Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.530
Filter
Add more filters

Publication year range
1.
Mol Cell ; 75(1): 117-130.e6, 2019 07 11.
Article in English | MEDLINE | ID: mdl-31101499

ABSTRACT

Telomeres are essential for genome stability. Oxidative stress caused by excess reactive oxygen species (ROS) accelerates telomere shortening. Although telomeres are hypersensitive to ROS-mediated 8-oxoguanine (8-oxoG) formation, the biological effect of this common lesion at telomeres is poorly understood because ROS have pleiotropic effects. Here we developed a chemoptogenetic tool that selectively produces 8-oxoG only at telomeres. Acute telomeric 8-oxoG formation increased telomere fragility in cells lacking OGG1, the enzyme that removes 8-oxoG, but did not compromise cell survival. However, chronic telomeric 8-oxoG induction over time shortens telomeres and impairs cell growth. Accumulation of telomeric 8-oxoG in chronically exposed OGG1-deficient cells triggers replication stress, as evidenced by mitotic DNA synthesis at telomeres, and significantly increases telomere losses. These losses generate chromosome fusions, leading to chromatin bridges and micronucleus formation upon cell division. By confining base damage to the telomeres, we show that telomeric 8-oxoG accumulation directly drives telomere crisis.


Subject(s)
Chromosome Aberrations/radiation effects , DNA Glycosylases/genetics , DNA Repair/radiation effects , Genomic Instability/radiation effects , Guanine/analogs & derivatives , Telomere/radiation effects , Cell Division/radiation effects , Cell Line, Tumor , Cell Survival/radiation effects , DNA Damage , DNA Glycosylases/deficiency , DNA Replication/radiation effects , Gene Expression , Guanine/agonists , Guanine/biosynthesis , HeLa Cells , Humans , Light/adverse effects , Micronuclei, Chromosome-Defective/radiation effects , Optogenetics , Osteoblasts/cytology , Osteoblasts/metabolism , Osteoblasts/radiation effects , Oxidative Stress/radiation effects , Singlet Oxygen/agonists , Singlet Oxygen/metabolism , Telomere/metabolism , Telomere Homeostasis/radiation effects
2.
Proc Natl Acad Sci U S A ; 119(50): e2213479119, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36469783

ABSTRACT

Rational construction of broadband and strong visible-light-absorbing (BSVLA) earth-abundant complexes is of great importance for efficient and sustainable solar energy utilization. Herein, we explore a universal Cu(I) center to couple with multiple strong visible-light-absorbing antennas to break the energy level limitations of the current noble-metal complexes, resulting in the BSVLA nonprecious complex (Cu-3). Systematic investigations demonstrate that double "ping-pong" energy-transfer processes in Cu-3 involving resonance energy transfer and Dexter mechanism enable a BSVLA between 430 and 620 nm and an antenna-localized long-lived triplet state for efficient intermolecular electron/energy transfer. Impressively, Cu-3 exhibited an outstanding performance for both energy- and electron-transfer reactions. Pseudo-first-order rate constant of photooxidation of 1,5-dihydroxynaphthalene with Cu-3 can achieve a record value of 190.8 × 10-3 min-1 among the molecular catalytic systems, over 30 times higher than that with a noble-metal photosensitizer (PS) [Ru(bpy)3]2+. These findings pave the way to develop BSVLA earth-abundant PSs for boosting photosynthesis.


Subject(s)
Coordination Complexes , Light , Photosynthesis , Photosensitizing Agents , Energy Transfer
3.
Nano Lett ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38857313

ABSTRACT

The quantum yield of reactive oxygen species is of central importance for the development of organic photosensitizers and photodynamic therapy (PDT). A common molecular design approach for optimizing organic photosensitizers involves the incorporation of heavy atoms into their backbones. However, this raises concerns regarding heightened dark cytotoxicity and a shortened triplet-state lifetime. Herein, we demonstrate a heavy-atom-free (HAF) photosensitizer design strategy founded on the singlet fission (SF) mechanism for cancer PDT. Through the "single-atom surgery" approach to deleting oxygen atoms in pyrazino[2,3-g]quinoxaline skeleton photosensitizers, photosensitizers PhPQ and TriPhPQ are produced with Huckel's aromaticity and Baird's aromaticity in the ground state and triplet state, respectively, enabling the generation of two triplet excitons through SF. The SF process endows photosensitizer PhPQ with an ultrahigh triplet-state quantum yield (186%) and an outstanding 1O2 quantum yield (177%). Notably, HAF photosensitizers PhPQ and TriPhPQ enhanced PDT efficacy and potentiated αPD-L1 immune check blockade therapy in vivo, which show their promise for translational oncology treatment.

