Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51.887
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 38: 171-202, 2020 04 26.
Article in English | MEDLINE | ID: mdl-32340577

ABSTRACT

Innate lymphocyte populations are emerging as key effectors in tissue homeostasis, microbial defense, and inflammatory skin disease. The cells are evolutionarily ancient and carry conserved principles of function, which can be achieved through shared or unique specific mechanisms. Recent technological and treatment advances have provided insight into heterogeneity within and between individuals and species. Similar pathways can extend through to adaptive lymphocytes, which softens the margins with innate lymphocyte populations and allows investigation of nonredundant pathways of immunity and inflammation that might be amenable to therapeutic intervention. Here, we review advances in understanding of innate lymphocyte biology with a focus on skin disease and the roles of commensal and pathogen responses and tissue homeostasis.


Subject(s)
Immunity, Innate , Lymphocyte Subsets/immunology , Lymphocyte Subsets/metabolism , Skin Diseases/etiology , Skin Diseases/metabolism , Animals , Biomarkers , Homeostasis , Host-Pathogen Interactions/immunology , Humans , Microbiota/immunology , Signal Transduction , Skin Diseases/pathology
2.
Annu Rev Immunol ; 38: 785-808, 2020 04 26.
Article in English | MEDLINE | ID: mdl-32126183

ABSTRACT

Primary atopic disorders describes a series of monogenic diseases that have allergy- or atopic effector-related symptoms as a substantial feature. The underlying pathogenic genetic lesions help illustrate fundamental pathways in atopy, opening up diagnostic and therapeutic options for further study in those patients, but ultimately for common allergic diseases as well. Key pathways affected in these disorders include T cell receptor and B cell receptor signaling, cytokine signaling, skin barrier function, and mast cell function, as well as pathways that have not yet been elucidated. While comorbidities such as classically syndromic presentation or immune deficiency are often present, in some cases allergy alone is the presenting symptom, suggesting that commonly encountered allergic diseases exist on a spectrum of monogenic and complex genetic etiologies that are impacted by environmental risk factors.


Subject(s)
Disease Susceptibility , Hypersensitivity, Immediate/etiology , Hypersensitivity, Immediate/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Biomarkers , Cytokines/metabolism , Disease Management , Environment , Genetic Predisposition to Disease , Humans , Hypersensitivity, Immediate/diagnosis , Mast Cells/immunology , Mast Cells/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
3.
Annu Rev Immunol ; 35: 469-499, 2017 04 26.
Article in English | MEDLINE | ID: mdl-28226228

ABSTRACT

Professional antigen-presenting cells (APCs) in the skin include dendritic cells, monocytes, and macrophages. They are highly dynamic, with the capacity to enter skin from the peripheral circulation, patrol within tissue, and migrate through lymphatics to draining lymph nodes. Skin APCs are endowed with antigen-sensing, -processing, and -presenting machinery and play key roles in initiating, modulating, and resolving cutaneous inflammation. Skin APCs are a highly heterogeneous population with functionally specialized subsets that are developmentally imprinted and modulated by local tissue microenvironmental and inflammatory cues. This review explores recent advances that have allowed for a more accurate taxonomy of APC subsets found in both mouse and human skin. It also examines the functional specificity of individual APC subsets and their collaboration with other immune cell types that together promote adaptive T cell and regional cutaneous immune responses during homeostasis, inflammation, and disease.


