Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.523
Filter
Add more filters

Publication year range
1.
J Virol ; 98(9): e0053524, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39158273

ABSTRACT

Coronaviruses (CoVs) are important pathogens for humans and other vertebrates, causing severe respiratory and intestinal infections that have become a threat to public health because of the potential for interspecies transmission between animals and humans. Therefore, the development of safe, effective vaccines remains a top priority for the control of CoV infection. The unique immunological characteristics of vaccines featuring messenger RNA (mRNA) present an advantageous tool for coronavirus vaccine development. Here, we designed two lipid nanoparticle (LNP)-encapsulated mRNA (mRNA-LNP) vaccines: one encoding full-length spike (S) protein and the other encoding the spike ectodomain (Se) from porcine deltacoronavirus (PDCoV). Fourteen days after primary immunization, both mRNA vaccines induced high levels of immunoglobulin G and neutralizing antibodies in mice, with the S vaccine showing better performance than the Se vaccine. Passive immune protection of the S mRNA vaccine in suckling piglets was confirmed by the induction of robust PDCoV-specific humoral and cellular immune responses. The S mRNA vaccine also showed better protective effects than the inactivated vaccine. Our results suggest that the novel PDCoV-S mRNA-LNP vaccine may have the potential to combat PDCoV infection. IMPORTANCE: As an emerging porcine enteropathogenic coronavirus, porcine deltacoronavirus (PDCoV) has the potential for cross-species transmission, attracting extensive attention. Messenger RNA (mRNA) vaccines are a promising option for combating emerging and re-emerging infectious diseases, as evidenced by the demonstrated efficacy of the COVID-19 mRNA vaccine. Here, we first demonstrated that PDCoV-S mRNA-lipid nanoparticle (LNP) vaccines could induce potent humoral and cellular immune responses in mice. An evaluation of passive immune protection of S mRNA vaccines in suckling piglets confirmed that the protective effect of mRNA vaccine was better than that of inactivated vaccine. This study suggests that the PDCoV-S mRNA-LNP vaccine may serve as a potential and novel vaccine candidate for combating PDCoV infection.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Coronavirus Infections , Spike Glycoprotein, Coronavirus , Swine Diseases , Viral Vaccines , Animals , Swine , Coronavirus Infections/prevention & control , Coronavirus Infections/immunology , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Mice , Swine Diseases/prevention & control , Swine Diseases/virology , Swine Diseases/immunology , Antibodies, Viral/immunology , Antibodies, Viral/blood , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , mRNA Vaccines , Deltacoronavirus/immunology , Deltacoronavirus/genetics , Nanoparticles , RNA, Messenger/genetics , RNA, Messenger/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Mice, Inbred BALB C , Female , Immunity, Humoral , Liposomes
2.
FASEB J ; 38(17): e70041, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39250170

ABSTRACT

Pro-inflammatory cytokines in muscle play a pivotal role in physiological responses and in the pathophysiology of inflammatory disease and muscle atrophy. Lactobacillus delbrueckii (LD), as a kind of probiotics, has inhibitory effects on pro-inflammatory cytokines associated with various inflammatory diseases. This study was conducted to explore the effect of dietary LD on the lipopolysaccharide (LPS)-induced muscle inflammation and atrophy in piglets and to elucidate the underlying mechanism. A total of 36 weaned piglets (Duroc × Landrace × Large Yorkshire) were allotted into three groups with six replicates (pens) of two piglets: (1) Nonchallenged control; (2) LPS-challenged (LPS); (3) 0.2% LD diet and LPS-challenged (LD+LPS). On d 29, the piglets were injected intraperitoneally with LPS or sterilized saline, respectively. All piglets were slaughtered at 4 h after LPS or saline injection, the blood and muscle samples were collected for further analysis. Our results showed that dietary supplementation of LD significantly attenuated LPS-induced production of pro-inflammatory cytokines IL-6 and TNF-α in both serum and muscle of the piglets. Concomitantly, pretreating the piglets with LD also clearly inhibited LPS-induced nuclear translocation of NF-κB p65 subunits in the muscle, which correlated with the anti-inflammatory effects of LD on the muscle of piglets. Meanwhile, LPS-induced muscle atrophy, indicated by a higher expression of muscle atrophy F-box, muscle RING finger protein (MuRF1), forkhead box O 1, and autophagy-related protein 5 (ATG5) at the transcriptional level, whereas pretreatment with LD led to inhibition of these upregulations, particularly genes for MuRF1 and ATG5. Moreover, LPS-induced mRNA expression of endoplasmic reticulum stress markers, such as eukaryotic translational initiation factor 2α (eIF-2α) was suppressed by pretreatment with LD, which was accompanied by a decrease in the protein expression levels of IRE1α and GRP78. Additionally, LD significantly prevented muscle cell apoptotic death induced by LPS. Taken together, our data indicate that the anti-inflammatory effect of LD supply on muscle atrophy of piglets could be likely regulated by inhibiting the secretion of pro-inflammatory cytokines through the inactivation of the ER stress/NF-κB singling pathway, along with the reduction in protein degradation.


Subject(s)
Endoplasmic Reticulum Stress , Lactobacillus delbrueckii , Lipopolysaccharides , Muscular Atrophy , Animals , Lipopolysaccharides/toxicity , Swine , Endoplasmic Reticulum Stress/drug effects , Muscular Atrophy/chemically induced , Muscular Atrophy/metabolism , Muscular Atrophy/prevention & control , Muscular Atrophy/pathology , Weaning , Proteolysis , Probiotics/pharmacology , Inflammation/metabolism , Myositis/chemically induced , Myositis/metabolism , Myositis/pathology , Cytokines/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscle, Skeletal/drug effects
3.
Genomics ; 116(5): 110919, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147334

ABSTRACT

Ningxiang (NX) pig has been recognized as one of the most famous Chinese indigenous breeds due to its characteristics in stress resistance. However, intestinal microbial feature and gene profiling in NX piglets have not been studied. Here, we compared the intestinal microbiome and transcriptome between NX and Duroc × Landrace × Large white (DLY) piglets and found the high enrichment of several colonic Bacteroides, Prevotella and Clostridium species in NX piglets. Further functional analyses revealed their predominant function in methane, glycolysis and gluconeogenesis metabolism. Our mRNA-sequencing data unraveled the distinct colonic gene expression between these two breeds. In particular, we showed that the improved intestinal function in NX piglets may be determined by enhanced intestinal barrier gene expression and varied immune gene expression through modulating the composition of the gut microbes. Together, our study revealed the intestinal characteristics of NX piglets, providing their potential application in improving breeding strategies and developing dietary interventions.


Subject(s)
Gastrointestinal Microbiome , Transcriptome , Animals , Swine
4.
BMC Genomics ; 25(1): 303, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38515025

ABSTRACT

BACKGROUND: A fine balance of feto-maternal resource allocation is required to support pregnancy, which depends on interactions between maternal and fetal genetic potential, maternal nutrition and environment, endometrial and placental functions. In particular, some imprinted genes have a role in regulating maternal-fetal nutrient exchange, but few have been documented in the endometrium. The aim of this study is to describe the expression of 42 genes, with parental expression, in the endometrium comparing two extreme breeds: Large White (LW); Meishan (MS) with contrasting neonatal mortality and maturity at two days of gestation (D90-D110). We investigated their potential contribution to fetal maturation exploring genes-fetal phenotypes relationships. Last, we hypothesized that the fetal genome and sex influence their endometrial expression. For this purpose, pure and reciprocally crossbred fetuses were produced using LW and MS breeds. Thus, in the same uterus, endometrial samples were associated with its purebred or crossbred fetuses. RESULTS: Among the 22 differentially expressed genes (DEGs), 14 DEGs were differentially regulated between the two days of gestation. More gestational changes were described in LW (11 DEGs) than in MS (2 DEGs). Nine DEGs were differentially regulated between the two extreme breeds, highlighting differences in the regulation of endometrial angiogenesis, nutrient transport and energy metabolism. We identified DEGs that showed high correlations with indicators of fetal maturation, such as ponderal index at D90 and fetal blood fructose level and placental weight at D110. We pointed out for the first time the influence of fetal sex and genome on endometrial expression at D90, highlighting AMPD3, CITED1 and H19 genes. We demonstrated that fetal sex affects the expression of five imprinted genes in LW endometrium. Fetal genome influenced the expression of four genes in LW endometrium but not in MS endometrium. Interestingly, both fetal sex and fetal genome interact to influence endometrial gene expression. CONCLUSIONS: These data provide evidence for some sexual dimorphism in the pregnant endometrium and for the contribution of the fetal genome to feto-maternal interactions at the end of gestation. They suggest that the paternal genome may contribute significantly to piglet survival, especially in crossbreeding production systems.


Subject(s)
Endometrium , Placenta , Pregnancy , Female , Animals , Swine , Placenta/metabolism , Endometrium/metabolism , Fetal Development/genetics , Uterus/physiology , Gene Expression
5.
Mol Genet Genomics ; 299(1): 15, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38411753

ABSTRACT

Tartary buckwheat protein (BWP) is well known for the wide-spectrum antibacterial activity and the lipid metabolism- regulating property; therefore, BWP can be applied as feed additives to improve the animal's nutritional supply. With the aim to investigate the bioactive actions of the BWP, growth performance, lipid metabolism and systemic immunity of the weaned piglets were measured, and the alterations of pig gut microbiota were also analyzed. According to the results, the growth performances of the weaned piglets which were calculated as the average daily gain (ADG) and the average daily feed intake (ADFI) were significantly increased when compared to the control group. Simultaneously, the serum levels of the total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C) were decreased, while the levels of high-density lipoprotein cholesterol (HDL-C) were increased in the BWP group. Moreover, the relative abundances of Lactobacillus, Prevotella_9, Subdoligranulum, Blautia, and other potential probiotics in the gut microbiota of weaned piglets were obviously increased in the BWP group. However, the relative abundances of Escherichia-Shigella, Campylobacter, Rikenellaceae_RC9_gut_group and other opportunistic pathogens were obviously decreased in the BWP group. In all, BWP was proved to be able to significantly improve the growth performance, lipid metabolism, and systemic immunity of the weaned piglets, and the specific mechanism might relate to the alterations of the gut microbiota. Therefore, BWP could be explored as a prospective antibiotic alternative for pig feed additives.


Subject(s)
Fagopyrum , Gastrointestinal Microbiome , Animals , Swine , Lipid Metabolism , Prospective Studies , Anti-Bacterial Agents , Cholesterol
6.
J Virol ; 97(11): e0095823, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37846983

ABSTRACT

IMPORTANCE: As an emerging porcine enteropathogenic coronavirus that has the potential to infect humans, porcine deltacoronavirus (PDCoV) is receiving increasing attention. However, no effective commercially available vaccines against this virus are available. In this work, we designed a spike (S) protein and receptor-binding domain (RBD) trimer as a candidate PDCoV subunit vaccine. We demonstrated that S protein induced more robust humoral and cellular immune responses than the RBD trimer in mice. Furthermore, the protective efficacy of the S protein was compared with that of inactivated PDCoV vaccines in piglets and sows. Of note, the immunized piglets and suckling pig showed a high level of NAbs and were associated with reduced virus shedding and mild diarrhea, and the high level of NAbs was maintained for at least 4 months. Importantly, we demonstrated that S protein-based subunit vaccines conferred significant protection against PDCoV infection.


Subject(s)
Coronavirus Infections , Coronavirus , Swine Diseases , Vaccines, Subunit , Animals , Female , Humans , Mice , Coronavirus/genetics , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Deltacoronavirus , Swine , Vaccines, Subunit/administration & dosage
7.
BMC Microbiol ; 24(1): 253, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982403

ABSTRACT

BACKGROUND: Gut microbes play an important role in the growth and health of neonatal piglets. Probiotics can promote the healthy growth of neonatal piglets by regulating their gut microbes. The study investigated the effects of spraying Lactiplantibacillus plantarum P-8 (L. plantarum P-8) fermentation broth on the growth performance and gut microbes of neonatal piglets. RESULTS: The animals were randomly divided into probiotics groups (109 neonatal piglets) and control groups (113 neonatal piglets). The probiotics group was sprayed with L. plantarum P-8 fermented liquid from 3 day before the expected date of the sow to the 7-day-old of piglets, while the control group was sprayed with equal dose of PBS. Average daily gain (ADG), immune and antioxidant status and metagenome sequencing were used to assess the changes in growth performance and gut microbiota of neonatal piglets. The results showed that L. plantarum P-8 treatment significantly improved the average daily gain (P < 0.05) of neonatal piglets. L. plantarum P-8 increased the activities of CAT and SOD but reduced the levels of IL-2 and IL-6, effectively regulating the antioxidant capacity and immunity in neonatal piglets. L. plantarum P-8 adjusted the overall structure of gut microflora improving gut homeostasis to a certain extent, and significantly increased the relative abundance of gut beneficial bacteria such as L. mucosae and L. plantarum. CONCLUSION: Spraying L. plantarum P-8 can be a feasible and effective probiotic intervention not only improving the growth of neonatal piglets, regulating the antioxidant capacity and immunity of neonatal piglets, but also improving the gut homeostasis to a certain extent.


Subject(s)
Animals, Newborn , Gastrointestinal Microbiome , Probiotics , Animals , Probiotics/administration & dosage , Probiotics/pharmacology , Swine , Gastrointestinal Microbiome/drug effects , Lactobacillus plantarum , Fermentation , Antioxidants/metabolism , Antioxidants/administration & dosage , Antioxidants/pharmacology , Feces/microbiology
8.
Microb Pathog ; 196: 106958, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39303959

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) poses a significant threat to pigs, with piglets under seven days old facing a mortality rate of up to 100 %. This study aimed to explore the maturation of the immune system in piglets across different age groups and their corresponding immune responses to PEDV infection. Real-time quantitative PCR was employed to assess the relative mRNA expression of inflammation-related factors in infected pigs compared to non-infected counterparts at varying ages. Additionally, flow cytometry was utilized to analyze the relative counts of CD4+ and CD8+ T cells, as well as CD21+ B cells, in peripheral blood, spleen, mesenteric lymph nodes, and Peyer's patches of piglets at different developmental stages. Our findings revealed a notable increase in IFN-α and IFN-γ, a decrease in TNF-α, and elevated expression of IL-1ß, IL-6, IL-10, and IL-17 following PEDV infection. Furthermore, the numbers of CD4+ and CD8+ T cells, along with CD21+ B cells, exhibited a gradual rise with the advancement of piglets' age. Overall, our study underscores the progressive enhancement of piglets' resistance to PEDV infection as their immune system matures over time.

9.
Microb Pathog ; 196: 106917, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39243991

ABSTRACT

This report aims to describe the identification of porcine astrovirus 3 (PAstV3) RNA in the central nervous system (CNS) of weaned pigs with clinical signs of neurological disease associated with polioencephalomyelitis in southeastern Brazil. Three, 20 -35 days-old piglets that died after clinical manifestations of a neurological syndrome were submitted to post-mortem evaluations. Tissue samples were examined by histopathology, bacteriology, and molecular assays (RT-PCR, nested-PCR, RT-qPCR, and Sanger sequencing) to detect the primary infectious disease agents associated with neurological disease in pigs. The principal neuropathological alterations occurred in the grey matter of the spinal cord and brainstem resulting in nonsuppurative poliomyelitis and rhombencephalitis. PAstV3 RNA was detected in the CNS samples of all piglets with histopathological evidence of disease and was confirmed by nucleotide sequencing. Nucleic acids from pathogens commonly associated with neurological diseases in pigs, such as porcine teschovirus, porcine sapelovirus, porcine enterovirus G, atypical porcine pestivirus, senecavirus A, and encephalomyocarditis virus was not detected by molecular assays in the three piglets. This is the first report of PAstV3 in piglets with neurological disease and lesions consistent with polioencephalomyelitis in Brazil. This report highlights the importance of monitoring health events that could compromise pig farming productivity and animal welfare.

10.
Mol Reprod Dev ; 91(1): e23735, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38282317

ABSTRACT

Boar seminal plasma (SP) proteins were associated with differences on sperm resistance to cooling at 17°C. However, information about seminal plasma proteins in boars classified by capacity of semen preservation and in vivo fertility remains lacking. Thus, the objective was to evaluate the SP proteome in boars classified by capacity of semen preservation and putative biomarkers for fertility. The ejaculates from high-preservation (HP) showed higher progressive motility during all 5 days than the low-preservation (LP) boars. There was no difference for farrowing rate between ejaculates from LP (89.7%) and HP boars (88.4%). The LP boars presented lower total piglets born (14.0 ± 0.2) than HP (14.8 ± 0.2; p < 0.01). A total of 257 proteins were identified, where 184 were present in both classes of boar, and 41 and 32 were identified only in LP and HP boars, respectively. Nine proteins were differently expressed: five were more abundant in HP (SPMI, ZPBP1, FN1, HPX, and C3) and four in LP boars (B2M, COL1A1, NKX3-2, and MPZL1). The HP boars had an increased abundance of SP proteins related to sperm resistance and fecundation process which explains the better TPB. LP boars had a higher abundance of SP proteins associated with impaired spermatogenesis.


Subject(s)
Semen Preservation , Semen , Swine , Animals , Male , Semen/metabolism , Semen Preservation/veterinary , Proteomics , Insemination, Artificial , Spermatozoa , Fertility , Semen Analysis , Seminal Plasma Proteins/metabolism , Sperm Motility
11.
J Nutr ; 154(5): 1571-1581, 2024 05.
Article in English | MEDLINE | ID: mdl-38527737

ABSTRACT

BACKGROUND: Creatine plays a significant role in energy metabolism and positively impacts anaerobic energy capacity, muscle mass, and physical performance. Endogenous creatine synthesis requires guanidinoacetic acid (GAA) and methionine. GAA can be an alternative to creatine supplements and has been tested as a beneficial feed additive in the animal industry. When pigs are fed GAA with excess methionine, creatine is synthesized without feedback regulation. In contrast, when dietary methionine is limited, creatine synthesis is limited, yet, GAA does not accumulate in plasma, urine, or liver. OBJECTIVE: We hypothesized that portal GAA appearance requires adequate dietary methionine. METHODS: Yucatan miniature piglets (17-21 d old; n = 20) were given a 4 h duodenal infusion of complete elemental diets with supplemental GAA plus 1 of 4 methionine concentrations representing either 20%, 80%, 140%, or 200% of the dietary methionine requirement. Arterial and portal blood metabolites were measured along with blood flow to determine mass balance across the gut. [3H-methyl] methionine was infused to measure the methionine incorporation rate into creatine. RESULTS: GAA balance across the gut was highest in the 200% methionine group, indicating excess dietary methionine enhanced GAA absorption. Creatine synthesis in the liver and jejunum was higher with higher concentrations of methionine, emphasizing that the transmethylation of GAA to creatine depends on sufficient dietary methionine. Hepatic GAA concentration was higher in the 20% methionine group, suggesting low dietary methionine limited GAA conversion to creatine, which led to GAA accumulation in the liver. CONCLUSIONS: GAA absorption and conversion to creatine require a sufficient amount of methionine, and the supplementation strategies should accommodate this interaction.


Subject(s)
Creatine , Diet , Glycine , Methionine , Swine, Miniature , Animals , Methionine/administration & dosage , Methionine/metabolism , Glycine/analogs & derivatives , Glycine/administration & dosage , Glycine/metabolism , Swine , Animal Feed/analysis , Dietary Supplements , Liver/metabolism , Male , Female
12.
J Nutr ; 154(2): 535-542, 2024 02.
Article in English | MEDLINE | ID: mdl-38072153

ABSTRACT

BACKGROUND: Intrauterine growth restriction (IUGR) resulted in high mortality and many physiological defects of piglets, causing huge economic loss in the swine industry. Lactobacillus amylovorus (L. amylovorus) was identified as one of the main differential bacteria between IUGR and normal piglets. However, the effects of L. amylovorus on the growth performance and intestinal health in IUGR piglets remained unclear. OBJECTIVES: This study aimed to investigate the promoting effects of L. amylovorus Mafic1501, a new strain isolated from normal piglets, on the growth performance and intestinal barrier functions in IUGR piglets. METHODS: Newborn mice or piglets were assigned into 3 groups: CON (normal birth weight, control), IUGR (low birth weight), and IUGR+L. amy (low birth weight), administered with sterile saline or L. amylovorus Mafic1501, respectively. Growth performance, lactose content in the digesta, intestinal lactose transporter, and barrier function parameters were profiled. IPEC-J2 cells were cultured to verify the effects of L. amylovorus Mafic1501 on lactose utilization and intestinal barrier functions. RESULTS: L. amylovorus Mafic1501 elevated body weight and average daily gain of IUGR mice and piglets (P < 0.05). The lactose content in the ileum was decreased, whereas gene expression of glucose transporter 2 (GLUT2) was increased by L. amylovorus Mafic1501 in IUGR piglets during suckling period (P < 0.05). Besides, L. amylovorus Mafic1501 promoted intestinal barrier functions by increasing the villus height and relative gene expressions of tight junctions (P < 0.05). L. amylovorus Mafic1501 and its culture supernatant decreased the lactose level in the medium and upregulated gene expressions of transporter GLUT2 and tight junction protein Claudin-1 of IPEC-J2 cells (P < 0.05). CONCLUSION: L. amylovorus Mafic1501 improved the growth performance of IUGR piglets by promoting the lactose utilization in small intestine and enhancing intestinal barrier functions. Our results provided the new evidence of L. amylovorus Mafic1501 for its application in the swine industry.


Subject(s)
Fetal Growth Retardation , Lactobacillus acidophilus , Female , Humans , Animals , Swine , Mice , Fetal Growth Retardation/metabolism , Lactose/pharmacology , Lactose/metabolism , Birth Weight , Intestinal Barrier Function , Intestine, Small/metabolism , Animals, Newborn
13.
J Nutr ; 154(7): 2087-2096, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38453028

ABSTRACT

BACKGROUND: α-Ketoglutarate (AKG) plays a pivotal role in mitigating inflammation and enhancing intestinal health. OBJECTIVES: This study aimed to investigate whether AKG could protect against lipopolysaccharide (LPS)-induced intestinal injury by alleviating disorders in mitochondria-associated endoplasmic reticulum (MAM) membranes, dysfunctional mitochondrial dynamics, and endoplasmic reticulum (ER) stress in a piglet model. METHODS: Twenty-four piglets were subjected to a 2 × 2 factorial design with dietary factors (basal diet or 1% AKG diet) and LPS treatment (LPS or saline). After 21 d of consuming either the basal diet or AKG diet, piglets received injections of LPS or saline. The experiment was divided into 4 treatment groups [control (CON) group: basal diet + saline; LPS group: basal diet +LPS; AKG group: AKG diet + saline; and AKG_LPS group: AKG + LPS], each consisting of 6 piglets. RESULTS: The results demonstrated that compared with the CON group, AKG enhanced jejunal morphology, antioxidant capacity, and the messenger RNA and protein expression of tight junction proteins. Moreover, it has shown a reduction in serum diamine oxidase activity and D-lactic acid content in piglets. In addition, fewer disorders in the ER-mitochondrial system were reflected by AKG, as evidenced by AKG regulating the expression of key molecules of mitochondrial dynamics (mitochondrial calcium uniporter, optic atrophy 1, fission 1, and dynamin-related protein 1), ER stress [activating transcription factor (ATF) 4, ATF 6, CCAAT/enhancer binding protein homologous protein, eukaryotic initiation factor 2α, glucose-regulated protein (GRP) 78, and protein kinase R-like ER kinase], and MAM membranes [mitofusin (Mfn)-1, Mfn-2, GRP 75, and voltage-dependent anion channel-1]. CONCLUSIONS: Dietary AKG can prevent mitochondrial dynamic dysfunction, ER stress, and MAM membrane disorder, ultimately alleviating LPS-induced intestinal damage in piglets.


Subject(s)
Endoplasmic Reticulum Stress , Endoplasmic Reticulum , Ketoglutaric Acids , Lipopolysaccharides , Mitochondria , Animals , Lipopolysaccharides/toxicity , Ketoglutaric Acids/pharmacology , Swine , Mitochondria/drug effects , Mitochondria/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress/drug effects , Escherichia coli , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Diet/veterinary , Intestines/drug effects
14.
J Nutr ; 154(4): 1101-1108, 2024 04.
Article in English | MEDLINE | ID: mdl-38340959

ABSTRACT

BACKGROUND: Weaning usually causes low feed intake and weight loss in piglets, which mobilizes lipid to energize. The microbe-derived antioxidants (MAs) exhibit great potential in antioxidation, anti-inflammation, and metabolic regulation. OBJECTIVES: We aimed to investigate the changes of lipid metabolism postweaning and effects of MA on growth performance and hepatic lipid metabolism in weanling piglets. METHODS: In the first experiment, piglets weaned at 21 d of age were slaughtered on weaning day (d0), 4 (d4), and 14 (d14) postweaning (6 piglets per day). In the second experiment, piglets were divided into 2 groups, receiving MA (MA) and saline gavage (CON), respectively. All piglets were weaned at 21 d of age and 6 piglets from each group were slaughtered at 25 d of age. RESULTS: In experiment 1, the serum triglyceride, total cholesterol (TC), and LDL cholesterol on d4 and d14 declined significantly compared with d0 (P < 0.05). The serum leptin on d0 was higher than that on d4 and d14 (P < 0.05). The serum ghrelin kept increasing from d0 to d14 (P < 0.05). The hepatic hormone-sensitive lipase and adipose triglyceride lipase first increased from d0 to d4 and then decreased from d4 to d14 (P < 0.05). In experiment 2, the average daily gain and average daily feed intake from 21 to 25 d of age increased in the MA group compared with the CON group (P < 0.05). The serum TC, hepatic TC, and glucose of MA group showed a significant increase than that of the CON group (P < 0.05). The expression of SCD1, ACAT2, and PPARγ were upregulated in the MA group (P < 0.05). Contrary to the decreased expression of phosphorylation of adenosine 5'-monophosphate-activated protein kinase alfa subunit (Thr172), the nuclear sterol regulatory element-binding protein 1c, fatty acid synthase, and peroxisome proliferator-activated receptor gamma of MA group increased than that of CON group (P < 0.05). CONCLUSIONS: Weaning promoted hepatic lipolysis and MA could enhance lipid synthesis by regulating adenosine 5'-monophosphate-activated protein kinase alfa subunit-sterol regulatory element-binding protein 1c pathway, thus improving growth performance of weanling piglets.


Subject(s)
Antioxidants , Lipid Metabolism , Animals , Antioxidants/metabolism , Protein Kinases/metabolism , Sterol Regulatory Element Binding Protein 1/metabolism , Swine , Weaning
15.
Vet Res ; 55(1): 96, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075542

ABSTRACT

Glaesserella parasuis (G. parasuis) induces vascular damage and systemic inflammation. However, the mechanism by which it causes vascular damage is currently unclear. Baicalin has important anti-inflammatory, antibacterial and immunomodulatory functions. In this study, we explored the ability of baicalin and probenecid to protect against G. parasuis challenge in a piglet model. Sixty piglets were randomly divided into a control group; an infection group; a probenecid group; and 25 mg/kg, 50 mg/kg and 100 mg/kg baicalin groups. The probenecid group and the 25 mg/kg, 50 mg/kg and 100 mg/kg baicalin groups were injected intramuscularly with 20 mg/kg body weight (BW) probenecid and 25 mg/kg BW, 50 mg/kg BW and 100 mg/kg BW baicalin, respectively. All piglets except those from the control group were injected intraperitoneally with 1 × 108 CFU of G. parasuis. The control group was injected intraperitoneally with TSB. The results showed baicalin and probenecid protected piglets against G. parasuis challenge, improved body weight and decreased temperature changes in piglets. Baicalin and probenecid attenuated IL-1ß, IL-10, IL-18, TNF-α and IFN-γ mRNA levels in the blood for 48 h, inhibited the production of the nucleosides ATP, ADP, AMP and UMP from 24 to 72 h, reduced Panx-1/P2Y6/P2X7 expression, weakened NF-kB, AP-1, NLRP3/Caspase-1 and ROCK/MLCK/MLC signalling activation, and upregulated VE-cadherin expression in the blood vessels of piglets challenged with G. parasuis. Baicalin and probenecid alleviated pathological tissue damage in piglets induced by G. parasuis. Our results might provide a promising strategy to control and treat G. parasuis infection in the clinical setting.


Subject(s)
Flavonoids , Haemophilus parasuis , Probenecid , Swine Diseases , Animals , Probenecid/pharmacology , Flavonoids/pharmacology , Flavonoids/administration & dosage , Swine , Swine Diseases/microbiology , Swine Diseases/prevention & control , Haemophilus parasuis/drug effects , Haemophilus Infections/veterinary , Haemophilus Infections/prevention & control
16.
Br J Nutr ; 131(2): 185-192, 2024 01 28.
Article in English | MEDLINE | ID: mdl-37589127

ABSTRACT

The effects of monolaurin (ML) on the health of piglets infected with porcine epidemic diarrhoea virus (PEDV) have not been fully understood. This study aimed to investigate its role in blood biochemical profile, intestinal barrier function, antioxidant function and the expression of antiviral genes in piglets infected with PEDV. Thirty-two piglets were randomly divided into four groups: control group, ML group, PEDV group and ML + PEDV group. Piglets were orally administrated with ML at a dose of 100 mg/kg·BW for 7 d before PEDV infection. Results showed that PEDV infection significantly decreased D-xylose content and increased intestinal fatty acid-binding protein content, indicating that PEDV infection destroyed intestinal barrier and absorption function. While it could be repaired by ML administration. Moreover, ML administration significantly decreased plasma blood urea nitrogen and total protein content upon PEDV infection. These results suggested ML may increase protein utilisation efficiency. ML administration significantly decreased the number of large unstained cells and Hb and increased the number of leucocytes and eosinophils in the blood of PEDV-infected piglets, indicating ML could improve the immune defense function of the body. In the presence of PEDV infection, ML administration significantly increased superoxide dismutase and catalase activities in blood and colon, respectively, indicating ML could improve antioxidant capacity. Besides, ML administration reversed the expression of ISG15, IFIT3 and IL-29 throughout the small intestine and Mx1 in jejunum and ileum, indicating the body was in recovery from PEDV infection. This study suggests that ML could be used as a kind of feed additive to promote swine health upon PEDV infection.


Subject(s)
Porcine epidemic diarrhea virus , Swine Diseases , Animals , Swine , Antioxidants , Intestines , Intestine, Small
17.
Br J Nutr ; 131(8): 1352-1361, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38155410

ABSTRACT

This study is aimed to evaluate the effect and underling mechanism of dietary supplementation with pyrroloquinoline quinone (PQQ) disodium on improving inflammatory liver injury in piglets challenged with lipopolysaccharide (LPS). A total of seventy-two crossbred barrows were allotted into four groups as follows: the CTRL group (basal diet + saline injection); the PQQ group (3 mg/kg PQQ diet + saline injection); the CTRL + LPS group (basal diet + LPS injection) and the PQQ + LPS group (3 mg/kg PQQ diet + LPS injection). On days 7, 11 and 14, piglets were challenged with LPS or saline. Blood was sampled at 4 h after the last LPS injection (day 14), and then the piglets were slaughtered and liver tissue was harvested. The results showed that the hepatic morphology was improved in the PQQ + LPS group compared with the CTRL + LPS group. PQQ supplementation decreased the level of serum inflammatory factors, aspartate aminotransferase and alanine transaminase, and increased the HDL-cholesterol concentration in piglets challenged with LPS; piglets in the PQQ + LPS group had lower liver mRNA level of inflammatory factors and protein level of α-smooth muscle actin than in the CTRL + LPS group. Besides, mRNA expression of STAT3/TGF-ß1 pathway and protein level of p-STAT3(Tyr 705) were decreased, and mRNA level of PPARα and protein expression of p-AMPK in liver were increased in the PQQ + LPS group compared with the CTRL + LPS group (P < 0·05). In conclusion, dietary supplementation with PQQ alleviated inflammatory liver injury might partly via inhibition of the STAT3/TGF-ß1 pathway in piglets challenged with LPS.


Subject(s)
Dietary Supplements , Lipopolysaccharides , Animals , Swine , PQQ Cofactor/pharmacology , PQQ Cofactor/therapeutic use , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/pharmacology , Liver/metabolism , RNA, Messenger/metabolism
18.
BMC Vet Res ; 20(1): 141, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38582846

ABSTRACT

Glaesserella parasuis, an important respiratory bacterial pathogen, causes Glässer's disease in piglets, with potential immunosuppression. We established a piglet infection model and explored the immunosuppression mechanism to improve our understanding of the host immune response to G. parasuis. Twenty piglets were randomly divided into two groups (n = 10). The infection group was intraperitoneally challenged with 2 × 108 CFU of G. parasuis in 2 mL TSB. The control group was intraperitoneally injected with equivalent TSB. After 72 h, the piglets were sacrificed, and spleen tissue was collected. PD-1/PD-L1 expression was determined. The splenocytes were isolated to detect CD3+ T, CD3+CD4+ T, CD3+CD8+ T and CD3-CD21+cell differentiation. Via data-independent acquisition (DIA), we compared the proteomics of healthy and infected spleen tissues. Glaesserella parasuis modified CD3+ T, CD3+CD4+ T, CD3+CD8+ T and CD3-CD21+ cell differentiation and PD-1/PD-L1 expression in the spleen. The infection group had 596 proteins with significant differences in expression, of which 301 were significantly upregulated and 295 downregulated. Differentially expressed proteins (DEPs) were mainly related to immune responses. This is the first study on PD-1/PD-L1 expression in the spleen associated with immunosuppression in a piglet model to explore the protein changes related to immune responses via DIA.


Subject(s)
Haemophilus Infections , Haemophilus parasuis , Swine Diseases , Animals , B7-H1 Antigen , Haemophilus Infections/microbiology , Haemophilus Infections/veterinary , Immunosuppression Therapy/veterinary , Phosphatidylinositol 3-Kinases , Programmed Cell Death 1 Receptor , Proto-Oncogene Proteins c-akt , Swine , Swine Diseases/microbiology , TOR Serine-Threonine Kinases
19.
BMC Vet Res ; 20(1): 422, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39304851

ABSTRACT

BACKGROUND: To assess the effects of inactivated Lactobacillus rhamnosus (ILR) on growth performance, serum biochemical indices, colonic microbiota, and metabolomics in weaned piglets, 120 piglets were randomly divided into five groups. Samples in the control group were fed a basal diet, while the experimental ILR1, ILR2, ILR3, and ILR4 groups were fed basal diets supplemented with 0.1%, 0.2%, 0.3%, and 0.4% ILR, respectively. The prefeeding period lasted for 5 days and was followed by a formal period of 28 days. RESULTS: Compared to the control, the average daily gain increased by 4.38%, 7.98%, 19.32%, and 18.80% for ILR1, ILR2, ILR3, and ILR4, respectively, and the ratio of feed to gain decreased by 0.63%, 3.80%, 12.66%, and 10.76%, respectively. Serum IgA, IgG, IgM, total antioxidant capacity, and glutathione peroxidase levels increased significantly in weaned piglets in the treatment groups. Addition of 0.3% ILR significantly increased the Shannon and Simpson indices of the colonic microbiota in weaned piglets and altered the microbiota composition. Changes in metabolic profiles were observed and were primarily related to the urea cycle, amino acid metabolism, and lipid metabolism. CONCLUSION: ILR improved growth performance and serum immunological and biochemical indices and optimized the colonic microbiota structure and metabolism of weaned piglets.


Subject(s)
Colon , Diet , Gastrointestinal Microbiome , Lacticaseibacillus rhamnosus , Probiotics , Weaning , Animals , Swine/blood , Swine/growth & development , Probiotics/administration & dosage , Probiotics/pharmacology , Colon/microbiology , Colon/metabolism , Diet/veterinary , Animal Feed/analysis , Male
20.
BMC Vet Res ; 20(1): 5, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172908

ABSTRACT

BACKGROUND: Porcine reproductive and respiratory syndrome (PRRS) is a viral disease with worldwide distribution and an enormous economic impact. To control PRRS virus (PRRSV) infection, modified live vaccines (MLVs) are widely used in the field, mainly administered via an intramuscular (IM) route. Currently, some MLVs are authorized for intradermal (ID) administration, which has many practical and welfare advantages. The objectives of the study were to compare the immune responses (systemic in blood and mucosal in lungs) and vaccine efficacy in preventing challenge strain transmission after IM or needle-free ID immunization of piglets with an MLV against PRRSV-1 (MLV1). METHODS: Groups of sixteen 5-week-old specific pathogen-free piglets were vaccinated with Porcilis PRRS® (MSD) either by an IM (V+ IM) or ID route (V+ ID) using an IDAL®3G device or kept unvaccinated (V-). Four weeks after vaccination, in each group, 8 out of the 16 piglets were challenged intranasally with a PRRSV-1 field strain, and one day later, the inoculated pigs were mingled by direct contact with the remaining 8 sentinel noninoculated pigs to evaluate PRRSV transmission. Thus, after the challenge, each group (V+ IM, V+ ID or V-) included 8 inoculated and 8 contact piglets. During the postvaccination and postchallenge phases, PRRSV replication (RT-PCR), PRRSV-specific antibodies (ELISA IgG and IgA, virus neutralization tests) and cell-mediated immunity (ELISPOT Interferon gamma) were monitored in blood and bronchoalveolar lavages (BALs). RESULTS: Postvaccination, vaccine viremia was lower in V+ ID pigs than in V+ IM pigs, whereas the cell-mediated immune response was detected earlier in the V+ ID group at 2 weeks postvaccination. In the BAL fluid, a very low mucosal immune response (humoral and cellular) was detected. Postchallenge, the vaccine efficacy was similar in inoculated animals with partial control of PRRSV viremia in V+ ID and V+ IM animals. In vaccinated sentinel pigs, vaccination drastically reduced PRRSV transmission with similar estimated transmission rates and latency durations for the V+ IM and V+ ID groups. CONCLUSIONS: Our results show that the tested MLV1 induced a faster cell-mediated immune response after ID immunization two weeks after vaccination but was equally efficacious after IM or ID immunization towards a challenge four weeks later. Considering the practical and welfare benefits of ID vaccination, these data further support the use of this route for PRRS MLVs.


Subject(s)
Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Swine Diseases , Viral Vaccines , Swine , Animals , Porcine Reproductive and Respiratory Syndrome/prevention & control , Viremia/veterinary , Immunity, Mucosal , Antibodies, Viral , Vaccination/veterinary , Vaccination/methods , Vaccines, Attenuated
SELECTION OF CITATIONS
SEARCH DETAIL