4.
Nano Lett ; 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39331820

ABSTRACT

Spatially separate anchoring redox cocatalysts on the photocatalyst to shunt the charge migration paths is an effective route to regulate the charge flow. Differently, we herein introduce an artificially synthesized Sun-planet-like spatially separated center-to-surround radiation photosensitizer-cocatalyst structure to regulate electron flow in a tandem manner. A single Au sphere acts as the Sun/photosensitizer in the center, and small Pt particles scatter around as the planets/cocatalyst, both of which are fixed inside the MOF crystal. Such a structure can not only simultaneously increase the light harvesting capacity and electron migration kinetics but also optimize the electron transfer pathway to minimize the electron migration distance, so that the hot electrons generated by Au can be quickly transferred to Pt through MOF before annihilation, leading to a significant photoactivity promotion.

5.
Med Res Rev ; 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39152568

ABSTRACT

Photodynamic therapy (PDT) is approved for the treatment of certain cancers and precancer lesions. While early Photosensitizers (PS) have found their way to the clinic, research in the last two decades has led to the development of third-generation PS, including photodynamic nanomedicine for improved tumor delivery and minimal systemic or phototoxicity. In terms of nanoparticle design for PDT, we are witnessing a shift from passive to active delivery for improved outcomes with reduced PS dosage. Tumor microenvironment (TME) comprises of a complex and dynamic landscape with myriad potential targets for photodynamic nanocarriers that are surface-modified with ligands. Herein, we review ways to improvise PDT by actively targeting nanoparticles (NPs) to intracellular organelles such as mitochondria or lysosomes and so forth, overcoming the limitations caused by PDT-induced hypoxia, disrupting the blood vascular networks in tumor tissues-vascular targeted PDT (VTP) and targeting immune cells for photoimmunotherapy. We propose that a synergistic outlook will help to address challenges such as deep-seated tumors, metastasis, or relapse and would lead to robust PDT response in patients.

6.
Biochem Biophys Res Commun ; 710: 149835, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38574457

ABSTRACT

We report application of the fluorescence lifetime imaging microscopy (FLIM) for analysis of distributions of intracellular acidity using a chlorin-e6 based photosensitizer Radachlorin. An almost two-fold increase of the photosensitizer fluorescence lifetime in alkaline microenvironments as compared to acidic ones allowed for clear distinguishing between acidic and alkaline intracellular structures. Clusterization of a phasor plot calculated from fits of the FLIM raw data by two Gaussian distributions provided accurate automatic segmentation of lysosomes featuring acidic contents. The approach was validated in colocalization experiments with LysoTracker fluorescence in living cells of four established lines. The dependence of photosensitizer fluorescence lifetime on microenvironment acidity allowed for estimation of pH inside the cells, except for the nuclei, where photosensitizer does not penetrate. The developed method is promising for combined application of the photosensitizer for both photodynamic treatment and diagnostics.


Subject(s)
Photochemotherapy , Photosensitizing Agents , Porphyrins , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Photochemotherapy/methods , Lysosomes , Hydrogen-Ion Concentration , Drug Combinations
7.
Small ; 20(30): e2309086, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38321834

ABSTRACT

Ferroptosis therapy, which uses ferroptosis inducers to produce lethal lipid peroxides and induce tumor cell death, is considered a promising cancer treatment strategy. However, challenges remain regarding how to increase the accumulation of reactive oxygen species (ROS) in the tumor microenvironment (TME) to enhance antitumor efficacy. In this study, a hyaluronic acid (HA) encapsulated hollow mesoporous manganese dioxide (H-MnO2) with double-shell nanostructure is designed to contain iron coordinated cyanine near-infrared dye IR783 (IR783-Fe) for synergistic ferroptosis photodynamic therapy against tumors. The nano photosensitizer IR783-Fe@MnO2-HA, in which HA actively targets the CD44 receptor, subsequently dissociates and releases Fe3+ and IR783 in acidic TME. First, Fe3+ consumes glutathione to produce Fe2+, which promotes the Fenton reaction in cells to produce hydroxyl free radicals (·OH) and induce ferroptosis of tumor cells. In addition, MnO2 catalyzes the production of O2 from H2O2 and enhances the production of singlet oxygen (1O2) by IR783 under laser irradiation, thus increasing the production and accumulation of ROS to provide photodynamic therapy. The highly biocompatible IR783-Fe@MnO2-HA nano-photosensitizers have exhibited tumor-targeting ability and efficient tumor inhibition in vivo due to the synergistic effect of photodynamic and ferroptosis antitumor therapies.


Subject(s)
Ferroptosis , Iron , Manganese Compounds , Photochemotherapy , Photosensitizing Agents , Photochemotherapy/methods , Ferroptosis/drug effects , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Iron/chemistry , Humans , Animals , Manganese Compounds/chemistry , Manganese Compounds/pharmacology , Cell Line, Tumor , Oxides/chemistry , Reactive Oxygen Species/metabolism , Mice , Nanostructures/chemistry , Hyaluronic Acid/chemistry , Indoles/chemistry , Indoles/pharmacology
8.
Small ; 20(10): e2304407, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37880907

ABSTRACT

Cuproptosis is a novel form of regulated cell death which guarantees to increase the efficacy of existing anticancer treatments that employ traditional apoptotic therapeutics. However, reducing the amount of undesirable Cu ions released in normal tissue and maximizing Cu-induced cuproptosis therapeutic effects at tumor sites are the major challenges. In this study, exploiting the chemical properties of copper ionophores and the tumor microenvironment, a novel method is developed for controlling the valence of copper ions that cause photoinduced cuproptosis in tumor cells. CJS-Cu nanoparticles (NPs) can selectively induce cuproptosis after cascade reactions through H2 O2 -triggered Cu2+ release, photoirradiation-induced superoxide radical (∙O2 - ) generation, and reduction of Cu2+ to Cu+ by ∙O2 - . The generated reactive oxygen species can result in glutathione depletion and iron-sulfur cluster protein damage and further augmented cuproptosis. CJS-Cu NPs effectively suppressed tumor growth and downregulated the expression of metastasis-related proteins, contributing to the complete inhibition of lung metastasis. Ultimately, this study suggests novel avenues for the manipulation of cellular cuproptosis through photochemical reactions.


Subject(s)
Lung Neoplasms , Nanoparticles , Humans , Copper , Glutathione , Superoxides , Apoptosis , Tumor Microenvironment
9.
Small ; 20(24): e2309424, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38174600

ABSTRACT

Type-I photosensitizers (PSs) can generate free radical anions with a broad diffusion range and powerful damage effect, rendering them highly desirable in various areas. However, it still remains a recognized challenge to develop pure Type-I PSs due to the inefficiency in producing oxygen radical anions through the collision of PSs with nearby substrates. In addition, regulating the generation of oxygen radical anions is also of great importance toward the control of photosensitizer (PS) activities on demand. Herein, a piperazine-based cationic Type-I PS (PPE-DPI) that exhibits efficient intersystem crossing and subsequently captures oxygen molecules through binding O2 to the lone pair of nitrogen in piperazine is reported. The close spatial vicinity between O2 and PPE-DPI strongly promotes the electron transfer reaction, ensuring the exclusive superoxide radical (O2 •-) generation via Type-I process. Particularly, PPE-DPI with cationic pyridine groups is able to associate with cucurbit[7]uril (CB[7]) through host-guest interactions. Thus, supramolecular assembly and disassembly are easily utilized to realize switchable O2 •- generation. This switchable Type-I PS is successfully employed in photodynamic antibacterial control.

10.
Chembiochem ; 25(9): e202400138, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38478375

ABSTRACT

A porphyrin-BODIPY dyad (P-BDP) was obtained through covalent bonding, featuring a two-segment design comprising a light-harvesting antenna system connected to an energy acceptor unit. The absorption spectrum of P-BDP resulted from an overlap of the individual spectra of its constituent parts, with the fluorescence emission of the BODIPY unit experiencing significant quenching (96 %) due to the presence of the porphyrin unit. Spectroscopic, computational, and redox investigations revealed a competition between photoinduced energy and electron transfer processes. The dyad demonstrated the capability to sensitize both singlet molecular oxygen and superoxide radical anions. Additionally, P-BDP effectively induced the photooxidation of L-tryptophan. In suspensions of Staphylococcus aureus cells, the dyad led to a reduction of over 3.5 log (99.99 %) in cell survival following 30 min of irradiation with green light. Photodynamic inactivation caused by P-BDP was also extended to the individual bacterium level, focusing on bacterial cells adhered to a surface. This dyad successfully achieved the total elimination of the bacteria upon 20 min of irradiation. Therefore, P-BDP presents an interesting photosensitizing structure that takes advantage of the light-harvesting antenna properties of the BODIPY unit combined with porphyrin, offering potential to enhance photoinactivation of bacteria.


Subject(s)
Boron Compounds , Photosensitizing Agents , Porphyrins , Staphylococcus aureus , Boron Compounds/chemistry , Boron Compounds/pharmacology , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Staphylococcus aureus/drug effects , Porphyrins/chemistry , Porphyrins/pharmacology , Singlet Oxygen/metabolism , Singlet Oxygen/chemistry , Light , Molecular Structure
11.
Chemistry ; 30(46): e202401483, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-38853431

ABSTRACT

Herein, we report a novel flavin analogue as singular chemical component for lysosome bioimaging, and inherited photosensitizer capability of the flavin core was demonstrated as a promising candidate for photodynamic therapy (PDT) application. Fine-tuning the flavin core with the incorporation of methoxy naphthyl appendage provides an appropriate chemical design, thereby offering photostability, selectivity, and lysosomal colocalization, along with the aggregation-induced emissive nature, making it suitable for lysosomal bioimaging applications. Additionally, photosensitization capability of the flavin core with photostable nature of the synthesized analogue has shown remarkable capacity for generating reactive oxygen species (ROS) within cells, making it a promising candidate for photodynamic therapy (PDT) application.


Subject(s)
Flavins , Lysosomes , Photochemotherapy , Photosensitizing Agents , Reactive Oxygen Species , Humans , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Lysosomes/metabolism , Lysosomes/chemistry , Reactive Oxygen Species/metabolism , Flavins/chemistry , HeLa Cells , Optical Imaging
12.
Chemistry ; 30(25): e202303250, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38411403

ABSTRACT

Visible light-induced charge separation and directional charge transfer are cornerstones for artificial photosynthesis and the generation of solar fuels. Here, we report synthetic access to a series of noble metal-free donor-acceptor dyads based on bodipy light-absorbers and redox-active quinone/anthraquinone charge storage sites. Peripheral functionalization of the quinone/anthraquinone units with alkynes primes the dyads for integration into a range of light-harvesting systems, e. g., by Cu-catalyzed cycloadditions (CLICK chemistry) or Pd-catalyzed C-C cross-coupling reactions. Initial photophysical, electrochemical and theoretical analyses reveal the principal processes during the light-induced charge separation in the reported dyads.

13.
Chemistry ; 30(27): e202400378, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38418406

ABSTRACT

Fluorescence imaging-guided photodynamic therapy (PDT) has attracted extensive attention due to its potential of real-time monitoring the lesion locations and visualizing the treatment process with high sensitivity and resolution. Aggregation-induced emission luminogens (AIEgens) show enhanced fluorescence and reactive oxygen species (ROS) generation after cellular uptake, giving them significant advantages in bioimaging and PDT applications. However, most AIEgens are unfavorable for the application in organisms due to their severe hydrophobicity. Anion-π+ type AIEgens carry intrinsic charges that can effectively alleviate their hydrophobicity and improve their binding capability to cells, which is expected to enhance the bioimaging quality and PDT performance. This concept summarizes the applications of anion-π+ type AIEgens in fluorescence imaging, fluorescence imaging-guided photodynamic anticancer and antimicrobial therapy in recent years, hoping to provide some new ideas for the construction of robust photosensitizers. Finally, the current problems and future challenges of anion-π+ AIEgens are discussed.


Subject(s)
Anions , Optical Imaging , Photochemotherapy , Photosensitizing Agents , Reactive Oxygen Species , Photochemotherapy/methods , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Humans , Anions/chemistry , Reactive Oxygen Species/metabolism , Fluorescent Dyes/chemistry , Hydrophobic and Hydrophilic Interactions , Neoplasms/drug therapy , Neoplasms/diagnostic imaging
14.
Chemistry ; 30(36): e202400950, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38655749

ABSTRACT

It is usually believed that doping with photosensitizers capable of generating singlet oxygen (1O2) plays a pivotal role in enhancing the afterglow performance of semiconducting polymer nanoparticles (SPNs). However, the effect of doping photosensitizer bearing electron-withdrawing groups has not been reported. Here we report the effect of doping with six photosensitizers possessing different electron-withdrawing groups on the afterglow performance of SPNs using poly[(9,9-di(2-ethylhexyl)-9H-fluo-rene-2,7-vinylene)-co-(1-methoxy-4-(2-ethylhexyloxy)-2,5-phenylenevinylene)] (PF-MEHPPV) as substrate. It was found that the afterglow performance of SPNs was significantly influenced by doping with photosensitizers bearing electron-withdrawing groups. For the doped photosensitizers with strong electron-withdrawing groups, the stronger the electron-withdrawing ability of the group, the worse of the afterglow performance of the SPN regardless of the 1O2 generation ability of the photosensitizer. When the doped photosensitizer exhibited weak or none electron-withdrawing effect, the 1O2 generation ability of the photosensitizer played a dominant role on the afterglow performance of the SPNs. This work deepens the understanding of the design and synthesis of SPNs with different afterglow properties.

15.
Chemistry ; 30(16): e202303766, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38233363

ABSTRACT

Intracellular Staphylococcus aureus (S. aureus), especially the methicillin resistant staphylococcus aureus (MRSA), are difficult to detect and eradicate due to the protection by the host cells. Antibacterial photodynamic therapy (aPDT) offers promise in treating intracellular bacteria, provided that selective damage to the bacteria ranther than host cells can be realized. According to the different nitroreductase (NTR) levels in mammalian cells and S. aureus, herein NTR-responsive photosensitizers (PSs) (T)CyI-NO2 were designed and synthesized. The emission and 1O2 generation of (T)CyI-NO2 are quenched by the 4-nitrobenzyl group, but can be specifically switched on by bacterial NTR. Therefore, selective imaging and photo-inactivation of intracellular S. aureus and MRSA were achieved. Our findings may pave the way for the development of more efficient and selective aPDT agents to combat intractable intracellular infections.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Photochemotherapy , Animals , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Staphylococcus aureus , Nitrogen Dioxide , Photochemotherapy/methods , Anti-Bacterial Agents/pharmacology , Mammals
16.
Wound Repair Regen ; 32(3): 301-313, 2024.
Article in English | MEDLINE | ID: mdl-38308577

ABSTRACT

Bacterial wound infection has emerged as a pivotal threat to human health worldwide, and the situation has worsened owing to the gradual increase in antibiotic-resistant bacteria caused by the improper use of antibiotics. To reduce the use of antibiotics and avoid the increase in antibiotic-resistant bacteria, researchers are increasingly paying attention to  photodynamic therapy, which uses light to produce reactive oxygen species to kill bacteria. Treating bacteria-infected wounds by photodynamic therapy requires fixing the photosensitizer (PS) at the wound site and maintaining a certain level of wound humidity. Hydrogels are materials with a high water content and are well suited for fixing PSs at wound sites for antibacterial photodynamic therapy. Therefore, hydrogels are often loaded with PSs for treating bacteria-infected wounds via antibacterial photodynamic therapy. In this review, we systematically summarised the antibacterial mechanisms and applications of PS-loaded hydrogels for treating bacteria-infected wounds via photodynamic therapy. In addition, the recent  studies and the research status progresses of novel antibacterial hydrogels are discussed. Finally, the challenges and future prospects of PS-loaded hydrogels are reviewed.