Subject(s)
Antigen-Presenting Cells/immunology , Dendritic Cells/immunology , Langerhans Cells/immunology , Macrophages/immunology , Monocytes/immunology , Skin/immunology , T-Lymphocytes/immunology , Animals , Antigen Presentation , Cell Movement , Homeostasis , Humans , Inflammation , Lymphocyte Activation , Mice
4.
Cell ; 187(19): 5298-5315.e19, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39168124

ABSTRACT

During wound healing, different pools of stem cells (SCs) contribute to skin repair. However, how SCs become activated and drive the tissue remodeling essential for skin repair is still poorly understood. Here, by developing a mouse model allowing lineage tracing and basal cell lineage ablation, we monitor SC fate and tissue dynamics during regeneration using confocal and intravital imaging. Analysis of basal cell rearrangements shows dynamic transitions from a solid-like homeostatic state to a fluid-like state allowing tissue remodeling during repair, as predicted by a minimal mathematical modeling of the spatiotemporal dynamics and fate behavior of basal cells. The basal cell layer progressively returns to a solid-like state with re-epithelialization. Bulk, single-cell RNA, and epigenetic profiling of SCs, together with functional experiments, uncover a common regenerative state regulated by the EGFR/AP1 axis activated during tissue fluidization that is essential for skin SC activation and tissue repair.


Subject(s)
Skin , Wound Healing , Animals , Mice , Skin/metabolism , ErbB Receptors/metabolism , Stem Cells/metabolism , Stem Cells/cytology , Cell Lineage , Regeneration , Mice, Inbred C57BL , Re-Epithelialization , Cell Differentiation , Keratinocytes/metabolism , Keratinocytes/cytology
5.
Cell ; 186(5): 940-956.e20, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36764291

ABSTRACT

Fingerprints are complex and individually unique patterns in the skin. Established prenatally, the molecular and cellular mechanisms that guide fingerprint ridge formation and their intricate arrangements are unknown. Here we show that fingerprint ridges are epithelial structures that undergo a truncated hair follicle developmental program and fail to recruit a mesenchymal condensate. Their spatial pattern is established by a Turing reaction-diffusion system, based on signaling between EDAR, WNT, and antagonistic BMP pathways. These signals resolve epithelial growth into bands of focalized proliferation under a precociously differentiated suprabasal layer. Ridge formation occurs as a set of waves spreading from variable initiation sites defined by the local signaling environments and anatomical intricacies of the digit, with the propagation and meeting of these waves determining the type of pattern that forms. Relying on a dynamic patterning system triggered at spatially distinct sites generates the characteristic types and unending variation of human fingerprint patterns.


Subject(s)
Signal Transduction , Skin , Humans , Skin/metabolism
6.
Cell ; 186(7): 1417-1431.e20, 2023 03 30.
Article in English | MEDLINE | ID: mdl-37001502

ABSTRACT

Senescent cell accumulation has been implicated in the pathogenesis of aging-associated diseases, including cancer. The mechanism that prevents the accumulation of senescent cells in aging human organs is unclear. Here, we demonstrate that a virus-immune axis controls the senescent fibroblast accumulation in the human skin. Senescent fibroblasts increased in old skin compared with young skin. However, they did not increase with advancing age in the elderly. Increased CXCL9 and cytotoxic CD4+ T cells (CD4 CTLs) recruitment were significantly associated with reduced senescent fibroblasts in the old skin. Senescent fibroblasts expressed human leukocyte antigen class II (HLA-II) and human cytomegalovirus glycoprotein B (HCMV-gB), becoming direct CD4 CTL targets. Skin-resident CD4 CTLs eliminated HCMV-gB+ senescent fibroblasts in an HLA-II-dependent manner, and HCMV-gB activated CD4 CTLs from the human skin. Collectively, our findings demonstrate HCMV reactivation in senescent cells, which CD4 CTLs can directly eliminate through the recognition of the HCMV-gB antigen.


Subject(s)
Antineoplastic Agents , Cytomegalovirus Infections , Humans , Aged , Cytomegalovirus , T-Lymphocytes, Cytotoxic , HLA Antigens , CD4-Positive T-Lymphocytes , Cellular Senescence
7.
Cell ; 186(11): 2345-2360.e16, 2023 05 25.
Article in English | MEDLINE | ID: mdl-37167971

ABSTRACT

A functional network of blood vessels is essential for organ growth and homeostasis, yet how the vasculature matures and maintains homeostasis remains elusive in live mice. By longitudinally tracking the same neonatal endothelial cells (ECs) over days to weeks, we found that capillary plexus expansion is driven by vessel regression to optimize network perfusion. Neonatal ECs rearrange positions to evenly distribute throughout the developing plexus and become positionally stable in adulthood. Upon local ablation, adult ECs survive through a plasmalemmal self-repair response, while neonatal ECs are predisposed to die. Furthermore, adult ECs reactivate migration to assist vessel repair. Global ablation reveals coordinated maintenance of the adult vascular architecture that allows for eventual network recovery. Lastly, neonatal remodeling and adult maintenance of the skin vascular plexus are orchestrated by temporally restricted, neonatal VEGFR2 signaling. Our work sheds light on fundamental mechanisms that underlie both vascular maturation and adult homeostasis in vivo.


Subject(s)
Endothelial Cells , Neovascularization, Physiologic , Animals , Mice , Endothelial Cells/physiology , Neovascularization, Physiologic/physiology , Skin , Cell Membrane
8.
Cell ; 186(5): 923-939.e14, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36868214

ABSTRACT

We conduct high coverage (>30×) whole-genome sequencing of 180 individuals from 12 indigenous African populations. We identify millions of unreported variants, many predicted to be functionally important. We observe that the ancestors of southern African San and central African rainforest hunter-gatherers (RHG) diverged from other populations >200 kya and maintained a large effective population size. We observe evidence for ancient population structure in Africa and for multiple introgression events from "ghost" populations with highly diverged genetic lineages. Although currently geographically isolated, we observe evidence for gene flow between eastern and southern Khoesan-speaking hunter-gatherer populations lasting until ∼12 kya. We identify signatures of local adaptation for traits related to skin color, immune response, height, and metabolic processes. We identify a positively selected variant in the lightly pigmented San that influences pigmentation in vitro by regulating the enhancer activity and gene expression of PDPK1.


Subject(s)
Acclimatization , Skin Pigmentation , Humans , Whole Genome Sequencing , Population Density , Africa , 3-Phosphoinositide-Dependent Protein Kinases
9.
Cell ; 2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35777355

ABSTRACT

The host-seeking activity of hematophagous arthropods is essential for arboviral transmission. Here, we demonstrate that mosquito-transmitted flaviviruses can manipulate host skin microbiota to produce a scent that attracts mosquitoes. We observed that Aedes mosquitoes preferred to seek and feed on mice infected by dengue and Zika viruses. Acetophenone, a volatile compound that is predominantly produced by the skin microbiota, was enriched in the volatiles from the infected hosts to potently stimulate mosquito olfaction for attractiveness. Of note, acetophenone emission was higher in dengue patients than in healthy people. Mechanistically, flaviviruses infection suppressed the expression of RELMα, an essential antimicrobial protein on host skin, thereby leading to the expansion of acetophenone-producing commensal bacteria and, consequently, a high acetophenone level. Given that RELMα can be specifically induced by a vitamin A derivative, the dietary administration of isotretinoin to flavivirus-infected animals interrupted flavivirus life cycle by reducing mosquito host-seeking activity, thus providing a strategy of arboviral control.

10.
Cell ; 185(8): 1373-1388.e20, 2022 04 14.
Article in English | MEDLINE | ID: mdl-35381199

ABSTRACT

Systemic sclerosis (scleroderma, SSc) is an incurable autoimmune disease with high morbidity and mortality rates. Here, we conducted a population-scale single-cell genomic analysis of skin and blood samples of 56 healthy controls and 97 SSc patients at different stages of the disease. We found immune compartment dysfunction only in a specific subtype of diffuse SSc patients but global dysregulation of the stromal compartment, particularly in a previously undefined subset of LGR5+-scleroderma-associated fibroblasts (ScAFs). ScAFs are perturbed morphologically and molecularly in SSc patients. Single-cell multiome profiling of stromal cells revealed ScAF-specific markers, pathways, regulatory elements, and transcription factors underlining disease development. Systematic analysis of these molecular features with clinical metadata associates specific ScAF targets with disease pathogenesis and SSc clinical traits. Our high-resolution atlas of the sclerodermatous skin spectrum will enable a paradigm shift in the understanding of SSc disease and facilitate the development of biomarkers and therapeutic strategies.


