36460148

ABSTRACT

Paracetamol (PCT) or acetaminophen is a widely prescribed drug to treat fever and mild to moderate pain. The PCT uptake by animals and humans is not complete, being excreted through their urine to contaminate the aquatic/natural environments. Trace amounts of this drug have been found in sewage sludge, hospital wastewaters, wastewater plant treatments, surface waters, and even drinking water. PCT denatures proteins and oxidize lipids in cells with damage of their genetic code. Its toxicity over macrophytes, protozoan, algae, bacteria, and fishes has been reported. Ozonation methods have been proposed as efficient treatments to solve this pollution. This comprehensive and critical review is focused on the application of ozonation processes to remove PCT polluted water from different sources, like natural waters, synthetic waters, and real wastewaters. The fundamentals, operating variables, and best results by direct ozonation and hybrid catalytic ozonation are described, with attention to produced reactive oxygen species and their oxidative action. Single ozonation, catalytic modification of materials, and hybrid non-catalytic processes are detailed as direct ozonation methods. Ozonation with metal-based catalysts and photolytic and photocatalytic ozonation as hybrid catalytic methods are analyzed. Sequential non-biological and biological treatments with ozone and ozonation for wastewater remediation in treatment plants are described. Reaction sequences proposed for PCT mineralization are finally discussed, showing the initial formation of hydroquinone and 2-hydroxy-4-(N-acetyl)-aminophenol and their consecutive evolution to ultimate carboxylic acids like oxalic and oxamic. The ability of the methods to destroy these acids and their iron- and/or copper-complexes explains their mineralization performance.


Subject(s)
Ozone , Water Pollutants, Chemical , Water Purification , Humans , Animals , Wastewater , Acetaminophen , Water Pollutants, Chemical/analysis , Sewage , Water Purification/methods , Catalysis
18.
Sci Total Environ ; 843: 157006, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35779716

ABSTRACT

This research evaluates photocatalytic ozonation for removing 5 PFAS (PFOA/PFHxS/PFBS/6:2 FTS/GenX) from water using a WO3/TiO2 catalyst under UVA-visible radiation. Four catalysts of varying WO3 content (0/1/3/5 wt%) were synthesized by sol-gel and characterized by XRD, TEM, STEM-EDS, HAADF-STEM, adsorption/desorption N2 isotherms, and DRS-UV-vis. 5 wt% WO3/TiO2 was the optimal composition based on physicochemical properties and photocatalytic activity tests with methylene blue. PFAS degradation showed that photocatalytic ozonation inefficiently degraded PFAS with WO3/TiO2 under UVA-visible light after 4 h (ΣPFAS removal 16 %, [range 4 %-26 %]). Photocatalysis had comparable removal to photocatalytic ozonation, photolysis and ozone photolysis showed lower removal, and ozonation had no effect. Microtox analysis showed the initial acute toxicity was no longer detectable after photocatalysis and photocatalytic ozonation treatment. Low PFAS removals under tested conditions require that future work evaluate different catalysts or treatment conditions, while disparities between tested PFAS removals demonstrate the need to evaluate multiple compounds. ENVIRONMENTAL IMPLICATION: The research presented in this manuscript involves the preparation and characterization of WO3/TiO2 catalysts used, for the first time, to remove multiple PFAS in water via photocatalytic ozonation. This manuscript supports the development of a catalytic process for the elimination of hard to degrade environmental pollutants, provides new knowledge on aspects of photocatalytic processes, and provides insights on environmental pollution abatement.


Subject(s)
Fluorocarbons , Ozone , Water Pollutants, Chemical , Catalysis , Fluorocarbons/analysis , Light , Ozone/analysis , Titanium/chemistry , Water/chemistry , Water Pollutants, Chemical/analysis
19.
J Hazard Mater ; 433: 128811, 2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35381509

ABSTRACT

Complete mineralization of phenolic compounds into CO2 and H2O is desirable for removing them in wastewater, but it is challenging due to the generated recalcitrant intermediates, which requires highly effective advanced oxidation process with proper catalysts. Herein, we found that single-crystal WO3 nanosheets (NSs)-based photocatalytic ozonation (PCO) can realize complete mineralization of phenols (phenol and 2-chlorophenol) under visible light irradiation. Almost 100% mineralization ratio of phenols was achieved through WO3 NSs-based PCO system within short time. By comparing their performances with those of polycrystalline WO3 nanoparticles, detecting and analyzing the intermediates, identifying the dominant radicals and conducting some electrochemical characterizations, the origin of superior catalytic activity of WO3 NSs was uncovered, the mineralization pathways and the overall mechanism were proposed. The excellent PCO performance of WO3 NSs was contributed to their nanosheet morphology with single-crystal microstructure and good dispersion, which can provide continuous interior channels for the photogenerated charge transport from the bulk to surface of WO3 NSs and enough active sites for the surface reactions triggered by these charges. This work puts forwards new ideas to design highly active photocatalysts for PCO and helps deepen understanding of the catalytic mechanism of PCO.

20.
J Hazard Mater ; 428: 128222, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35032960

ABSTRACT

N vacancies, hydrophobic sites and electron rich zone were simply regulated by doping F into g-C3N4 (CN) to accelerate photocatalytic ozonation of PFOA. Activity of F-CN was superior to that of CN, with 74.3% PFOA removal by F-CN/Vis/O3 but only 57.1% by CN/Vis/O3. Experimental results and theory simulations suggested that the photogenerated hole (hvb+) oxidation with the help of N vacancies was vital for PFOA degradation. N vacancies on both CN and F-CN would trap O atom of PFOA and seize electron from α -CF2 group, which made PFOA more easily to be oxidized. Doping of F narrowed band gap, lowered the valence band position and enhanced the oxidation potential of hvb+. The hydrophobic sites would accelerate the mass transfer of O3 and PFOA, enhance O3's single electron reduction with ecb- to generate hydroxyl radicals (•OH) and reduce the recombination of hvb+-ecb-. Under the joint function of hvb+, N vacancies and •OH, PFOA degradation in F-CN/Vis/O3 proceeded through the gradually shortening of perfluoroalky chain and loss of CF2 unit. The acute and chronic toxicity of generated short-chain perfluorocarboxylic acid toward fish, green algae daphnid were predicted by ECOSAR. And the toxicity change of solutions was examined by luminescent bacteria.


Subject(s)
Hydroxyl Radical , Ozone , Electrons , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL