Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 207
Filter
Add more filters

Publication year range
1.
Oecologia ; 205(3-4): 709-723, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39133237

ABSTRACT

Metacommunity ecology has shown that connectivity is important for the persistence of a species locally and across connected ecosystems, however we do not know if ecological effects in freshwater ecosystems exposed to biocides leaking from agriculture depend on metaecosystem connectivity. We experimentally replicated metaecosystems in the laboratory using gradostats as a model system. We tested the effects of connectivity, in terms of node distance from the pollutant-source, flow rate, and a glyphosate-based herbicide, on phytoplankton productivity, diversity and stability. Gradostats were composed of interconnected equally spaced nodes where resources and phytoplankton move directionally along a gradient of increasing distance from the source of the polluting herbicide. We hypothesised that ecological effects would be stronger in the node situated closer to the point of herbicide input, but that flow would suppress phytoplankton populations in distant nodes. Overall, RoundUp impacted phytoplankton productivity and stability by reducing algal biomass and abundances. This occurred especially in the node closest to the diluted herbicide point-source and under high flow, where species abundances were heavily suppressed by the effects of the rapidly flowing herbicide. At low flow on the other hand, distant nodes where buffered from the effects of the slow-moving herbicide. No differences in beta and gamma diversity among replicate metaecosystems was found; however, a significant loss of alpha diversity in all metaecosystems occurred through time until the end of the experiment. Together, these results point to the importance of considering aquatic connectivity in management plans for monitoring and mitigating unintended ecological consequences of agrochemical runoff.


Subject(s)
Ecosystem , Glycine , Glyphosate , Herbicides , Phytoplankton , Glycine/analogs & derivatives , Phytoplankton/drug effects , Biomass , Water Pollutants, Chemical
2.
Arch Toxicol ; 98(1): 277-288, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37922104

ABSTRACT

Glyphosate is a widely used active ingredient in agricultural herbicides, inhibiting the biosynthesis of aromatic amino acids in plants by targeting their shikimate pathway. Our gut microbiota also facilitates the shikimate pathway, making it a vulnerable target when encountering glyphosate. Dysbiosis in the gut microbiota may impair the gut-brain axis, bringing neurological outcomes. To evaluate the neurotoxicity and biochemical changes attributed to glyphosate, we exposed mice with the reference dose (RfD) set by the U.S. EPA (1.75 mg/Kg-BW/day) and its hundred-time-equivalence (175 mg/Kg-BW/day) chronically via drinking water, then compared a series of neurobehaviors and their fecal/serum metabolomic profile against the non-exposed vehicles (n = 10/dosing group). There was little alteration in the neurobehavior, including motor activities, social approach, and conditioned fear, under glyphosate exposure. Metabolomic differences attributed to glyphosate were observed in the feces, corresponding to 68 and 29 identified metabolites with dysregulation in the higher and lower dose groups, respectively, compared to the vehicle-control. There were less alterations observed in the serum metabolome. Under 175 mg/Kg-BW/day of glyphosate exposure, the aromatic amino acids (phenylalanine, tryptophan, and tyrosine) were reduced in the feces but not in the serum of mice. We further focused on how tryptophan metabolism was dysregulated based on the pathway analysis, and identified the indole-derivatives were more altered compared to the serotonin and kynurenine derivatives. Together, we obtained a three-dimensional data set that records neurobehavioral, fecal metabolic, and serum biomolecular dynamics caused by glyphosate exposure at two different doses. Our data showed that even under the high dose of glyphosate irrelevant to human exposure, there were little evidence that supported the impairment of the gut-brain axis.


Subject(s)
Glyphosate , Herbicides , Humans , Mice , Animals , Glycine/toxicity , Tryptophan , Shikimic Acid/metabolism , Herbicides/toxicity , Amino Acids, Aromatic
3.
J Environ Sci Health B ; 59(4): 183-191, 2024.
Article in English | MEDLINE | ID: mdl-38400726