Subject(s)
Scleroderma, Systemic , Cells, Cultured , Fibroblasts/metabolism , Fibrosis , Humans , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Scleroderma, Systemic/drug therapy , Scleroderma, Systemic/genetics , Skin/metabolism
11.
Cell ; 185(22): 4099-4116.e13, 2022 10 27.
Article in English | MEDLINE | ID: mdl-36261039

ABSTRACT

Some people are more attractive to mosquitoes than others, but the mechanistic basis of this phenomenon is poorly understood. We tested mosquito attraction to human skin odor and identified people who are exceptionally attractive or unattractive to mosquitoes. These differences were stable over several years. Chemical analysis revealed that highly attractive people produce significantly more carboxylic acids in their skin emanations. Mutant mosquitoes lacking the chemosensory co-receptors Ir8a, Ir25a, or Ir76b were severely impaired in attraction to human scent, but retained the ability to differentiate highly and weakly attractive people. The link between elevated carboxylic acids in "mosquito-magnet" human skin odor and phenotypes of genetic mutations in carboxylic acid receptors suggests that such compounds contribute to differential mosquito attraction. Understanding why some humans are more attractive than others provides insights into what skin odorants are most important to the mosquito and could inform the development of more effective repellents.


Subject(s)
Aedes , Anopheles , Insect Repellents , Animals , Humans , Carboxylic Acids/pharmacology , Odorants/analysis , Insect Repellents/pharmacology , Insect Repellents/analysis
12.
Cell ; 185(11): 1960-1973.e11, 2022 05 26.
Article in English | MEDLINE | ID: mdl-35551765

ABSTRACT

During vertebrate embryogenesis, cell collectives engage in coordinated behavior to form tissue structures of increasing complexity. In the avian skin, assembly into follicles depends on intrinsic mechanical forces of the dermis, but how cell mechanics initiate pattern formation is not known. Here, we reconstitute the initiation of follicle patterning ex vivo using only freshly dissociated avian dermal cells and collagen. We find that contractile cells physically rearrange the extracellular matrix (ECM) and that ECM rearrangement further aligns cells. This exchange transforms a mechanically unlinked collective of dermal cells into a continuum, with coherent, long-range order. Combining theory with experiment, we show that this ordered cell-ECM layer behaves as an active contractile fluid that spontaneously forms regular patterns. Our study illustrates a role for mesenchymal dynamics in generating cell-level ordering and tissue-level patterning through a fluid instability-processes that may be at play across morphological symmetry-breaking contexts.


Subject(s)
Extracellular Matrix , Hair Follicle , Animals , Collagen , Skin , Vertebrates
13.
Cell ; 185(25): 4717-4736.e25, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36493752

ABSTRACT

Adult mammalian skin wounds heal by forming fibrotic scars. We report that full-thickness injuries of reindeer antler skin (velvet) regenerate, whereas back skin forms fibrotic scar. Single-cell multi-omics reveal that uninjured velvet fibroblasts resemble human fetal fibroblasts, whereas back skin fibroblasts express inflammatory mediators mimicking pro-fibrotic adult human and rodent fibroblasts. Consequently, injury elicits site-specific immune responses: back skin fibroblasts amplify myeloid infiltration and maturation during repair, whereas velvet fibroblasts adopt an immunosuppressive phenotype that restricts leukocyte recruitment and hastens immune resolution. Ectopic transplantation of velvet to scar-forming back skin is initially regenerative, but progressively transitions to a fibrotic phenotype akin to the scarless fetal-to-scar-forming transition reported in humans. Skin regeneration is diminished by intensifying, or enhanced by neutralizing, these pathologic fibroblast-immune interactions. Reindeer represent a powerful comparative model for interrogating divergent wound healing outcomes, and our results nominate decoupling of fibroblast-immune interactions as a promising approach to mitigate scar.


