Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Curr Issues Mol Biol ; 46(5): 4021-4034, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38785516

ABSTRACT

The demand for high-precision CRISPR/Cas9 systems in biomedicine is experiencing a notable upsurge. The editing system fdCas9 employs a dual-sgRNA strategy to enhance editing accuracy. However, the application of fdCas9 is constrained by the stringent requirement for two protospacer adjacent motifs (PAMs) of Cas9. Here, we devised an optimized editor, fRYdCas9, by merging FokI with the nearly PAM-less RYdCas9 variant, and two fRYdCas9 systems formed a dimer in a proper spacer length to accomplish DNA cleavage. In comparison to fdCas9, fRYdCas9 demonstrates a substantial increase in the number of editable genomic sites, approximately 330-fold, while maintaining a comparable level of editing efficiency. Through meticulous experimental validation, we determined that the optimal spacer length between two FokI guided by RYdCas9 is 16 base pairs. Moreover, fRYdCas9 exhibits a near PAM-less feature, along with no on-target motif preference via the library screening. Meanwhile, fRYdCas9 effectively addresses the potential risks of off-targets, as analyzed through whole genome sequencing (WGS). Mouse embryonic editing shows fRYdCas9 has robust editing capabilities. This study introduces a potentially beneficial alternative for accurate gene editing in therapeutic applications and fundamental research.

2.
Plant Biotechnol J ; 22(1): 19-36, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37794706

ABSTRACT

Prime editing (PE) technology utilizes an extended prime editing guide RNA (pegRNA) to direct a fusion peptide consisting of nCas9 (H840) and reverse transcriptase (RT) to a specific location in the genome. This enables the installation of base changes at the targeted site using the extended portion of the pegRNA through RT activity. The resulting product of the RT reaction forms a 3' flap, which can be incorporated into the genomic site through a series of biochemical steps involving DNA repair and synthesis pathways. PE has demonstrated its effectiveness in achieving almost all forms of precise gene editing, such as base conversions (all types), DNA sequence insertions and deletions, chromosomal translocation and inversion and long DNA sequence insertion at safe harbour sites within the genome. In plant science, PE could serve as a groundbreaking tool for precise gene editing, allowing the creation of desired alleles to improve crop varieties. Nevertheless, its application has encountered limitations due to efficiency constraints, particularly in dicotyledonous plants. In this review, we discuss the step-by-step mechanism of PE, shedding light on the critical aspects of each step while suggesting possible solutions to enhance its efficiency. Additionally, we present an overview of recent advancements and future perspectives in PE research specifically focused on plants, examining the key technical considerations of its applications.


Subject(s)
Chromosome Inversion , RNA, Guide, CRISPR-Cas Systems , Alleles , DNA Repair , Gene Editing , DNA , CRISPR-Cas Systems
3.
BMC Biol ; 21(1): 226, 2023 10 20.
Article in English | MEDLINE | ID: mdl-37864194

ABSTRACT

BACKGROUND: Gene knockout and knock-in have been widely performed in large farm animals based on genome editing systems. However, many types of precise gene editing, including targeted deletion, gene tagging, and large gene fragment replacement, remain a challenge in large farm animals. RESULTS: Here, we established versatile self-excising gene-targeting technology in combination with programmable nucleases (SEGCPN) to efficiently generate various types of precise gene editing in bovine. First, we used this versatile method to successfully generate bovine embryos with point mutations and 11-bp deletions at the MSTN locus. Second, we successfully generated bulls with EGFP labeling at the SRY locus. Finally, we successfully generated humanized cows in which the endogenous 18-kb α-casein gene was replaced with a 2.6-kb human α-lactalbumin gene. CONCLUSIONS: In summary, our new SEGCPN method offers unlimited possibilities for various types of precise gene editing in large animals for application both in agriculture and disease models.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Female , Animals , Cattle/genetics , Male , Humans , Gene Editing/methods , Gene Targeting/methods , Gene Knockout Techniques , Point Mutation
4.
J Infect Dis ; 228(11): 1505-1515, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37224525