ABSTRACT

Glyphosate is an ingredient widely used in various commercial formulations, including Roundup®. This study focused on tight junctions and the expression of inflammatory genes in the small intestine of chicks. On the sixth day of embryonic development, the eggs were randomly assigned to three groups: the control group (CON, n = 60), the glyphosate group (GLYP, n = 60), which received 10 mg of active glyphosate/kg egg mass, and the Roundup®-based glyphosate group also received 10 mg of glyphosate. The results indicated that the chicks exposed to glyphosate or Roundup® exhibited signs of oxidative stress. Additionally, histopathological alterations in the small intestine tissues included villi fusion, complete fusion of some intestinal villi, a reduced number of goblet cells, and necrosis of some submucosal epithelial cells in chicks. Genes related to the small intestine (ZO-1, ZO-2, Claudin-1, Claudin-3, JAM2, and Occludin), as well as the levels of pro-inflammatory cytokines (IFNγ, IL-1ß, and IL-6), exhibited significant changes in the groups exposed to glyphosate or Roundup® compared to the control group. In conclusion, the toxicity of pure glyphosate or Roundup® likely disrupts the small intestine of chicks by modulating the expression of genes associated with tight junctions in the small intestine.


Subject(s)
Glyphosate , Herbicides , Animals , Herbicides/toxicity , Herbicides/metabolism , Glycine/toxicity , Tight Junctions/metabolism , Chickens/genetics
4.
Bull Environ Contam Toxicol ; 113(2): 17, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39068350

ABSTRACT

Roundup Transorb® (RDT) is the most popular glyphosate-based herbicide (GHB) used in agriculture, and its impact extends to non-target organisms. The annual killifish Austrolebias charrua is an endangered species endemic to southern South America and inhabits temporary ponds. This study evaluates the effects of RDT concentrations (0.065 and 5 mg/L GAE) on A. charrua exposed for 96 h. Gene expression of cat, sod2, gstα, gclc, and ucp1 was evaluated on the liver and gills. Highlighting that even at low concentrations permitted by Brazilian legislation, the RDT can have adverse effects on A. charrua.


Subject(s)
Antioxidants , Glycine , Glyphosate , Herbicides , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/toxicity , Herbicides/toxicity , Glycine/analogs & derivatives , Glycine/toxicity , Pilot Projects , Fundulidae/genetics , Gene Expression/drug effects , Superoxide Dismutase/metabolism , Liver/metabolism , Liver/drug effects , Brazil , Gills/metabolism , Killifishes
5.
J Exp Biol ; 226(6)2023 03 15.
Article in English | MEDLINE | ID: mdl-36861783

ABSTRACT

Fungicides and herbicides are two of the most heavily applied pesticide classes in the world, but receive little research attention with regards to their potential impacts on bees. As they are not designed to target insects, the mechanisms behind potential impacts of these pesticides are unclear. It is therefore important to understand their influence at a range of levels, including sublethal impacts on behaviours such as learning. We used the proboscis extension reflex (PER) paradigm to assess how the herbicide glyphosate and the fungicide prothioconazole affect bumblebee olfactory learning. We also assessed responsiveness, and compared the impacts of these active ingredients and their respective commercial formulations (Roundup Biactive and Proline). We found that learning was not impaired by either formulation but, of the bees that displayed evidence of learning, exposure to prothioconazole active ingredient increased learning level in some situations, while exposure to glyphosate active ingredient resulted in bumblebees being less likely to respond to antennal stimulation with sucrose. Our data suggest that fungicides and herbicides may not negatively impact olfactory learning ability when bumblebees are exposed orally to field-realistic doses in a lab setting, but that glyphosate has the potential to cause changes in responsiveness in bees. As we found impacts of active ingredients and not commercial formulations, this suggests that co-formulants may modify impacts of active ingredients in the products tested on olfactory learning without being toxic themselves. More research is needed to understand the mechanisms behind potential impacts of fungicides and herbicides on bees, and to evaluate the implications of behavioural changes caused by glyphosate and prothioconazole for bumblebee fitness.


Subject(s)
Fungicides, Industrial , Herbicides , Bees , Animals , Herbicides/toxicity , Fungicides, Industrial/toxicity , Learning , Conditioning, Classical , Smell
6.
J Appl Microbiol ; 134(2)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36639128

ABSTRACT

AIMS: In a field study, the effects of treatments of glyphosate-based herbicides (GBHs) in soil, alone and in combination with phosphate fertilizer, were examined on the performance and endophytic microbiota of garden strawberry. METHODS AND RESULTS: The root and leaf endophytic microbiota of garden strawberries grown in GBH-treated and untreated soil, with and without phosphate fertilizer, were analyzed. Next, bioinformatics analysis on the type of 5-enolpyruvylshikimate-3-phosphate synthase enzyme was conducted to assess the potential sensitivity of strawberry-associated bacteria and fungi to glyphosate, and to compare the results with field observations. GBH treatments altered the abundance and/or frequency of several operational taxonomic units (OTUs), especially those of root-associated fungi and bacteria. These changes were partly related to their sensitivity to glyphosate. Still, GBH treatments did not shape the overall community structure of strawberry microbiota or affect plant performance. Phosphate fertilizer increased the abundance of both glyphosate-resistant and glyphosate-sensitive bacterial OTUs, regardless of the GBH treatments. CONCLUSIONS: These findings demonstrate that although the overall community structure of strawberry endophytic microbes is not affected by GBH use, some individual taxa are.


Subject(s)
Fragaria , Herbicides , Microbiota , Herbicides/pharmacology , Fertilizers , Soil , Bacteria , Fungi/genetics , Glyphosate
7.
Anim Biotechnol ; 34(9): 4957-4967, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37210632

ABSTRACT

The current study investigated the potentially harmful consequences of pure glyphosate or Roundup® on CYP family members and lipid metabolism in newly hatched chicks. On the sixth day, 225 fertilized eggs were randomly divided into three treatments: (1) the control group injected with deionized water, (2) the glyphosate group injected with 10 mg pure glyphosate/Kg egg mass and (3) the Roundup group injected 10 mg the active ingredient glyphosate in Roundup®/Kg egg. The results of the study revealed a reduction in hatchability in chicks treated with Roundup®. Moreover, change of Lipid concentration in serum and the liver-treated groups. Additionally, increased liver function enzymes and increased oxidative stress in the glyphosate and Roundup® groups. Furthermore, liver tissues showed histological changes and several lipid deposits in glyphosate-treated groups. Hepatic CYP1A2 and CYP1A4 expressions were significantly increased (p < .05) after glyphosate exposure, and suppression of CYP1C1 mRNA expression was significant (p < .05) after Roundup® exposure. The pro-inflammatory cytokines genes IFN-γ and IL-1ß expression were significantly increased (p < .05) after Roundup® exposure. In addition, there were significant differences in the levels of expression genes which are related to lipid synthesis or catabolism in the liver. In conclusion, in ovo glyphosate exposure caused disruption of biotransformation, pro-inflammatory and lipid metabolism in chicks.


Subject(s)
Glyphosate , Herbicides , Animals , Chickens , Lipid Metabolism , Glycine/toxicity , Biotransformation , Cytochrome P-450 Enzyme System/genetics , Liver , Lipids
8.
Ecotoxicology ; 32(1): 93-101, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36653510

ABSTRACT

In amphibians, stressful environments can lead to accelerated metamorphosis at the expense of total length, resulting in the occurrence of morphological abnormalities. Many studies have linked the occurrence of these phenomena to the pollution of habitats by pesticides and thermal stress. Here, we assessed how exposure to Roundup Original DI® and higher constant temperatures affect the survival of Boana faber tadpoles and estimate the CL5096hs for the population. In addition, we evaluated how exposure to Roundup affects larval growth, morphology and thermal tolerance. Our findings suggest that even at sublethal doses, Roundup Original DI® may affect the survival of Boana faber larvae. There also appears to be an additive effect between Roundup and temperature increase on larval survival, however, we need to further explore this point to determine a pattern, proving to be a promising issue to be investigated in the future. We observed effects of chronic exposure to the herbicide formulation on the morphology and growth of the tadpoles, resulting in a reduction in total length and differences in the shape of the larvae. Although we did not recover any direct effects of herbicide exposure on CTMax, we did observe an upward trend in CTMax for tadpoles exposed to Roundup. Understanding how anthropogenic changes affect anuran persistence is fundamental for the management and conservation of the species and can be considered an initial step toward the formulation of legislations that regulate the use of herbicides.


