Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Field Crops Res ; 241: 107585, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31534300

ABSTRACT

Establishing balanced nutrient requirements for maize (Zea mays L.) in the Northern Nigerian Savanna is paramount to develop site-specific fertilizer recommendations to increase maize yield, profits of farmers and avoid negative environmental impacts of fertilizer use. The model QUEFTS (QUantitative Evaluation of Fertility of Tropical Soils) was used to estimate balanced nitrogen (N), phosphorus (P) and potassium (K) requirements for maize production in the Northern Nigerian Savanna. Data from on-farm nutrient omission trials conducted in 2015 and 2016 rainy seasons in two agro-ecological zones in the Northern Nigerian Savanna (i.e. Northern Guinea Savanna "NGS" and Sudan Savanna "SS") were used to parameterize and validate the QUEFTS model. The relations between indigenous soil N, P, and K supply and soil properties were not well described with the QUEFTS default equations and consequently new and better fitting equations were derived. The parameters of maximum accumulation (a) and dilution (d) in kg grain per kg nutrient for the QUEFTS model obtained were respectively 35 and 79 for N, 200 and 527 for P and 25 and 117 for K in the NGS zone; 32 and 79 for N, 164 and 528 for P and 24 and 136 for K in the SS zone; and 35 and 79 for N, 199 and 528 for P and 24 and 124 for K when the data of the two zones were combined. There was a close agreement between observed and parameterized QUEFTS predicted yields in each of the agro-ecological zone (R2 = 0.69 for the NGS and 0.75 for the SS). Although with a slight reduction in the prediction power, a good fit between the observed and model predicted grain yield was also detected when the data for the two agro-ecological zones were combined (R2 = 0.67). Therefore, across the two agro-ecological zones, the model predicted a linear relationship between grain yield and above-ground nutrient uptake until yield reached about 50 to 60% of the yield potential. When the yield target reached 60% of the potential yield (i.e. 6.0 t ha-1), the model showed above-ground balanced nutrient uptake of 20.7, 3.4 and 27.1 kg N, P, and K, respectively, per one tonne of maize grain. These results suggest an average NPK ratio in the plant dry matter of about 6.1:1:7.9. We concluded that the QUEFTS model can be widely used for balanced nutrient requirement estimations and development of site-specific fertilizer recommendations for maize intensification in the Northern Nigerian Savanna.

2.
Heliyon ; 10(13): e33926, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39055832

ABSTRACT

Maize (Zea mays L.) is an important food crop in Ethiopia, but productivity is low mainly due to low soil fertility and suboptimal fertilization. Therefore, this study aims to determine the yield, nutrient use efficiency and economic feasibility of maize production under various fertilizer applications and test the suitability of the Quantitative Evaluation of the Fertility in Tropical Soils (QUEFTS) model for predicting maize yield response to fertilization in Sidama region, southern Ethiopia. On-farm experiments were conducted at six sites (Site 1-6) of Sidama region, southern Ethiopia during the 2019 growing season. The experiments were laid out in a randomized complete block design (RCBD) with three replications. The experiment was a nutrient omission trial with seven treatments: control, two full NPK treatments and four nutrient omission treatments with contrasting N and P rates. Omitting N resulted in 5-28 % yield loss and omitting P resulted in 4-44 % yield loss compared to the lower rate of full NPK treatment across all study sites. Whereas omitting K resulted in 21 % yield loss only at sites 2 and 3. An increase in maize yield was mainly associated with an increase in both nutrient uptake and nutrient use efficiency of NPK. The results showed the need to revise blanket recommendations since the highest mean grain yields and net economic returns with acceptable marginal rates of return were obtained with NPK application or higher levels of NP (N2P2 treatment). In addition, the present QUEFTS model validation study revealed the good fit between QUEFTS model predicted maize grain yields (6.3 t ha-1) to the average actual yields (7.4 t ha-1) and this was also confirmed by small average values of RMSE = 1.5 t ha-1 and PBIAS = 6.9 %. Thus, the model can be a promising option for development of site specific fertilizer recommendations under smallholder farming systems in the region.

SELECTION OF CITATIONS
SEARCH DETAIL