ABSTRACT

BACKGROUND: Herpes simplex virus 1 can cause severe infections in individuals who are immunocompromised. In these patients, emergence of drug resistance mutations causes difficulties in infection management. METHODS: Seventeen herpes simplex virus 1 isolates were obtained from orofacial/anogenital lesions in a patient with leaky severe combined immunodeficiency over 7 years, before and after stem cell transplantation. Spatial/temporal evolution of drug resistance was characterized genotypically-with Sanger and next-generation sequencing of viral thymidine kinase (TK) and DNA polymerase (DP)-and phenotypically. CRISPR/Cas9 was used to introduce the novel DP Q727R mutation, and dual infection-competition assays were performed to assess viral fitness. RESULTS: Isolates had identical genetic backgrounds, suggesting that orofacial/anogenital infections derived from the same virus lineage. Eleven isolates proved heterogeneous TK virus populations by next-generation sequencing, undetectable by Sanger sequencing. Thirteen isolates were acyclovir resistant due to TK mutations, and the Q727R isolate additionally exhibited foscarnet/adefovir resistance. Recombinant Q727R mutant virus showed multidrug resistance and increased fitness under antiviral pressure. CONCLUSIONS: Long-term follow-up of a patient with severe combined immunodeficiency revealed virus evolution and frequent reactivation of wild-type and TK mutant strains, mostly as heterogeneous populations. The DP Q727R resistance phenotype was confirmed with CRISPR/Cas9, a useful tool to validate novel drug resistance mutations.


Subject(s)
Herpes Simplex , Herpesvirus 1, Human , Immunologic Deficiency Syndromes , Severe Combined Immunodeficiency , Humans , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Herpes Simplex/drug therapy , Severe Combined Immunodeficiency/drug therapy , Gene Editing , Drug Resistance, Viral/genetics , Acyclovir/pharmacology , Acyclovir/therapeutic use , Mutation , DNA-Directed DNA Polymerase/genetics , Drug Resistance, Multiple , Thymidine Kinase/genetics , Thymidine Kinase/therapeutic use
5.
Plant J ; 106(5): 1208-1218, 2021 06.
Article in English | MEDLINE | ID: mdl-33730414

ABSTRACT

Genome-editing technologies consisting of targeted mutagenesis and gene targeting enable us to modify genes of interest rapidly and precisely. The discovery in 2012 of CRISPR/Cas9 systems and their development as sequence-specific nucleases has brought about a paradigm shift in biology. Initially, CRISPR/Cas9 was applied in targeted mutagenesis to knock out a target gene. Thereafter, advances in genome-editing technologies using CRISPR/Cas9 developed rapidly, with base editing systems for transition substitution using a combination of Cas9 nickase and either cytidine or adenosine deaminase being reported in 2016 and 2017, respectively, and later in 2021 bringing reports of transversion substitution using Cas9 nickase, cytidine deaminase and uracil DNA glycosylase. Moreover, technologies for gene targeting and prime editing systems using DNA or RNA as donors have also been developed in recent years. Besides these precise genome-editing strategies, reports of successful chromosome engineering using CRISPR/Cas9 have been published recently. The application of genome editing to crop breeding has advanced in parallel with the development of these technologies. Genome-editing enzymes can be introduced into plant cells, and there are now many examples of crop breeding using genome-editing technologies. At present, it is no exaggeration to say that we are now in a position to be able to modify a gene precisely and rearrange genomes and chromosomes in a predicted way. In this review, we introduce and discuss recent highlights in the field of precise gene editing, chromosome engineering and genome engineering technology in plants.


Subject(s)
CRISPR-Cas Systems , Crops, Agricultural/genetics , Genetic Engineering , Genome, Plant/genetics , Gene Editing , Gene Targeting , Plant Breeding
6.
Curr Issues Mol Biol ; 44(4): 1688-1700, 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35723374

ABSTRACT

An accurate visual reporter system to assess homology-directed repair (HDR) is a key prerequisite for evaluating the efficiency of Cas9-mediated precise gene editing. Herein, we tested the utility of the widespread promoterless EGFP reporter to assess the efficiency of CRISPR/Cas9-mediated homologous recombination by fluorescence expression. We firstly established a promoterless EGFP reporter donor targeting the porcine GAPDH locus to study CRISPR/Cas9-mediated homologous recombination in porcine cells. Curiously, EGFP was expressed at unexpectedly high levels from the promoterless donor in porcine cells, with or without Cas9/sgRNA. Even higher EGFP expression was detected in human cells and those of other species when the porcine donor was transfected alone. Therefore, EGFP could be expressed at certain level in various cells transfected with the promoterless EGFP reporter alone, making it a low-resolution reporter for measuring Cas9-mediated HDR events. In summary, the widespread promoterless EGFP reporter could not be an ideal measurement for HDR screening and there is an urgent need to develop a more reliable, high-resolution HDR screening system to better explore strategies of increasing the efficiency of Cas9-mediated HDR in mammalian cells.

7.
Transgenic Res ; 30(4): 353-379, 2021 08.
Article in English | MEDLINE | ID: mdl-34086167

ABSTRACT

Until recently, our ability to generate allelic diversity in plants was limited to introduction of variants from domesticated and wild species by breeding via uncontrolled recombination or the use of chemical and physical mutagens-processes that are lengthy and costly or lack specificity, respectively. Gene editing provides a faster and more precise way to create new variation, although its application in plants has been dominated by the creation of short insertion and deletion mutations leading to loss of gene function, mostly due to the dependence of editing outcomes on DNA repair pathway choices intrinsic to higher eukaryotes. Other types of edits such as point mutations and precise and pre-designed targeted sequence insertions have rarely been implemented, despite providing means to modulate the expression of target genes or to engineer the function and stability of their protein products. Several advancements have been developed in recent years to facilitate custom editing by regulation of repair pathway choices or by taking advantage of alternative types of DNA repair. We have seen the advent of novel gene editing tools that are independent of DNA double-strand break repair, and methods completely independent of host DNA repair processes are being increasingly explored. With the aim to provide a comprehensive review of the state-of-the-art methodology for allele replacement in plants, I discuss the adoption of these improvements for plant genome engineering.


Subject(s)
CRISPR-Cas Systems , DNA Repair , Gene Editing , Genome, Plant , Plant Breeding/methods , Plants, Genetically Modified/genetics , Plants/genetics , Endonucleases/genetics , Endonucleases/metabolism , Gene Targeting
8.
BMC Biotechnol ; 20(1): 57, 2020 10 23.
Article in English | MEDLINE | ID: mdl-33097066

ABSTRACT

BACKGROUND: Precise genetic modifications are preferred products of CRISPR-Cas9 mediated gene editing in mammalian cells but require the repair of induced double-strand breaks (DSB) through homology directed repair (HDR). Since HDR competes with the prevailing non-homologous end joining (NHEJ) pathway and depends on the presence of repair templates its efficiency is often limited and demands optimized methodology. RESULTS: For the enhancement of HDR we redirect the DSB repair pathway choice by targeting the Ubiquitin mark for damaged chromatin at Histone H2A-K15. We used fusions of the Ubiquitin binding domain (UBD) of Rad18 or RNF169 with BRCA1 to promote HDR initiation and UBD fusions with DNA binding domains to attract donor templates and facilitate HDR processing. Using a traffic light reporter system in human HEK293 cells we found that the coexpression of both types of UBD fusion proteins promotes HDR, reduces NHEJ and shifts the HDR/NHEJ balance up to 6-fold. The HDR enhancing effect of UBD fusion proteins was confirmed at multiple endogenous loci. CONCLUSIONS: Our findings provide a novel efficient approach to promote precise gene editing in human cells.


Subject(s)
CRISPR-Cas Systems , Gene Editing/methods , Histones/genetics , Ubiquitination , Animals , BRCA1 Protein/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , DNA End-Joining Repair , DNA Repair , DNA-Binding Proteins/genetics , Gene Expression , Gene Knock-In Techniques , HEK293 Cells , Humans , Lamin Type B/genetics , Recombinational DNA Repair , Ubiquitin/chemistry , Ubiquitin-Protein Ligases/genetics
9.
Adv Sci (Weinh) ; 11(30): e2309004, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38874509

ABSTRACT

The current-generation adenine base editor (ABE) ABE8e, which has evolved from the prokaryotic evolution system, exhibits high efficiency in mediating A-to-G conversion and is presumed to be promising for gene therapy. However, its much wider editing window and substantially higher off-target editing activity restricted its applications in precise base editing for therapeutic use. This study uses a library-assisted protein evolution approach using eukaryotic cells to generate ABE variants with improved specificity and reduced off-target editing while maintaining high activity in human cells. The study generated an expanded set of ABEs with efficient editing activities and chose four evolved variants that offered either similar or modestly higher efficiency within a narrower editing window of protospacer position ≈4-7 compared to that of ABE8e in human cells, which would enable minimized bystander editing. Moreover, these variants resulted in reduced off-target editing events when delivered as plasmid or mRNA into human cells. Finally, these variants can install both disease-suppressing mutations and disease-correcting mutations efficiently with minimal undesired bystander editing making them promising approaches for specific therapeutic edits. In summary, the work establishes a mutant-library-assisted protein evolution method in eukaryotic cells and generates alternative ABE variants as efficient tools for precise human genome editing.


Subject(s)
Adenine , Eukaryotic Cells , Gene Editing , Gene Editing/methods , Humans , Adenine/metabolism , Eukaryotic Cells/metabolism , CRISPR-Cas Systems/genetics , Gene Library , HEK293 Cells
10.
Animals (Basel) ; 14(5)2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38473105

ABSTRACT

The aim of this study was to verify whether small molecules can improve the efficiency of precision gene editing using clustered regularly interspaced short palindromic repeats (CRISPR) ribonucleoprotein (RNP) in porcine cells. CRISPR associated 9 (Cas9) protein, small guide RNA (sgRNA), phosphorothioate-modified single-stranded oligonucleotides (ssODN), and different small molecules were used to generate precise nucleotide substitutions at the insulin (INS) gene by homology-directed repair (HDR) in porcine fetal fibroblasts (PFFs). These components were introduced into PFFs via electroporation, followed by polymerase chain reaction (PCR) for the target site. All samples were sequenced and analyzed, and the efficiencies of different small molecules at the target site were compared. The results showed that the optimal concentrations of the small molecules, including L-189, NU7441, SCR7, L755507, RS-1, and Brefeldin A, for in vitro-cultured PFFs' viability were determined. Compared with the control group, the single small molecules including L-189, NU7441, SCR7, L755507, RS-1, and Brefeldin A increased the efficiency of HDR-mediated precise gene editing from 1.71-fold to 2.28-fold, respectively. There are no benefits in using the combination of two small molecules, since none of the combinations improved the precise gene editing efficiency compared to single small molecules. In conclusion, these results suggested that a single small molecule can increase the efficiency of CRISPR RNP-mediated precise gene editing in porcine cells.

11.
Methods Mol Biol ; 2560: 267-278, 2023.
Article in English | MEDLINE | ID: mdl-36481903

ABSTRACT

A specific targeting nuclease is a powerful tool for mediating genome alternative expression with high precision. The RNA sequence-guided Cas9 nuclease from the microbial clustered regularly interspaced short palindromic repeats (CRISPR) adaptive immune system can be used to facilitate genome engineering in cells by using a 20-nt targeting sequence. In this chapter, we describe a set of tools for Cas9-mediated genome editing via non-homologous end joining (NHEJ) or homology-directed repair (HDR) in the generation of modified cell lines for downstream functional studies. This protocol provides experimentally derived guidelines for the selection of target sites, evaluation of cleavage efficiency, and analysis of off-target activity. Beginning with target design, we will cover gene modifications and modified clonal cell lines.


Subject(s)
Cell Line
12.
Front Genome Ed ; 5: 1104666, 2023.
Article in English | MEDLINE | ID: mdl-37188156

ABSTRACT

Pyruvate kinase deficiency (PKD) is an autosomal recessive disorder caused by mutations in the PKLR gene. PKD-erythroid cells suffer from an energy imbalance caused by a reduction of erythroid pyruvate kinase (RPK) enzyme activity. PKD is associated with reticulocytosis, splenomegaly and iron overload, and may be life-threatening in severely affected patients. More than 300 disease-causing mutations have been identified as causing PKD. Most mutations are missense mutations, commonly present as compound heterozygous. Therefore, specific correction of these point mutations might be a promising therapy for the treatment of PKD patients. We have explored the potential of precise gene editing for the correction of different PKD-causing mutations, using a combination of single-stranded oligodeoxynucleotides (ssODN) with the CRISPR/Cas9 system. We have designed guide RNAs (gRNAs) and single-strand donor templates to target four different PKD-causing mutations in immortalized patient-derived lymphoblastic cell lines, and we have detected the precise correction in three of these mutations. The frequency of the precise gene editing is variable, while the presence of additional insertions/deletions (InDels) has also been detected. Significantly, we have identified high mutation-specificity for two of the PKD-causing mutations. Our results demonstrate the feasibility of a highly personalized gene-editing therapy to treat point mutations in cells derived from PKD patients.

13.
Plant Sci ; 323: 111400, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35905895

ABSTRACT

CRISPR Cas9-mediated genome editing is highly efficient at targeted site-specific gene knock-out through NHEJ (Non-Homology End Joining), but ineffective for specific DNA integration through HDR (Homology Directed Repair) for precise gene editing. Base editors can make limited base substitutions but only within restricted small windows of the protospacer. Prime editing has been applied in plants with various degrees of success. However, several questions such as low and inconsistent editing efficiencies across different target sites need to be addressed. We compared two prime editing approaches PE3 and PE2 at two neighboring target sites within rice Waxy gene to partially address those questions. A straightforward PE2 plant prime editing system retrofitted from a regular CRISPR-Cas9 editing system can deliver highly efficient up to 66.7% precise gene editing. Various forms of precise editing including base substitutions, small deletions and insertions can be accurately achieved. The secondary structure variations of different pegRNAs may be the primary reason for inconsistent editing across different target sites and should be the optimization focus to further improve plant prime editing.


Subject(s)
Oryza , CRISPR-Cas Systems/genetics , Gene Editing , Oryza/genetics , Plants/genetics , Recombinational DNA Repair , Waxes
14.
Bioact Mater ; 11: 1-14, 2022 May.
Article in English | MEDLINE | ID: mdl-34938908

ABSTRACT

Clustered regularly interspaced short palindromic repeats (CRISPR) technology emerges a remarkable potential for cure of refractory cancer like metastatic breast cancer. However, how to efficiently deliver the CRISPR system with non-viral carrier remains a major issue to be solved. Here, we report a kind of targeted core-shell nanoparticles (NPs) carrying dual plasmids (pHR-pCas9) for precise CCCTC-binding factor (CTCF) gene insert to circumvent metastatic breast cancer. The targeted core-shell NPs carrying pHR-pCas9 can accomplish γGTP-mediated cellular uptake and endosomal escape, facilitate the precise insert and stable expression of CTCF gene, inhibit the migration, metastasis, and colonization of metastatic breast cancer cells. Besides, the finding further reveals that the inhibitory mechanism of metastasis could be associated with up-regulating CTCF protein, followed by down-regulating stomatin (STOM) protein. The study offers a universal nanostrategy enabling the robust non-viral delivery of gene-editing system for treatment of severe illness.

15.
Viruses ; 13(6)2021 05 26.
Article in English | MEDLINE | ID: mdl-34073189

ABSTRACT

Drug resistance studies on human γ-herpesviruses are hampered by the absence of an in vitro system that allows efficient lytic viral replication. Therefore, we employed murine γ-herpesvirus-68 (MHV-68) that efficiently replicates in vitro as a model to study the antiviral resistance of γ-herpesviruses. In this study, we investigated the mechanism of resistance to nucleoside (ganciclovir (GCV)), nucleotide (cidofovir (CDV), HPMP-5azaC, HPMPO-DAPy) and pyrophosphate (foscarnet (PFA)) analogues and the impact of these drug resistance mutations on viral fitness. Viral fitness was determined by dual infection competition assays, where MHV-68 drug-resistant viral clones competed with the wild-type virus in the absence and presence of antivirals. Using next-generation sequencing, the composition of the viral populations was determined at the time of infection and after 5 days of growth. Antiviral drug resistance selection resulted in clones harboring mutations in the viral DNA polymerase (DP), denoted Y383SGCV, Q827RHPMP-5azaC, G302WPFA, K442TPFA, G302W+K442TPFA, C297WHPMPO-DAPy and C981YCDV. Without antiviral pressure, viral clones Q827RHPMP-5azaC, G302WPFA, K442TPFA and G302W+K442TPFA grew equal to the wild-type virus. However, in the presence of antivirals, these mutants had a growth advantage over the wild-type virus that was moderately to very strongly correlated with antiviral resistance. The Y383SGCV mutant was more fit than the wild-type virus with and without antivirals, except in the presence of brivudin. The C297W and C981Y changes were associated with a mutator phenotype and had a severely impaired viral fitness in the absence and presence of antivirals. The mutator phenotype caused by C297W in MHV-68 DP was validated by using a CRISPR/Cas9 genome editing approach.


Subject(s)
CRISPR-Cas Systems , DNA-Directed DNA Polymerase/genetics , Gene Editing , Genes, Viral , Mutation , Rhadinovirus/physiology , Amino Acid Substitution , Animals , Cell Line , Codon , DNA-Directed DNA Polymerase/chemistry , Genetic Fitness , Genotype , Humans , Mice , Models, Molecular , Phenotype , Protein Conformation , Rhadinovirus/drug effects , Structure-Activity Relationship
16.
Stem Cell Reports ; 15(4): 999-1013, 2020 10 13.
Article in English | MEDLINE | ID: mdl-32976766

ABSTRACT

Patient-specific human induced pluripotent stem cells (hiPSCs) offer unprecedented opportunities for the investigation of multigenic disease, personalized medicine, and stem cell therapy. For heterogeneous diseases such as atrial fibrillation (AF), however, precise correction of the associated mutation is crucial. Here, we generated and corrected hiPSC lines from two AF patients carrying different heterozygous SHOX2 mutations. We developed a strategy for the scarless correction of heterozygous mutations, based on stochastic enrichment by sib selection, followed by allele quantification via digital PCR and next-generation sequencing to detect isogenic subpopulations. This allowed enriching edited cells 8- to 20-fold. The method does not require antibiotic selection or cell sorting and can be easily combined with base-and-prime editing approaches. Our strategy helps to overcome low efficiencies of homology-dependent repair in hiPSCs and facilitates the generation of isogenic control lines that represent the gold standard for modeling complex diseases in vitro.