Subject(s)
Herbicides , Pesticides , Animals , Anura , Environmental Pollution , Larva , Stress, Physiological , Temperature
9.
Environ Res ; 214(Pt 4): 113933, 2022 11.
Article in English | MEDLINE | ID: mdl-35868581

ABSTRACT

Glyphosate is the active ingredient in glyphosate-based herbicides (GBHs), such as Roundup™, the most widely used herbicides in the world. Glyphosate targets an essential enzyme in plants that is not found in animals. However, both glyphosate and GBHs are rated as Group 2A, probable human carcinogens, and also have documented effects on reproduction, acting as endocrine disruptive chemicals. We have reviewed reports of the effects of glyphosate and GBHs on mammalian nervous system function. As with several other herbicides, GBHs exposure has been associated with an increased risk of Parkinson's Disease and death of neurons in the substantia nigra. There is also some evidence implicating Roundup™ in elevated risk of autism. Other studies have shown the effects of GBHs on synaptic transmission in animal and cellular studies. The major mechanism of action appears to be oxidative stress, accompanied by mitochondrial dysfunction. In addition, some gut bacteria utilize the enzyme used by plants, and glyphosate and GBHs use has been shown to alter the gut microbiome. There is a large and growing body of evidence that the gut microbiome alters susceptibility to great number of human diseases, including nervous system function. The weight of the evidence indicates that in addition to cancer and reproductive effects, glyphosate and GBHs have significant adverse effects on the brain and behavior and increase the risk of at least some serious neurological diseases.


Subject(s)
Herbicides , Animals , Carcinogens , Glycine/analogs & derivatives , Glycine/toxicity , Herbicides/toxicity , Humans , Mammals , Nervous System , Glyphosate
10.
Arch Insect Biochem Physiol ; 110(4): e21893, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35388481

ABSTRACT

Glyphosate-based herbicide Roundup, as the most employed herbicide used for multiple purposes in agriculture, adversely affects nontarget organisms. We tested the effects of Roundup applied at larval and adult stages. Roundup caused developmental delay and increased larvae mortality. Roundup treatment reduced hemolymph glucose and glycogen levels in adult flies of both sexes at the highest concentration tested. Sex-dependent diverse effects were found in catalase and Cu,Zn superoxide dismutase (Cu,Zn-SOD) activities. Decreased aconitase activity, contents of thiols, and lipid peroxides were found after larval Roundup exposure. Furthermore, chronic exposure to adult flies decreased appetite, body weight, and shortened lifespan. Thus, our results suggest that high concentrations of Roundup are deleterious to both larvae and adults, resulting in a shift of the metabolism and antioxidant defense system in Drosophila melanogaster.


Subject(s)
Herbicides , Animals , Antioxidants/metabolism , Drosophila/metabolism , Drosophila melanogaster/metabolism , Female , Herbicides/metabolism , Herbicides/toxicity , Larva/metabolism , Male , Oxidative Stress
11.
Biochem Genet ; 60(3): 953-968, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34559349

ABSTRACT

Field weed infestations can cause serious problems and require regular and planned programs to control them. Glyphosate is a broad-spectrum herbicide that inactivates the 5-enolpyruvylshikimate 3-phosphate synthase (EPSPS) enzyme and causes plant death. It has been reported that the mutation of proline 101 to serine in EPSPS is one of the effective mutations to reduce the affinity of glyphosate to EPSPS enzyme. In this study, we investigated the effect of the bacterial P101S mutant aromatic acid (aroA) gene on glyphosate resistance in transgenic rapeseeds. For this purpose, the mutant gene was synthesized and cloned into the pUC18 and pBI121 vectors. The gene was transferred to rapeseed by the Agrobacterium-mediated method. In this experiment, three generations of transgenic plants (T0, T1, and T2) were studied under in vitro and in vivo conditions. After the treatment of 75 putative transgenic plants with 10 mM glyphosate in T0 generation, resistant plants were identified and their seeds were harvested. In the T1 generation, out of 200 cultivated plants, 141 showed resistance. After the plants were treated with herbicides and resistance was determined, the seeds were harvested when they mature. In the T2 generation, most plants (162 plants of 200) were resistant to glyphosate. Therefore, the inheritance of resistance followed Mendel's first law, which is a sign of the monogenic character of resistance. Purification and increasing the percentage of resistant plants will be carried out in the next generations. It is concluded that P101S mutation guarantees glyphosate resistance of rapeseed and is recommended to study it in other plants.


Subject(s)
Brassica napus , Brassica rapa , Herbicides , 3-Phosphoshikimate 1-Carboxyvinyltransferase/genetics , Brassica napus/genetics , Brassica rapa/genetics , Genes, Bacterial , Glycine/analogs & derivatives , Herbicides/pharmacology , Mutation , Plants, Genetically Modified/genetics , Glyphosate
12.
Ecotoxicology ; 31(2): 335-340, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34997370

ABSTRACT

Roundup (Rn), a glyphosate-based formulation, is one of the most commonly used herbicides in the world. It affects non-targeted organisms in several ways, including adhesive activity towards metal ions. Zinc (Zn) plays a crucial role in a number of biochemical processes. In this study, we aim to elucidate the direct impact of Rn on Zn accumulation and Zn-dependent activities in the ex vivo system. To this end, we exposed the samples of the digestive gland of a bivalve mollusk Unio tumidus to 3 µM of Rn (calculated as 3 µM of glyphosate), Zn, Zn chelator (N,N,N',N'-Tetrakis(2-pyridylmethyl)ethylenediamine) (TPEN, Tp), and their combinations ZnTp and ZnRn for 17 h. We determined the levels of Zn in the tissue (Zn t) and metallothioneins (Zn-MT), metallothioneins (MTSH), and glutathione (GSH & GSSG), total antioxidant capacity (TAC), lysosomal membrane integrity, and caspase-3 activity. Our study demonstrated that Rn and Tp had different effects on the accumulation and functionality of Zn. Rn did not affect the accumulation of Zn (Zn t, Zn-MT) in the Zn- and ZnRn-groups. On the contrary, Tp produced effects antagonistic to Zn on caspase-3 activity, lysosomal stability, and MTSH concentration. Rn caused particular pro-oxidative effect that decreased GSH level (Rn- and ZnRn-groups) and lysosomal stability (Rn-group). The shared affected index was the GSH/GSSG ratio, which decreased by 2-8 times in each exposure. As the first experience with the application of Tp to indicate Zn activity in mollusks, the study concluded that the ex vivo approach could be useful in the study of numeral aquatic pollutants.


Subject(s)
Unio , Water Pollutants, Chemical , Animals , Metallothionein , Mollusca , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Zinc/toxicity
13.
Environ Toxicol ; 37(9): 2244-2258, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35661388

ABSTRACT

Citrate functionalized iron oxide nanoparticles (IONPs) are employed for various purposes-including environmental remediation but the interaction of IONPs with aquatic contaminants is poorly understood. Among those, glyphosate-based herbicides are toxic and affect target organs such as the liver. Evaluations of livers of female Poecilia reticulata by exposures to IONPs at a concentration of 0.3 mg/L were performed with association to: (1) 0.65 mg of glyphosate per litter and (2) 1.3 mg of glyphosate per litter of Roundup Original, and (3) glyphosate P.A at 0.65 mg/L. These associations were carried out progressively, after 7, 14, and 21 days. We detected circulatory disturbances, inflammatory responses, activation of the immune system, regressive changes, and progressive responses with changes in the connective tissue and decreased glycogen reserve from days 14 to 21. Ultrastructural changes in the Disse space and microvilli of hepatocytes indicated decreased contact surface area. In general, the damage was time and concentration dependent, increasing from 7 to 14 days and tending to stabilize from 14 to 21 days. Therefore, herbicide-associated IONPs functioned as xenobiotics inducing intense cellular detoxification processes and activation of hepatic immune responses.


Subject(s)
Herbicides , Poecilia , Animals , Female , Glycine/analogs & derivatives , Herbicides/toxicity , Liver , Magnetic Iron Oxide Nanoparticles , Poecilia/physiology , Glyphosate
14.
Int J Mol Sci ; 23(5)2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35269866

ABSTRACT

Glyphosate is a component of commonly used herbicides for controlling weeds in crops, gardens and municipal parks. There is increasing awareness that glyphosate-based herbicides, in addition to acting on plants, may also exert toxicity in wildlife and humans. In this study, male and female adult zebrafish were exposed to 700 µg/L of glyphosate (GLY), for 28 days. We used the metabolomic approach and UHPLC-ESI-MS to analyze liver samples to investigate the adverse effects of glyphosate on hepatic metabolism. The impact of GLY was found to be sex-specific. In female, GLY exposure affected purine metabolism by decreasing the levels of AMP, GMP and inosinic acid, consequently increasing uric acid levels with respect to the control (CTRL). Exposure to GLY also caused a decrease of UMP levels in the pyrimidine metabolism pathway. In male, GLY exposure decreased the aminoadipic acid within the lysine degradation pathway. Transcript analysis of genes involved in stress response, oxidative stress and the immune system were also performed. Results demonstrated an increased stress response in both sexes, as suggested by higher nr3c1 expression. However, the hsp70.2 transcript level was increased in female but decreased in male. The results demonstrated reduced sod1, sod2, and gpx1a in male following exposure to GLY, indicating an impaired oxidative stress response. At the same time, an increase in the cat transcript level in female was observed. mRNA levels of the pro-inflammatory interleukins litaf and cxcl8b.1 were increased in female. Taken together, the results provide evidence of disrupted nucleotide hepatic metabolism, increased stress inflammatory response in female and disruption of oxidative stress response in male.