Subject(s)
Reindeer , Wound Healing , Adult , Animals , Humans , Cicatrix/pathology , Fibroblasts/pathology , Skin Transplantation , Skin/pathology , Fetus/pathology
14.
Annu Rev Cell Dev Biol ; 39: 145-174, 2023 10 16.
Article in English | MEDLINE | ID: mdl-37843926

ABSTRACT

In 1952, Alan Turing published the reaction-diffusion (RD) mathematical framework, laying the foundations of morphogenesis as a self-organized process emerging from physicochemical first principles. Regrettably, this approach has been widely doubted in the field of developmental biology. First, we summarize Turing's line of thoughts to alleviate the misconception that RD is an artificial mathematical construct. Second, we discuss why phenomenological RD models are particularly effective for understanding skin color patterning at the meso/macroscopic scales, without the need to parameterize the profusion of variables at lower scales. More specifically, we discuss how RD models (a) recapitulate the diversity of actual skin patterns, (b) capture the underlying dynamics of cellular interactions, (c) interact with tissue size and shape, (d) can lead to ordered sequential patterning, (e) generate cellular automaton dynamics in lizards and snakes, (f) predict actual patterns beyond their statistical features, and (g) are robust to model variations. Third, we discuss the utility of linear stability analysis and perform numerical simulations to demonstrate how deterministic RD emerges from the underlying chaotic microscopic agents.


Subject(s)
Models, Biological , Skin Pigmentation , Animals , Morphogenesis , Cell Communication , Vertebrates , Diffusion , Body Patterning
15.
Cell ; 184(14): 3794-3811.e19, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34166614

ABSTRACT

The microbiota plays a fundamental role in regulating host immunity. However, the processes involved in the initiation and regulation of immunity to the microbiota remain largely unknown. Here, we show that the skin microbiota promotes the discrete expression of defined endogenous retroviruses (ERVs). Keratinocyte-intrinsic responses to ERVs depended on cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes protein (STING) signaling and promoted the induction of commensal-specific T cells. Inhibition of ERV reverse transcription significantly impacted these responses, resulting in impaired immunity to the microbiota and its associated tissue repair function. Conversely, a lipid-enriched diet primed the skin for heightened ERV- expression in response to commensal colonization, leading to increased immune responses and tissue inflammation. Together, our results support the idea that the host may have co-opted its endogenous virome as a means to communicate with the exogenous microbiota, resulting in a multi-kingdom dialog that controls both tissue homeostasis and inflammation.


Subject(s)
Endogenous Retroviruses/physiology , Homeostasis , Inflammation/microbiology , Inflammation/pathology , Microbiota , Animals , Bacteria/metabolism , Chromosomes, Bacterial/genetics , Diet, High-Fat , Inflammation/immunology , Inflammation/virology , Interferon Type I/metabolism , Keratinocytes/metabolism , Membrane Proteins/metabolism , Mice, Inbred C57BL , Nucleotidyltransferases/metabolism , Retroelements/genetics , Signal Transduction , Skin/immunology , Skin/microbiology , T-Lymphocytes/immunology , Transcription, Genetic
16.
Cell ; 184(8): 2151-2166.e16, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33765440

ABSTRACT

Cutaneous mast cells mediate numerous skin inflammatory processes and have anatomical and functional associations with sensory afferent neurons. We reveal that epidermal nerve endings from a subset of sensory nonpeptidergic neurons expressing MrgprD are reduced by the absence of Langerhans cells. Loss of epidermal innervation or ablation of MrgprD-expressing neurons increased expression of a mast cell gene module, including the activating receptor, Mrgprb2, resulting in increased mast cell degranulation and cutaneous inflammation in multiple disease models. Agonism of MrgprD-expressing neurons reduced expression of module genes and suppressed mast cell responses. MrgprD-expressing neurons released glutamate which was increased by MrgprD agonism. Inhibiting glutamate release or glutamate receptor binding yielded hyperresponsive mast cells with a genomic state similar to that in mice lacking MrgprD-expressing neurons. These data demonstrate that MrgprD-expressing neurons suppress mast cell hyperresponsiveness and skin inflammation via glutamate release, thereby revealing an unexpected neuroimmune mechanism maintaining cutaneous immune homeostasis.


Subject(s)
Glutamic Acid/metabolism , Mast Cells/metabolism , Neurons/metabolism , Skin/metabolism , Animals , Cells, Cultured , Dermatitis/metabolism , Dermatitis/pathology , Diphtheria Toxin/pharmacology , Disease Models, Animal , Female , Integrin beta Chains/genetics , Integrin beta Chains/metabolism , Langerhans Cells/cytology , Langerhans Cells/drug effects , Langerhans Cells/metabolism , Mast Cells/cytology , Mast Cells/drug effects , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/cytology , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/deficiency , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Skin/pathology , beta-Alanine/chemistry , beta-Alanine/metabolism , beta-Alanine/pharmacology
17.
Cell ; 183(4): 1103-1116.e20, 2020 11 12.
Article in English | MEDLINE | ID: mdl-33098772

ABSTRACT

Cell differentiation and function are regulated across multiple layers of gene regulation, including modulation of gene expression by changes in chromatin accessibility. However, differentiation is an asynchronous process precluding a temporal understanding of regulatory events leading to cell fate commitment. Here we developed simultaneous high-throughput ATAC and RNA expression with sequencing (SHARE-seq), a highly scalable approach for measurement of chromatin accessibility and gene expression in the same single cell, applicable to different tissues. Using 34,774 joint profiles from mouse skin, we develop a computational strategy to identify cis-regulatory interactions and define domains of regulatory chromatin (DORCs) that significantly overlap with super-enhancers. During lineage commitment, chromatin accessibility at DORCs precedes gene expression, suggesting that changes in chromatin accessibility may prime cells for lineage commitment. We computationally infer chromatin potential as a quantitative measure of chromatin lineage-priming and use it to predict cell fate outcomes. SHARE-seq is an extensible platform to study regulatory circuitry across diverse cells in tissues.


Subject(s)
Chromatin/metabolism , Gene Expression Profiling , RNA/genetics , Single-Cell Analysis , Animals , Cell Differentiation/genetics , Cell Line , Cell Lineage/genetics , Enhancer Elements, Genetic/genetics , Female , Gene Expression Regulation , Histones/metabolism , Mice, Inbred C57BL , Protein Processing, Post-Translational , RNA/metabolism
18.
Cell ; 181(3): 604-620.e22, 2020 04 30.
Article in English | MEDLINE | ID: mdl-32259486

ABSTRACT

During embryonic and postnatal development, organs and tissues grow steadily to achieve their final size at the end of puberty. However, little is known about the cellular dynamics that mediate postnatal growth. By combining in vivo clonal lineage tracing, proliferation kinetics, single-cell transcriptomics, and in vitro micro-pattern experiments, we resolved the cellular dynamics taking place during postnatal skin epidermis expansion. Our data revealed that harmonious growth is engineered by a single population of developmental progenitors presenting a fixed fate imbalance of self-renewing divisions with an ever-decreasing proliferation rate. Single-cell RNA sequencing revealed that epidermal developmental progenitors form a more uniform population compared with adult stem and progenitor cells. Finally, we found that the spatial pattern of cell division orientation is dictated locally by the underlying collagen fiber orientation. Our results uncover a simple design principle of organ growth where progenitors and differentiated cells expand in harmony with their surrounding tissues.


Subject(s)
Epidermal Cells/metabolism , Epidermis/growth & development , Skin/growth & development , Animals , Animals, Outbred Strains , Cell Differentiation/physiology , Cell Division/physiology , Cell Lineage/genetics , Cell Proliferation/physiology , Cells, Cultured , Epidermal Cells/pathology , Epidermis/metabolism , Female , Male , Mice , Mice, Transgenic , Stem Cells/cytology
19.
Cell ; 180(3): 454-470.e18, 2020 02 06.
Article in English | MEDLINE | ID: mdl-32004459

ABSTRACT

Metagenomic inferences of bacterial strain diversity and infectious disease transmission studies largely assume a dominant, within-individual haplotype. We hypothesize that within-individual bacterial population diversity is critical for homeostasis of a healthy microbiome and infection risk. We characterized the evolutionary trajectory and functional distribution of Staphylococcus epidermidis-a keystone skin microbe and opportunistic pathogen. Analyzing 1,482 S. epidermidis genomes from 5 healthy individuals, we found that skin S. epidermidis isolates coalesce into multiple founder lineages rather than a single colonizer. Transmission events, natural selection, and pervasive horizontal gene transfer result in population admixture within skin sites and dissemination of antibiotic resistance genes within-individual. We provide experimental evidence for how admixture can modulate virulence and metabolism. Leveraging data on the contextual microbiome, we assess how interspecies interactions can shape genetic diversity and mobile gene elements. Our study provides insights into how within-individual evolution of human skin microbes shapes their functional diversification.


Subject(s)
Evolution, Molecular , Gene Transfer, Horizontal , Host Microbial Interactions/genetics , Microbiota/genetics , Polymorphism, Single Nucleotide , Skin/microbiology , Staphylococcus epidermidis/genetics , Adult , DNA, Bacterial/genetics , Drug Resistance, Bacterial/genetics , Female , Healthy Volunteers , Humans , Male , Middle Aged , Phylogeny , Staphylococcus epidermidis/isolation & purification , Staphylococcus epidermidis/pathogenicity , Virulence/genetics , Young Adult
20.
Cell ; 182(2): 497-514.e22, 2020 07 23.
Article in English | MEDLINE | ID: mdl-32579974

ABSTRACT

To define the cellular composition and architecture of cutaneous squamous cell carcinoma (cSCC), we combined single-cell RNA sequencing with spatial transcriptomics and multiplexed ion beam imaging from a series of human cSCCs and matched normal skin. cSCC exhibited four tumor subpopulations, three recapitulating normal epidermal states, and a tumor-specific keratinocyte (TSK) population unique to cancer, which localized to a fibrovascular niche. Integration of single-cell and spatial data mapped ligand-receptor networks to specific cell types, revealing TSK cells as a hub for intercellular communication. Multiple features of potential immunosuppression were observed, including T regulatory cell (Treg) co-localization with CD8 T cells in compartmentalized tumor stroma. Finally, single-cell characterization of human tumor xenografts and in vivo CRISPR screens identified essential roles for specific tumor subpopulation-enriched gene networks in tumorigenesis. These data define cSCC tumor and stromal cell subpopulations, the spatial niches where they interact, and the communicating gene networks that they engage in cancer.


Subject(s)
Carcinoma, Squamous Cell/metabolism , Genomics/methods , Skin Neoplasms/metabolism , Animals , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Humans , Keratinocytes/cytology , Keratinocytes/metabolism , Mice , RNA-Seq , Single-Cell Analysis , Skin/metabolism , Skin Neoplasms/pathology , Transcriptome , Transplantation, Heterologous
SELECTION OF CITATIONS
SEARCH DETAIL