Subject(s)
Atrial Fibrillation/genetics , Gene Editing , Homeodomain Proteins/genetics , Induced Pluripotent Stem Cells/pathology , Mutation/genetics , Alleles , Base Sequence , Clone Cells , Heterozygote , High-Throughput Nucleotide Sequencing , Humans , RNA, Guide, Kinetoplastida/metabolism , Recombinational DNA Repair , Single-Cell Analysis , Stochastic Processes
17.
Methods Mol Biol ; 2045: 337-346, 2019.
Article in English | MEDLINE | ID: mdl-31250381

ABSTRACT

Induced pluripotent stem cells (iPSCs) have demonstrated tremendous potential in numerous disease modeling and regenerative medicine-based therapies. The development of innovative gene transduction and editing technologies has further augmented the potential of iPSCs. Cas9-cytidine deaminases, for example, have developed as an alternative strategy to integrate single-base mutations (C â†’ T or G â†’ A transitions) at specific genomic loci. In this chapter, we specifically describe CRISPR (clustered regularly interspaced short palindromic repeats) base editing in iPSCs for editing precise locations in the genome. This state-of-the-art approach enables highly efficient and accurate modifications in genes. Thus, this technique not only has the potential to have biotechnology and therapeutic applications but also the ability to reveal underlying mechanisms regarding pathologies caused by specific mutations.


Subject(s)
CRISPR-Cas Systems/genetics , Cytidine Deaminase/metabolism , Gene Editing/methods , Induced Pluripotent Stem Cells/metabolism , Cell Cycle , Cells, Cultured , Cytidine Deaminase/genetics , Cytosine/chemistry , Cytosine/metabolism , Electroporation , Gene Editing/instrumentation , Genome, Human/drug effects , High-Throughput Nucleotide Sequencing , Humans , Induced Pluripotent Stem Cells/chemistry , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/drug effects , Software , Transfection/methods , Uracil/chemistry
18.
Dev Comp Immunol ; 77: 340-349, 2017 12.
Article in English | MEDLINE | ID: mdl-28899753

ABSTRACT

Avian leukosis virus subgroup J (ALV-J), first isolated in the late 1980s, has caused economic losses to the poultry industry in many countries. As all chicken lines studied to date are susceptible to ALV infection, there is enormous interest in developing resistant chicken lines. The ALV-J receptor, chicken Na+/H+ exchange 1 (chNHE1) and the critical amino acid sequences involved in viral attachment and entry have already been characterized. However, there are no reported attempts to induce resistance to the virus by targeted genome modification of the receptor sequences. In an attempt to induce resistance to ALV-J infection, we used clustered regularly interspaced short palindromic repeats (CRISPR)-associated (CRISPR/Cas9)-based genome editing approaches to modify critical residues of the chNHE1 receptor in chicken cells. The susceptibility of the modified cell lines to ALV-J infection was examined using enhanced green fluorescent protein (EGFP)-expressing marker viruses. We showed that modifying the chNHE1 receptor by artificially generating a premature stop codon induced absolute resistance to viral infection, with mutations of the tryptophan residue at position 38 (Trp38) being very critical. Single-stranded oligodeoxynucleotide (ssODN)-mediated targeted recombination of the Trp38 region revealed that deletions involving the Trp38 residue were most effective in conferring resistance to ALV-J. Moreover, protein structure analysis of the chNHE1 receptor sequence suggested that its intrinsically disordered region undergoes local conformational changes through genetic alteration. Collectively, these results demonstrate that targeted mutations on chNHE1 alter the susceptibility to ALV-J and the technique is expected to contribute to develop disease-resistant chicken lines.


Subject(s)
Avian Leukosis Virus/physiology , Avian Leukosis/immunology , Avian Proteins/genetics , Mutation/genetics , Sodium-Hydrogen Exchanger 1/genetics , Animals , Cell Line , Chickens , Clustered Regularly Interspaced Short Palindromic Repeats , Disease Susceptibility , Gene Editing , Immunity, Innate , Protein Conformation , Structure-Activity Relationship , Virus Attachment
SELECTION OF CITATIONS
SEARCH DETAIL