Subject(s)
Herbicides , Zebrafish , Animals , Female , Glycine/analogs & derivatives , Glycine/toxicity , Herbicides/toxicity , Liver , Male , Zebrafish/genetics , Glyphosate
15.
Wiad Lek ; 75(1 pt 2): 259-262, 2022.
Article in English | MEDLINE | ID: mdl-35182132

ABSTRACT

OBJECTIVE: The aim: The aim of this research was the study of low dose roundup, a well-known herbicide, chronic poisoning on the state of the vegetative nervous system in albino rats. PATIENTS AND METHODS: Materials and methods: The state of vegetative nervous system was assessed by the method of variation pulsometry The two-week chronic roundup poisoning at a dose of 40 mcg/kg having been simulated on 30 albino rats. RESULTS: Results: The chronic roundup poisoning was accompanied by impaired state of vegetative nervous system that revealed itself in the growing indices of variation pulsometry: tension index - 1.6 times (P<0.001), index of regulatory system activity - 1.52 times (P<0.001), vegetative balance index - 2.36 times (P<0.001), rhythm vegetative index - 1.39 times (P<0.001). Moderate regulatory system stress, requiring extra functional reserves to provide adaptation to environment, was observed. Such condition occurs in the process of adaptation to adverse environmental factors with impairing adaptive self-regulation mechanisms. CONCLUSION: Conclusions: Internal two-week use of the roundup on albino rats in a dose of 40 mcg/kg is accompanied by functional disorders of vegetative nervous system, which reveal themselves in the growing values of variation pulsometry. The results obtained were indicative of prevailing vegetative system sympathetic division as compared with parasympathetic one, as well as of disordered regulation of vegetative nervous system tone.


Subject(s)
Autonomic Nervous System , Herbicides , Adaptation, Physiological , Autonomic Nervous System/physiology , Humans , Rats
16.
Ecotoxicol Environ Saf ; 208: 111695, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33396026

ABSTRACT

The priority list of freshwater pollutants is increasingly amended by pharmaceuticals. Their impact on the aquatic biota can be modulated by the presence of typical pollutants, like pesticides, and/or abnormal heating. The aim of this study was to elucidate potentially hazardous impact of combined environmental factors on the freshwater mussels by analyzing various sets of biochemical markers. We treated the bivalve molluscs of Unio tumidus with non-steroidal anti-inflammatory drug diclofenac (Dc, 2 nM), calcium antagonist and antihypertensive drug nifedipine (Nf, 2 nM) or organophosphonate glyphosate-based herbicide Roundup MAX (Rn, 79 nM of glyphosate) at 18 °C as well as with the mixture of these substances at 18 °C (Mix) or 25 °C (MixT) during 14 days. The concentrations used were correspondent to the environmentally relevant levels. The biomarkers of stress and toxicity were evaluated in digestive gland, except the lysosomal membrane stability measured in hemocytes. Exposures caused an oxidative stress due to the decreased SOD and GST activities and GSH/GSSG ratio, increased levels of thiobarbituric acid-reactive substances and protein carbonyls (with some exceptions). Dc increased cathepsin D activity in lysosomes. Nf increased lysosomal membrane stability and caspase-3 activity. Rn caused a dramatic distortion of metallo-thiolome due to increased levels of GSH and metallothionein-related thiols (MTSH) as well as depletion of Zn, Cu and Cd in the composition of metallothioneins, and decreased Zn/Cu molar ratio in the tissue. The particular toxicity of Rn was also attested by decreased lysosomal membrane stability and cholinesterase activity. Canonical discriminant analysis separated Rn-, Mix- and MixT-groups from the joint set of C-, Dc- and Nf-groups. Generally, compound-specific effects were expressed in U. tumidus responses to the mixtures, but in MixT-group some effects were particular or extremely strong. Multi-marker approach and integrative analysis proved to be a useful tool for understanding possible future risks to freshwater mussels under a combination of xenobiotics and warming climate.