Subject(s)
Anti-Bacterial Agents , Bandages , Hydrogels , Photosensitizing Agents , Wound Infection , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Bacterial Infections/drug therapy , Hydrogels/pharmacology , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Wound Healing/drug effects , Wound Infection/drug therapy , Wound Infection/microbiology
17.
Photochem Photobiol Sci ; 23(9): 1757-1769, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39242437

ABSTRACT

Porphyrazines (Pzs) are porphyrin derivatives that show potential application as photosensitizers for photodynamic therapy (PDT), but are still far less explored in the literature. In this work, we evaluate how the photophysics and phototoxicity of the octakis(trifluoromethylphenyl)porphyrazine (H2Pz) against tumor cells can be modulated by coordination with Mg(II), Zn(II), Cu(II) and Co(II) ions. Fluorescence and singlet oxygen quantum yields for the Pzs were measured in organic solvents and in soy phosphatidylcholine (PC) liposomes suspended in water. While H2Pz and the respective complexes with Cu(II) and Co(II) showed very low efficiency to fluoresce and to produce 1O2, the Mg(II) and Zn(II) complexes showed significantly higher quantum yields in organic solvents. The fluorescence of these two Pzs in the liposomes was sensitive to the fluidity of the membrane, showing potential use as viscosity markers. The cytotoxicity of the compounds was tested in HaCaT (normal) and A431 (tumor) cells using soy PC liposomes as drug carriers. Despite the low 1O2 quantum yields in water, the Mg(II) and Zn(II) complexes showed IC50 values against A431 cells in the nanomolar range when activated with low doses of red LED light. Their phototoxicity was ca. three times higher for the tumor cells compared to the normal ones, showing promising application as photosensitizers for PDT protocols. Considering that H2Pz and the respective Co(II) and Cu(II) complexes were practically non-phototoxic to the cells, we demonstrate the importance of the central metal ion in the modulation of the photodynamic activity of porphyrazines.


Subject(s)
Liposomes , Photosensitizing Agents , Porphyrins , Humans , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Porphyrins/chemistry , Porphyrins/pharmacology , Liposomes/chemistry , Photochemotherapy , Singlet Oxygen/metabolism , Singlet Oxygen/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Zinc/chemistry , Zinc/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Ions/chemistry
18.
Photochem Photobiol Sci ; 23(5): 1011-1029, 2024 May.
Article in English | MEDLINE | ID: mdl-38753286

ABSTRACT

Photodynamic therapy (PDT) stands out as a noteworthy development as an alternative targeted treatment against skin ailments. While PDT has advanced significantly, research into photo-activatable "Green drugs" derived from plants which are less toxic than the synthetic drugs has not kept pace. This study investigates the potential of Fagopyrin F Containing Fraction (FCF) derived from Fagopyrum tataricum in mediating PDT against Staphylococcus aureus and skin cancer cells (A431). FCF was isolated from the plant extract using thin-layer chromatography, followed by identification of the compound through high-performance liquid chromatography and high-resolution liquid chromatography-mass spectrometry. FCF was tested to determine its antibacterial and anticancer efficacy. Results revealed that FCF-mediated PDT exhibited potent action against S. aureus, significantly reducing bacterial viability (MIC 19.5 µg/100 µL). Moreover, FCF-mediated PDT showed good efficacy against A431 cells, resulting in a notable reduction in cell viability (IC50 29.08 µg/mL). Given the known association between S. aureus and squamous cell carcinoma (SCC), FCF shows the potential to effectively target and eradicate both SCC and the related S. aureus present within the lesions. In silico study reveals that Fagopyrin F effectively binds with the epidermal growth factor (EGFR), one among the highly expressed proteins in the A431 cells, with a binding energy of - 9.6 kcal/mol. The affinity of Fagopyrin F for EGFR on A431 cancer cells along with its cytotoxicity against skin cancer cells while safeguarding the normal cells (L929) plays a major part in the way it targets cancer cells. However, its safety, efficacy, and long-term advantages in treating skin conditions require more investigation, including in vivo investigations and clinical trials.