Subject(s)
Environmental Exposure/adverse effects , Herbicides/toxicity , Pharmaceutical Preparations , Unio/drug effects , Water Pollutants, Chemical/toxicity , Animals , Biomarkers/metabolism , Environmental Exposure/analysis , Herbicides/metabolism , Hot Temperature/adverse effects , Lysosomes/drug effects , Lysosomes/metabolism , Oxidative Stress/drug effects , Pharmaceutical Preparations/metabolism , Unio/metabolism , Water Pollutants, Chemical/metabolism
17.
Environ Res ; 184: 109306, 2020 05.
Article in English | MEDLINE | ID: mdl-32120119

ABSTRACT

Roundup® (RDP) is one of the most representative glyphosate-based herbicides (GBHs), which extensive use increases pressure on environmental safety and potential human health risk. The aim of this study was to investigate whether the adjuvant polyethoxylated tallow amine (POEA) or the herbicidal active ingredient glyphosate isopropylamine salt (GP) in formulation confers RDP cytotoxicity. We demonstrated that RDP and POEA could inhibit the proliferation of human lung A549 cells. Intracellular biochemical assay indicated that collapse of mitochondrial membrane, release of cytochrome c into cytosol, activation of caspase-9/-3, cleavage of poly (ADP-ribose) polymerase (PARP), oxidative DNA damage, DNA single-strand breaks and double-strand breaks are occurred in RDP and POEA treated A549 cells, not occurred in GP treated A549 cells. We conclude that the RDP's effect of apoptosis and DNA damage on human A549 cells is related to the presence of adjuvant POEA in formulation, independent of the herbicidal active ingredient GP. This study would enrich the theoretical basis of the RDP toxicity effects and attract attention on potential human health and environmental safety threat caused by adjuvant.


Subject(s)
DNA Damage , Glycine/analogs & derivatives , Herbicides , A549 Cells , Apoptosis , DNA Damage/drug effects , Glycine/toxicity , Herbicides/toxicity , Humans , Risk Assessment , Glyphosate
18.
Inhal Toxicol ; 32(8): 354-367, 2020 07.
Article in English | MEDLINE | ID: mdl-32892662

ABSTRACT

OBJECTIVES: The purpose of this study was to evaluate the individual contributions of inhalation and dermal exposures to urinary glyphosate levels following the heavy residential consumer application of a glyphosate-containing herbicide. METHODS: A pilot study was conducted in which each participant mixed and continuously spray-applied 16.3 gallons of a 0.96% glyphosate-containing solution for 100 min using a backpack sprayer. Twelve participants were divided evenly into two exposure groups, one equipped to assess dermal exposure and the other, inhalation exposure. Personal air samples (n = 12) and dermal patch samples (n = 24) were collected on the inhalation group participants and analyzed for glyphosate using HPLC-UV. Serial urine samples collected 30-min prior to application and 3-, 6-, 12-, 24-hr (inhalation and dermal groups) and 36-hr (dermal group only) post-application were analyzed for glyphosate and glyphosate's primary metabolite (AMPA) using HPLC-MS/MS. RESULTS: The mean airborne glyphosate concentration was 0.0047 mg/m3, and the mean concentrations of glyphosate for each applicator's four patch samples ranged from 0.04 µg/mm2 to 0.25 µg/mm2. In general, urinary glyphosate, AMPA, and total effective glyphosate levels were higher in the dermal exposure group than the inhalation exposure group, peaked within 6-hr following application, and were statistically indistinguishable from background at 24-hr post-application. CONCLUSIONS: This is the first study to characterize the absorption and biological fate of glyphosate in residential consumer applicators following heavy application. The results of this pilot study are consistent with previous studies that have shown that glyphosate is rapidly eliminated from the body, typically within 24 hr following application.


Subject(s)
Environmental Exposure/analysis , Glycine/analogs & derivatives , Herbicides/analysis , Lung/metabolism , Skin Absorption , Skin/metabolism , Aerosols/analysis , Consumer Product Safety , Female , Glycine/analysis , Glycine/urine , Herbicides/urine , Humans , Male , Pilot Projects , Glyphosate
19.
Ecotoxicol Environ Saf ; 201: 110794, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32526590

ABSTRACT

The intensive use of glyphosate in industrial agriculture may lead to freshwater contamination, encouraging studies of its toxic effect on non-target aquatic organisms. Glyphosate-based commercial formulations contain adjuvants, making them even more toxic than the active ingredient (a.i.) itself. The golden mussel Limnoperna fortunei is a freshwater invasive species which has been found to increase glyphosate dissipation in water and to accelerate eutrophication. The aim of this study is to evaluate the capability of L. fortunei to reduce the concentration of glyphosate in two commercial formulations, Roundup Max® and Glifosato Atanor®. Results were compared with the decay of the a.i. alone and in presence of mussels. Evasive response and toxicity tests were performed in a first set of trials to analyze the response of L. fortunei exposed to Roundup Max® and Glifosato Atanor®. Subsequently, we conducted a 21-day degradation experiment in 2.6-L microcosms applying the following treatments: 6 mg L-1 of technical-grade glyphosate (G), Glifosato Atanor® (A), Roundup Max® (R), 20 mussels in dechlorinated tap water (M), and the combination of mussels and herbicide either in the technical-grade (MG) or formulated form (MA and MR) (all by triplicate). Samples were collected at days 0, 1, 7, 14 and 21. No significant differences in glyphosate decay were found between treatments with mussels (MG: 2.03 ± 0.40 mg L-1; MA: 1.60 ± 0.32 mg L-1; MR: 1.81 ± 0.21 mg L-1), between glyphosate as a.i. and the commercial formulations, and between the commercial formulations, suggesting that the adjuvants did not affect the degrading potential of L. fortunei. In addition to the acceleration of glyphosate dissipation in water, there was an increase in the concentration of dissolved nutrients in water (N-NH4+ and P-PO43-) even higher than that caused by the filtering activity of the mussels, probably resulting from stress or from the degradation of glyphosate and adjuvants. We believe that a larger bioavailability of these nutrients due to glyphosate metabolization mediated by mussels would accelerate eutrophication processes in natural water bodies. The approach used here, where L. fortunei was exposed to two commercial formulations actually used in agricultural practices, sheds light on the potential impact of glyphosate decay on water bodies invaded by this species.


Subject(s)
Fresh Water/chemistry , Glycine/analogs & derivatives , Herbicides/toxicity , Introduced Species/trends , Mytilidae/drug effects , Water Pollutants, Chemical/toxicity , Animals , Argininosuccinate Synthase , Biodegradation, Environmental , Escherichia coli Proteins , Glycine/toxicity , Mytilidae/metabolism , Toxicity Tests , Glyphosate
20.
Ecotoxicology ; 29(9): 1390-1398, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32880882

ABSTRACT

Lycaena dispar Hawort (Lepidoptera: Lycaenidae), a protected butterfly, is declining in Europe, but it thrives in rice fields in northern Italy. Here, agrochemical usage could threaten its long-term survival. We investigated, by micronucleus (MN) assay, the genotoxic effect of glyphosate, a common herbicide, on L. dispar larvae. Micronuclei (MNi) are DNA fragments separated from the main nucleus and represent the result of genomic damage that has been transmitted to daughter cells. In a control/treatment experiment, we extracted epithelial cells from last-instar larvae fed with Rumex spp. plants sprayed with a solution containing 3.6 g/L of glyphosate, and from larvae fed with unsprayed plants. MNi and other chromosomal aberrations-nuclear buds (NBUDs) and bi-nucleated cells-were then scored in 1000 cells/subject. Significant differences were found between glyphosate-exposed and control groups in terms of MNi and total genomic damage, but not in terms of NBUDs or bi-nucleated cells. We reported a possible genomic damage induced by glyphosate on larvae of L. dispar. For the first time, a MN assay was used in order to evaluate the genomic damage on a phytophagous invertebrate at the larval stage. Increased levels of MNi reflect a condition of genomic instability that can result in reduced vitality and in an increased risk of local extinction. Therefore, farmland management compatible with wildlife conservation is needed.


Subject(s)
Butterflies/physiology , Herbicides/toxicity , Micronucleus Tests , Animals , Chromosome Aberrations , DNA Damage , Europe
SELECTION OF CITATIONS
SEARCH DETAIL