Subject(s)
Carcinoma, Squamous Cell , Fagopyrum , Photosensitizing Agents , Plant Extracts , Staphylococcus aureus , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Fagopyrum/chemistry , Microbial Sensitivity Tests , Molecular Docking Simulation , Photochemotherapy , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/isolation & purification , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Skin Neoplasms/drug therapy , Skin Neoplasms/pathology , Skin Neoplasms/metabolism , Staphylococcus aureus/drug effects
19.
Photochem Photobiol Sci ; 23(3): 539-560, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38457119

ABSTRACT

Antibiotic resistance represents a pressing global health challenge, now acknowledged as a critical concern within the framework of One Health. Photodynamic inactivation of microorganisms (PDI) offers an attractive, non-invasive approach known for its flexibility, independence from microbial resistance patterns, broad-spectrum efficacy, and minimal risk of inducing resistance. Various photosensitizers, including porphyrin derivatives have been explored for pathogen eradication. In this context, we present the synthesis, spectroscopic and photophysical characteristics as well as antimicrobial properties of a palladium(II)-porphyrin derivative (PdF2POH), along with its zinc(II)- and free-base counterparts (ZnF2POH and F2POH, respectively). Our findings reveal that the palladium(II)-porphyrin complex can be classified as an excellent generator of reactive oxygen species (ROS), encompassing both singlet oxygen (Φ△ = 0.93) and oxygen-centered radicals. The ability of photosensitizers to generate ROS was assessed using a variety of direct (luminescence measurements) and indirect techniques, including specific fluorescent probes both in solution and in microorganisms during the PDI procedure. We investigated the PDI efficacy of F2POH, ZnF2POH, and PdF2POH against both Gram-negative and Gram-positive bacteria. All tested compounds proved high activity against Gram-positive species, with PdF2POH exhibiting superior efficacy, leading to up to a 6-log reduction in S. aureus viability. Notably, PdF2POH-mediated PDI displayed remarkable effectiveness against S. aureus biofilm, a challenging target due to its complex structure and increased resistance to conventional treatments. Furthermore, our results show that PDI with PdF2POH is more selective for bacterial than for mammalian cells, particularly at lower light doses (up to 5 J/cm2 of blue light illumination). This enhanced efficacy of PdF2POH-mediated PDI as compared to ZnF2POH and F2POH can be attributed to more pronounced ROS generation by palladium derivative via both types of photochemical mechanisms (high yields of singlet oxygen generation as well as oxygen-centered radicals). Additionally, PDI proved effective in eliminating bacteria within S. aureus-infected human keratinocytes, inhibiting infection progression while preserving the viability and integrity of infected HaCaT cells. These findings underscore the potential of metalloporphyrins, particularly the Pd(II)-porphyrin complex, as promising photosensitizers for PDI in various bacterial infections, warranting further investigation in advanced infection models.


Subject(s)
Anti-Infective Agents , Photochemotherapy , Porphyrins , Animals , Humans , Porphyrins/pharmacology , Porphyrins/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Reactive Oxygen Species , Staphylococcus aureus , Singlet Oxygen/chemistry , Plankton , Palladium/pharmacology , Photochemotherapy/methods , Anti-Infective Agents/chemistry , Biofilms , Oxygen , Mammals
20.
Photochem Photobiol Sci ; 23(3): 409-420, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38319518

ABSTRACT

In this work, screening studies of the cytotoxic effect of chlorins with fragments of di-, tri-, and pentaethylene glycol at the macrocycle periphery in relation to HeLa, A549, and HT29 cells were performed. It is shown that, despite different hydrophobicity, all the compounds studied have a comparable photodynamic effect. The conjugate of chlorin e6 with pentaethylene glycol, which has the lowest tendency to association among the studied compounds with tropism for low density lipoproteins and the best characteristics of the formation of molecular complexes with Tween 80, has a significant difference in dark and photoinduced toxicity (ratio IC50(dark)/IC50(photo) approximately 2 orders of magnitude for all cell lines), which allows to hope for a sufficiently large "therapeutic window". A study of the interaction of this compound with HeLa cells shows that the substance penetrates the cell and, after red light irradiation induces ROS appearance inside the cell, associated, apparently, with the photogeneration of singlet oxygen. These data indicate that photoinduced toxic effects are caused by damage to intracellular structures as a result of oxidative stress. Programmed type of cell death characterized with caspase-3 induction is prevailing. So, the conjugate of chlorin e6 with pentaethylene glycol is a promising antitumor PS that can be successfully solubilized with Tween 80, which makes it suitable for further in vivo studies.


Subject(s)
Photochemotherapy , Polyethylene Glycols , Porphyrins , Humans , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Chlorophyll A , HeLa Cells , Polysorbates , Porphyrins/pharmacology , Porphyrins/chemistry , Hydrophobic and Hydrophilic Interactions , Chlorophyll/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL