Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
Add more filters

Publication year range
1.
Mol Cell ; 84(6): 1049-1061.e8, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38452766

ABSTRACT

The Polycomb repressive complex 2 (PRC2) mediates epigenetic maintenance of gene silencing in eukaryotes via methylation of histone H3 at lysine 27 (H3K27). Accessory factors define two distinct subtypes, PRC2.1 and PRC2.2, with different actions and chromatin-targeting mechanisms. The mechanisms orchestrating PRC2 assembly are not fully understood. Here, we report that alternative splicing (AS) of PRC2 core component SUZ12 generates an uncharacterized isoform SUZ12-S, which co-exists with the canonical SUZ12-L isoform in virtually all tissues and developmental stages. SUZ12-S drives PRC2.1 formation and favors PRC2 dimerization. While SUZ12-S is necessary and sufficient for the repression of target genes via promoter-proximal H3K27me3 deposition, SUZ12-L maintains global H3K27 methylation levels. Mouse embryonic stem cells (ESCs) lacking either isoform exit pluripotency more slowly and fail to acquire neuronal cell identity. Our findings reveal a physiological mechanism regulating PRC2 assembly and higher-order interactions in eutherians, with impacts on H3K27 methylation and gene repression.


Subject(s)
Alternative Splicing , Polycomb Repressive Complex 2 , Animals , Mice , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Histones/genetics , Histones/metabolism , Chromatin/genetics , Protein Isoforms/genetics
2.
Mol Cell ; 82(2): 479-491.e7, 2022 01 20.
Article in English | MEDLINE | ID: mdl-34963054

ABSTRACT

Genetically encoded biosensors are powerful tools to monitor cellular behavior, but the difficulty in generating appropriate reporters for chromatin factors hampers our ability to dissect epigenetic pathways. Here, we present TRACE (transgene reporters across chromatin environments), a high-throughput, genome-wide technique to generate fluorescent human reporter cell lines responsive to manipulation of epigenetic factors. By profiling GFP expression from a large pool of individually barcoded lentiviral integrants in the presence and absence of a perturbation, we identify reporters responsive to pharmacological inhibition of the histone lysine demethylase LSD1 and genetic ablation of the PRC2 subunit SUZ12. Furthermore, by manipulating the HIV-1 host factor LEDGF through targeted deletion or fusion to chromatin reader domains, we alter lentiviral integration site preferences, thus broadening the types of chromatin examined by TRACE. The phenotypic reporters generated through TRACE will allow the genetic interrogation of a broad range of epigenetic pathways, furthering our mechanistic understanding of chromatin biology.


Subject(s)
Biosensing Techniques , Epigenesis, Genetic , Genes, Reporter , Genetic Vectors , Green Fluorescent Proteins/genetics , Lentivirus/genetics , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Chromatin Assembly and Disassembly , Epigenome , Green Fluorescent Proteins/metabolism , HEK293 Cells , HeLa Cells , Histone Demethylases/genetics , Histone Demethylases/metabolism , Humans , Lentivirus/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , THP-1 Cells , Transcription Factors/genetics , Transcription Factors/metabolism
3.
Mol Cell ; 82(24): 4611-4626.e7, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36476474

ABSTRACT

PALI1 is a newly identified accessory protein of the Polycomb repressive complex 2 (PRC2) that catalyzes H3K27 methylation. However, the roles of PALI1 in cancer are yet to be defined. Here, we report that PALI1 is upregulated in advanced prostate cancer (PCa) and competes with JARID2 for binding to the PRC2 core subunit SUZ12. PALI1 further interacts with the H3K9 methyltransferase G9A, bridging the formation of a unique G9A-PALI1-PRC2 super-complex that occupies a subset of G9A-target genes to mediate dual H3K9/K27 methylation and gene repression. Many of these genes are developmental regulators required for cell differentiation, and their loss in PCa predicts poor prognosis. Accordingly, PALI1 and G9A drive PCa cell proliferation and invasion in vitro and xenograft tumor growth in vivo. Collectively, our study shows that PALI1 harnesses two central epigenetic mechanisms to suppress cellular differentiation and promote tumorigenesis, which can be targeted by dual EZH2 and G9A inhibition.


Subject(s)
Neoplasms , Polycomb Repressive Complex 2 , Humans , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Chromatin/genetics , Histones/genetics , Histones/metabolism , Neoplasms/genetics , Epigenesis, Genetic
4.
Genes Dev ; 36(11-12): 664-683, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35710139

ABSTRACT

Chromosomal translocations frequently promote carcinogenesis by producing gain-of-function fusion proteins. Recent studies have identified highly recurrent chromosomal translocations in patients with endometrial stromal sarcomas (ESSs) and ossifying fibromyxoid tumors (OFMTs), leading to an in-frame fusion of PHF1 (PCL1) to six different subunits of the NuA4/TIP60 complex. While NuA4/TIP60 is a coactivator that acetylates chromatin and loads the H2A.Z histone variant, PHF1 is part of the Polycomb repressive complex 2 (PRC2) linked to transcriptional repression of key developmental genes through methylation of histone H3 on lysine 27. In this study, we characterize the fusion protein produced by the EPC1-PHF1 translocation. The chimeric protein assembles a megacomplex harboring both NuA4/TIP60 and PRC2 activities and leads to mislocalization of chromatin marks in the genome, in particular over an entire topologically associating domain including part of the HOXD cluster. This is linked to aberrant gene expression-most notably increased expression of PRC2 target genes. Furthermore, we show that JAZF1-implicated with a PRC2 component in the most frequent translocation in ESSs, JAZF1-SUZ12-is a potent transcription activator that physically associates with NuA4/TIP60, its fusion creating outcomes similar to those of EPC1-PHF1 Importantly, the specific increased expression of PRC2 targets/HOX genes was also confirmed with ESS patient samples. Altogether, these results indicate that most chromosomal translocations linked to these sarcomas use the same molecular oncogenic mechanism through a physical merge of NuA4/TIP60 and PRC2 complexes, leading to mislocalization of histone marks and aberrant Polycomb target gene expression.


Subject(s)
Endometrial Neoplasms , Sarcoma, Endometrial Stromal , Sarcoma , Chromatin , DNA-Binding Proteins/metabolism , Endometrial Neoplasms/genetics , Endometrial Neoplasms/metabolism , Endometrial Neoplasms/pathology , Female , Histones/metabolism , Humans , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Polycomb-Group Proteins/genetics , Polycomb-Group Proteins/metabolism , Sarcoma/genetics , Sarcoma, Endometrial Stromal/genetics , Sarcoma, Endometrial Stromal/metabolism , Sarcoma, Endometrial Stromal/pathology , Translocation, Genetic/genetics
5.
Mol Cell ; 81(3): 488-501.e9, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33338397

ABSTRACT

Polycomb repressive complex 2 (PRC2) silences expression of developmental transcription factors in pluripotent stem cells by methylating lysine 27 on histone H3. Two mutually exclusive subcomplexes, PRC2.1 and PRC2.2, are defined by the set of accessory proteins bound to the core PRC2 subunits. Here we introduce separation-of-function mutations into the SUZ12 subunit of PRC2 to drive it into a PRC2.1 or 2.2 subcomplex in human induced pluripotent stem cells (iPSCs). We find that PRC2.2 occupies polycomb target genes at low levels and that homeobox transcription factors are upregulated when this complex is exclusively present. In contrast with previous studies, we find that chromatin occupancy of PRC2 increases drastically when it is forced to form PRC2.1. Additionally, several cancer-associated mutations also coerce formation of PRC2.1. We suggest that PRC2 chromatin occupancy can be altered in the context of disease or development by tuning the ratio of PRC2.1 to PRC2.2.


Subject(s)
Chromatin/metabolism , Induced Pluripotent Stem Cells/metabolism , Neoplasm Proteins/metabolism , Polycomb Repressive Complex 2/metabolism , Transcription Factors/metabolism , Binding Sites , Binding, Competitive , Chromatin/genetics , Gene Expression Regulation , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Mutation , Neoplasm Proteins/genetics , Polycomb Repressive Complex 2/genetics , Protein Binding , Transcription Factors/genetics
6.
Mol Cell ; 69(5): 840-852.e5, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29499137

ABSTRACT

Developmentally regulated accessory subunits dictate PRC2 function. Here, we report the crystal structures of a 120 kDa heterotetrameric complex consisting of Suz12, Rbbp4, Jarid2, and Aebp2 fragments that is minimally active in nucleosome binding and of an inactive binary complex of Suz12 and Rbbp4. Suz12 contains two unique structural platforms that define distinct classes of PRC2 holo complexes for chromatin binding. Aebp2 and Phf19 compete for binding of a non-canonical C2 domain of Suz12; Jarid2 and EPOP occupy an overlapped Suz12 surface required for chromatin association of PRC2. Suz12 and Aebp2 progressively block histone H3K4 binding to Rbbp4, suggesting that Rbbp4 may not be directly involved in PRC2 inhibition by the active H3K4me3 histone mark. Nucleosome binding enabled by Jarid2 and Aebp2 is in part accounted for by the structures, which also reveal that disruption of the Jarid2-Suz12 interaction may underlie the disease mechanism of an oncogenic chromosomal translocation of Suz12.


Subject(s)
Polycomb Repressive Complex 2/chemistry , Humans , Neoplasm Proteins , Nucleosomes/chemistry , Nucleosomes/genetics , Nucleosomes/metabolism , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Protein Domains , Protein Structure, Quaternary , Repressor Proteins/chemistry , Repressor Proteins/genetics , Repressor Proteins/metabolism , Retinoblastoma-Binding Protein 4/chemistry , Retinoblastoma-Binding Protein 4/genetics , Retinoblastoma-Binding Protein 4/metabolism , Transcription Factors
7.
Mol Cell ; 70(2): 371-379.e5, 2018 04 19.
Article in English | MEDLINE | ID: mdl-29606589

ABSTRACT

The Polycomb repressor complex 2 (PRC2) is composed of the core subunits Ezh1/2, Suz12, and Eed, and it mediates all di- and tri-methylation of histone H3 at lysine 27 in higher eukaryotes. However, little is known about how the catalytic activity of PRC2 is regulated to demarcate H3K27me2 and H3K27me3 domains across the genome. To address this, we mapped the endogenous interactomes of Ezh2 and Suz12 in embryonic stem cells (ESCs), and we combined this with a functional screen for H3K27 methylation marks. We found that Nsd1-mediated H3K36me2 co-locates with H3K27me2, and its loss leads to genome-wide expansion of H3K27me3. These increases in H3K27me3 occurred at PRC2/PRC1 target genes and as de novo accumulation within what were previously broad H3K27me2 domains. Our data support a model in which Nsd1 is a key modulator of PRC2 function required for regulating the demarcation of genome-wide H3K27me2 and H3K27me3 domains in ESCs.


Subject(s)
Carrier Proteins/metabolism , Chromatin Assembly and Disassembly , Histones/metabolism , Mouse Embryonic Stem Cells/enzymology , Nuclear Proteins/metabolism , Polycomb Repressive Complex 2/metabolism , Animals , Carrier Proteins/genetics , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Gene Expression Regulation, Developmental , HEK293 Cells , Histone-Lysine N-Methyltransferase , Humans , Methylation , Mice , Nuclear Proteins/genetics , Polycomb Repressive Complex 2/genetics , Protein Processing, Post-Translational
8.
Neurogenetics ; 24(3): 181-188, 2023 07.
Article in English | MEDLINE | ID: mdl-37145209

ABSTRACT

Neurofibromatosis type I (NF1) microdeletion syndrome, accounting for 5-11% of NF1 patients, is caused by the heterozygous deletion of NF1 and a variable number of flanking genes in the 17q11.2 region. This syndrome is characterized by more severe symptoms than those shown by patients with intragenic NF1 mutation and by variable expressivity, which is not fully explained by the haploinsufficiency of the genes included in the deletions. We here reevaluate an 8-year-old NF1 patient, who carries an atypical deletion generating the RNF135-SUZ12 chimeric gene, previously described when he was 3 years old. As the patient has developed multiple cutaneous/subcutaneous neurofibromas over the past 5 years, we hypothesized a role of RNF135-SUZ12 chimeric gene in the onset of the patient's tumor phenotype. Interestingly, SUZ12 is generally lost or disrupted in NF1 microdeletion syndrome and frequently associated to cancer as RNF135. Expression analysis confirmed the presence of the chimeric gene transcript and revealed hypo-expression of five out of the seven analyzed target genes of the polycomb repressive complex 2 (PRC2), to which SUZ12 belongs, in the patient's peripheral blood, indicating a higher transcriptional repression activity mediated by PRC2. Furthermore, decreased expression of tumor suppressor gene TP53, which is targeted by RNF135, was detected. These results suggest that RNF135-SUZ12 chimera may acquire a gain of function, compared with SUZ12 wild type in the PRC2 complex, and a loss of function relative to RNF135 wild type. Both events may have a role in the early onset of the patient's neurofibromas.


Subject(s)
Neurofibroma , Neurofibromatosis 1 , Male , Humans , Neurofibromatosis 1/genetics , Polycomb Repressive Complex 2/genetics , Neurofibroma/genetics , Phenotype , Mutation , Ubiquitin-Protein Ligases/genetics
9.
Am J Hum Genet ; 106(5): 596-610, 2020 05 07.
Article in English | MEDLINE | ID: mdl-32243864

ABSTRACT

Weaver syndrome (WS), an overgrowth/intellectual disability syndrome (OGID), is caused by pathogenic variants in the histone methyltransferase EZH2, which encodes a core component of the Polycomb repressive complex-2 (PRC2). Using genome-wide DNA methylation (DNAm) data for 187 individuals with OGID and 969 control subjects, we show that pathogenic variants in EZH2 generate a highly specific and sensitive DNAm signature reflecting the phenotype of WS. This signature can be used to distinguish loss-of-function from gain-of-function missense variants and to detect somatic mosaicism. We also show that the signature can accurately classify sequence variants in EED and SUZ12, which encode two other core components of PRC2, and predict the presence of pathogenic variants in undiagnosed individuals with OGID. The discovery of a functionally relevant signature with utility for diagnostic classification of sequence variants in EZH2, EED, and SUZ12 supports the emerging paradigm shift for implementation of DNAm signatures into diagnostics and translational research.


Subject(s)
Abnormalities, Multiple/genetics , Congenital Hypothyroidism/genetics , Craniofacial Abnormalities/genetics , DNA Methylation , Enhancer of Zeste Homolog 2 Protein/genetics , Hand Deformities, Congenital/genetics , Intellectual Disability/genetics , Mutation , Polycomb Repressive Complex 2/genetics , Adolescent , Adult , Child , Child, Preschool , Cohort Studies , Female , Humans , Infant , Male , Mosaicism , Mutation, Missense/genetics , Neoplasm Proteins , Reproducibility of Results , Transcription Factors , Young Adult
10.
Clin Genet ; 103(4): 383-391, 2023 04.
Article in English | MEDLINE | ID: mdl-36645289

ABSTRACT

The SUZ12 gene encodes a subunit of polycomb repressive complex 2 (PRC2) that is essential for development by silencing the expression of multiple genes. Germline heterozygous variants in SUZ12 have been found in Imagawa-Matsumoto syndrome (IMMAS) characterized by overgrowth and multiple dysmorphic features. Similarly, both EZH2 and EED also encode a subunit of PRC2 each and their pathogenic variants cause Weaver syndrome and Cohen-Gibson syndrome, respectively. Clinical manifestations of these syndromes significantly overlap, although their different prevalence rates have recently been noted: generalized overgrowth, intellectual disability, scoliosis, and excessive loose skin appear to be less prevalent in IMMAS than in the other two syndromes. We could not determine any apparent genotype-phenotype correlation in IMMAS. The phenotype of neurofibromatosis type 1 arising from NF1 deletion was also shown to be modified by the deletion of SUZ12, 560 kb away. This review deepens our understanding of the clinical and genetic characteristics of IMMAS together with other overgrowth syndromes related to PRC2. We also report on a novel IMMAS patient carrying a splicing variant (c.1023+1G>C) in SUZ12. This patient had a milder phenotype than other previously reported IMMAS cases, with no macrocephaly or overgrowth phenotypes, highlighting the clinical variation in IMMAS.


Subject(s)
Abnormalities, Multiple , Craniofacial Abnormalities , Intellectual Disability , Humans , Abnormalities, Multiple/genetics , Craniofacial Abnormalities/genetics , Intellectual Disability/genetics , Phenotype , Polycomb Repressive Complex 2/genetics
11.
Mol Cancer ; 21(1): 150, 2022 07 21.
Article in English | MEDLINE | ID: mdl-35864549

ABSTRACT

BACKGROUND: Long non-coding RNAs (lncRNAs) are implicated in the development of multiple cancers. In our previous study, we demonstrated that HDAC1/4-mediated silencing of microRNA-200b (miR-200b) enhances docetaxel (DTX)-resistance of human lung adenocarcinoma (LAD) cells. METHODS AND RESULTS: Herein, we probed the function of LncRNA MARCKSL1-2 (MARCKSL1-transcript variant 2, NR_052852.1) in DTX resistance of LAD cells. It was found that MARCKSL1-2 expression was markedly reduced in DTX-resistant LAD cells. Through gain- or loss- of function assays, colony formation assay, EdU assay, TUNEL assay, and flow cytometry analysis, we found that MARCKSL1-2 suppressed the growth and DTX resistance of both parental and DTX-resistant LAD cells. Moreover, we found that MARCKSL1-2 functioned in LAD through increasing miR-200b expression and repressing HDAC1. Mechanistically, MARCKSL1-2 recruited the suppressor of zeste 12 (SUZ12) to the promoter of histone deacetylase 1 (HDAC1) to strengthen histone H3 lysine 27 trimethylation (H3K27me3) of HDAC1 promoter, thereby reducing HDAC1 expression. MARCKSL1-2 up-regulated miR-200b by blocking the suppressive effect of HDAC1 on the histone acetylation modification at miR-200b promoter. Furthermore, in vivo analysis using mouse xenograft tumor model supported that overexpression of MARCKSL1-2 attenuated the DTX resistance in LAD tumors. CONCLUSIONS: We confirmed that MARCKSL1-2 alleviated DTX resistance in LAD cells by abolishing the inhibitory effect of HDAC1 on miR-200b via the recruitment of SUZ12. MARCKSL1-2 could be a promising target to improve the chemotherapy of LAD.


Subject(s)
Adenocarcinoma , Lung Neoplasms , MicroRNAs , RNA, Long Noncoding , Adenocarcinoma/genetics , Animals , Calmodulin-Binding Proteins/genetics , Calmodulin-Binding Proteins/metabolism , Calmodulin-Binding Proteins/pharmacology , Cell Line, Tumor , Cell Proliferation , Docetaxel/pharmacology , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , Histone Deacetylase 1/genetics , Humans , Lung/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Microfilament Proteins , RNA, Long Noncoding/genetics , Taxoids/pharmacology
12.
Genes Chromosomes Cancer ; 60(9): 631-634, 2021 09.
Article in English | MEDLINE | ID: mdl-33840146

ABSTRACT

Ossifying fibromyxoid tumor (OFMT) is a rare soft tissue neoplasm of uncertain differentiation that has the capacity for local recurrence and metastasis. Many OFMTs, including typical, atypical, and malignant tumors, have demonstrated recurrent gene fusions. The fusion partners reported to date share a common core function in that they play either a direct or indirect role in processes influencing histone modification. Herein, we report an OFMT with unusual morphology and non-specific immunoprofile harboring a novel MEAF6-SUZ12 fusion. A 34-year-old male presented with a slowly growing mass in the right antecubital fossa. Excision demonstrated a 6.9 cm partially encapsulated, tan-white, lobulated, and calcified lesion. Microscopic evaluation demonstrated cytologically bland spindle to ovoid cells arranged in a haphazard manner within a fibromyxoid background containing dense collagen, often with sclerotic nodules, and randomly distributed ossification. The tumor cells were diffusely positive for CD34 while essentially negative for S100, desmin, MUC4, SOX10, AE1/3, SMA, and EMA. Next-generation sequencing studies (sarcoma gene fusion next-generation sequencing panel with subsequent Sanger confirmation) performed on formalin-fixed paraffin-embedded tissue detected a fusion product between MEAF6 exon 4 (NM_001270875) and SUZ12 exon 2 (NM_001321207.1). The proposed mechanism of pathogenesis in OFMT, namely epigenetic dysregulation, is reinforced by the fact that both of these partner genes are involved in histone modification.


Subject(s)
Fibroma/genetics , Histone Acetyltransferases/genetics , Neoplasm Proteins/genetics , Oncogene Proteins, Fusion/genetics , Soft Tissue Neoplasms/genetics , Transcription Factors/genetics , Adult , Fibroma/pathology , Humans , Male , Ossification, Heterotopic/genetics , Ossification, Heterotopic/pathology , Soft Tissue Neoplasms/pathology
13.
Int J Cancer ; 149(1): 200-213, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33634878

ABSTRACT

Determining the status of steroid hormone receptors [oestrogen (ER) and progesterone receptors (PR)] is a crucial part of the breast cancer workup. Thereby, breast cancers can be classified into four subtypes. However, the existence of ER-/PR+ tumours, often reported to be ill-classified due to technical errors, remains controversial. In order to address this controversy, we reviewed the hormone receptor status of 49 breast tumours previously classified as ER-/PR+ by immunohistochemistry, and compared clinical, pathological and molecular characteristics of confirmed ER-/PR+ tumours with those of ER+ and triple-negative tumours. We unequivocally confirmed the ER-/PR+ status in 27 of 49 tumours (0.3% of all breast cancers diagnosed in our institution between 2000 and 2014). We found that ER-/PR+ were morphologically and histologically similar to triple-negative tumours, but very distinct from ER+ tumours, with more aggressive phenotypes and more frequent basal marker expression than the latter. On the molecular level, RNA sequencing revealed different gene expression profiles between the three groups. Of particular interest, several genes controlled by the suppressor of zest 12 (SUZ12) were upregulated in ER-/PR+ tumours. Overall, our results confirm that ER-/PR+ breast cancers are an extremely rare but 'real' tumour subtype that requires careful diagnosis and has distinct features warranting different responsiveness to therapies and different clinical outcomes. Studies on larger cohorts are needed to further characterise these tumours. The likely involvement of SUZ12 in their biology is an interesting finding which may - in a long run - give rise to the development of new therapeutic alternatives.


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma, Ductal, Breast/pathology , Carcinoma, Lobular/pathology , Receptors, Estrogen/metabolism , Receptors, Progesterone/metabolism , Triple Negative Breast Neoplasms/pathology , Aged , Carcinoma, Ductal, Breast/genetics , Carcinoma, Ductal, Breast/metabolism , Carcinoma, Lobular/genetics , Carcinoma, Lobular/metabolism , Female , Follow-Up Studies , Humans , Middle Aged , Prognosis , Receptor, ErbB-2/metabolism , Triple Negative Breast Neoplasms/classification , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism
14.
Cancer Cell Int ; 21(1): 89, 2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33541373

ABSTRACT

BACKGROUND: MicroRNAs are a class of non-coding RNAs that regulate gene expression through binding to mRNAs and preventing their translation. One family of microRNAs known as the miR-200 family is an important regulator of epithelial identity. The miR-200 family consists of five members expressed in two distinct clusters; the miR-200c/141 cluster and the miR-200b/200a/429 cluster. We have found that murine and human mammary tumor cells with claudin-low characteristics are associated with very low levels of all five miR-200s. METHODS: To determine the impact of miR-200s on claudin-low mammary tumor cells, the miR-200c/141 cluster and the miR-200b/200a/429 cluster were stably re-expressed in murine (RJ423) and human (MDA-MB-231) claudin-low mammary tumor cells. Cell proliferation and migration were assessed using BrdU incorporation and transwell migration across Matrigel coated inserts, respectively. miRNA sequencing and RNA sequencing were performed to explore miRNAs and mRNAs regulated by miR-200 re-expression while Enrichr-based pathway analysis was utilized to identify cellular functions modified by miR-200s. RESULTS: Re-expression of the miR-200s in murine and human claudin-low mammary tumor cells partially restored an epithelial cell morphology and significantly inhibited proliferation and cell invasion in vitro. miRNA sequencing and mRNA sequencing revealed that re-expression of miR-200s altered the expression of other microRNAs and genes regulated by SUZ12 providing insight into the complexity of miR-200 function. SUZ12 is a member of the polycomb repressor complex 2 that suppresses gene expression through methylating histone H3 at lysine 27. Flow cytometry confirmed that re-expression of miR-200s increased histone H3 methylation at lysine 27. CONCLUSIONS: Re-expression of miR-200s in claudin-low mammary tumor cells alters cell morphology and reduces proliferation and invasion, an effect potentially mediated by SUZ12-regulated genes and other microRNAs.

15.
Exp Cell Res ; 396(1): 112277, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32918895

ABSTRACT

Human papillomavirus (HPV) infection and viral protein expression cause several epigenetic alterations that lead to cervical carcinogenesis. Our previous study identified that upregulated lysine-specific demethylase (KDM) 2 A promotes cervical cancer progression by inhibiting mircoRNA (miR)-132 function. However, the roles of histone methylation modifiers in HPV-related cervical cancer remain unclear. In the present study, changes in the expression of 48 histone methylation modifiers were assessed following knockdown of HPV16 E6/E7 in CaSki cells. The dysregulated expression of KDM5A was identified, and its function in cervical cancer was investigated in vitro and in vivo. E7 oncoprotein-induced upregulation of KDM5A promoted cervical cancer cell proliferation and invasiveness in vitro and in vivo, which was correlated with poor prognosis in patients with cervical cancer. KDM5A was found to physically interact with the promoter region of miR-424-5p, and to suppress its expression by removing the tri- and di-methyl groups from H3K4 at the miR-424-5p locus. Furthermore, miR-424-5p repressed cancer cell proliferation and invasiveness by targeting suppressor of zeste 12 (Suz12). KDM5A upregulation promoted cervical cancer progression by repressing miR-424-5p, which resulted in a decrease in Suz12. Therefore, KDM5A functions as a tumor activator in cervical cancer pathogenesis by binding to the miR-424-5p promoter and inhibiting its tumor-suppressive function. These results indicate a function for KDM5A in cervical cancer progression and suggest its candidacy as a novel prognostic biomarker and target for the clinical management of this malignancy.


Subject(s)
Human papillomavirus 16/genetics , MicroRNAs/genetics , Neoplasm Proteins/genetics , Papillomavirus E7 Proteins/genetics , Papillomavirus Infections/genetics , Retinoblastoma-Binding Protein 2/genetics , Transcription Factors/genetics , Uterine Cervical Neoplasms/genetics , Adult , Animals , Cell Line, Tumor , Cell Movement , Cell Proliferation , Disease Progression , Epithelial Cells/metabolism , Epithelial Cells/virology , Female , Gene Expression Regulation , Host-Pathogen Interactions/genetics , Human papillomavirus 16/metabolism , Human papillomavirus 16/pathogenicity , Humans , Lymphatic Metastasis , Mice , Mice, Inbred BALB C , MicroRNAs/metabolism , Neoplasm Proteins/metabolism , Papillomavirus E7 Proteins/metabolism , Papillomavirus Infections/metabolism , Papillomavirus Infections/pathology , Papillomavirus Infections/virology , Retinoblastoma-Binding Protein 2/metabolism , Signal Transduction , Transcription Factors/metabolism , Tumor Burden , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/virology , Xenograft Model Antitumor Assays
16.
Genes Chromosomes Cancer ; 59(11): 661-666, 2020 11.
Article in English | MEDLINE | ID: mdl-32557935

ABSTRACT

No specific translocation is associated with myeloproliferative neoplasms (MPNs). However, an interstitial deletion involving subband 17q11.2 which includes the NF1 gene, although rare, is a recurrent aberration in several myeloid disorders including MPNs. For the first time, we report an acquired novel translocation involving 10p13 and 17q11.2 in a 62-year-old Caucasian female which was referred for investigation of chronic and persistent unexplained thrombocytosis. The patient had no history of hematological sequelae and genomic testing for JAK2, CALR, and MPL mutations were negative. She was subsequently diagnosed with a triple negative essential thrombocythemia. Array-CGH analysis noted that the translocation harbored two cryptic deletions, one of which involved 17q11.2 encompassing the NF1 gene. One of the junction breakpoints involved the SUZ12 gene. Immunohistochemical assessment of the marrow trephine showed increased megakaryocytic expression of the SUZ12 protein, as well as EZH2 and Ki67; biochemical abnormalities suggestive of excess megakaryocytic hyperplasia. This novel translocation may affect the expression of SUZ12 and its downstream targets, and may represent a unique pathogenomic etiology which drives chronic thrombocytosis in essential thrombocythemia.


Subject(s)
Neoplasm Proteins/genetics , Thrombocytosis/genetics , Transcription Factors/genetics , Translocation, Genetic , Chromosome Breakpoints , Chromosomes, Human, Pair 10/genetics , Chromosomes, Human, Pair 17/genetics , Comparative Genomic Hybridization , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Female , Gene Deletion , Genetic Testing , Humans , Ki-67 Antigen/genetics , Ki-67 Antigen/metabolism , Middle Aged , Neoplasm Proteins/metabolism , Neurofibromin 1/genetics , Thrombocytosis/pathology , Transcription Factors/metabolism
17.
J Cell Mol Med ; 24(24): 14467-14480, 2020 12.
Article in English | MEDLINE | ID: mdl-33145980

ABSTRACT

Non-coding RNAs play important roles in tumorigenesis and tumour progression. In previous screening, lncRNA-LINC00659 (LINC00659) is highly expressed in gastric cancer; however, its role in gastric cancer has not been illustrated yet. In this study, the expression of LINC00659 was detected in cancer tissues and paracancerous tissues of patients with gastric cancer. As a result, LINC00659 expression was increased in gastric cancer tissues, which was closely associated with tumour stage and lymph node metastasis, but was not correlated with age, gender and tissue differentiation. Survival curve analysis showed that patients with low expression of LINC00659 harboured higher overall survival. In vitro, the level of LINC00659 was increased in gastric cancer cells. Afterwards, the expression of LINC00659 was down-regulated in SGC-7901 and BGC-823 cells by plasmid-mediated si-LINC00659 transfection. Consequently, the cell invasion ability was weakened, the cell cycle was inhibited, and cell viability was also suppressed. Luciferase reporter gene assay and RNA pull-down assay showed that LINC00659 could bind to the transcription factor SUZ12, indicating that SUZ12 was a regulatory gene of LINC00659. The overexpression of SUZ12 could resist the roles of si-LINC00659. In this study, we found that LINC00659 was highly expressed in gastric cancer, which might be related to the regulation of cell proliferation and promotion of cell invasion. Transcription factor, SUZ12, was a regulator of LINC00659. Additionally, LINC00659 could regulate cell cycle and invasion of gastric cancer by promoting the expression of SUZ12.


Subject(s)
Gene Expression Regulation, Neoplastic , RNA, Long Noncoding/genetics , Stomach Neoplasms/genetics , Stomach Neoplasms/mortality , Adult , Aged , Animals , Cell Cycle/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Movement , Disease Models, Animal , Disease Susceptibility , Female , Heterografts , Humans , Male , Mice , Middle Aged , Neoplasm Grading , Neoplasm Metastasis , Neoplasm Staging , Prognosis , RNA Interference , Stomach Neoplasms/diagnosis
18.
J Biol Chem ; 293(47): 18031-18039, 2018 11 23.
Article in English | MEDLINE | ID: mdl-30305391

ABSTRACT

Germ cell proliferation is epigenetically controlled, mainly through DNA methylation and histone modifications. However, the pivotal epigenetic regulators of germ cell self-renewal and differentiation in postnatal testis are still poorly defined. The histone methyltransferase enhancer of zeste homolog 2 (EZH2) is the catalytic subunit of Polycomb repressive complex 2, represses target genes through trimethylation of histone H3 at Lys-27 (H3K27me3), and interacts (in)directly with both protein phosphatase 1 (PP1) and nuclear inhibitor of PP1 (NIPP1). Here, we report that postnatal, testis-specific ablation of NIPP1 in mice results in loss of EZH2 and reduces H3K27me3 levels. Mechanistically, the NIPP1 deletion abrogated PP1-mediated EZH2 dephosphorylation at two cyclin-dependent kinase sites (Thr-345/487), thereby generating hyperphosphorylated EZH2, which is a substrate for proteolytic degradation. Accordingly, alanine mutation of these residues prolonged the half-life of EZH2 in male germ cells. Our study discloses a key role for the PP1:NIPP1 holoenzyme in stabilizing EZH2 and maintaining the H3K27me3 mark on genes that are important for germ cell development and spermatogenesis.


Subject(s)
Enhancer of Zeste Homolog 2 Protein/metabolism , Gene Deletion , Intracellular Signaling Peptides and Proteins/genetics , Testis/metabolism , Animals , Enhancer of Zeste Homolog 2 Protein/genetics , Histones/genetics , Histones/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Male , Methylation , Mice , Mice, Knockout , Phosphorylation , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Protein Phosphatase 1/genetics , Protein Phosphatase 1/metabolism , Proteolysis , Spermatogenesis , Testis/growth & development
19.
Am J Med Genet C Semin Med Genet ; 181(4): 532-547, 2019 12.
Article in English | MEDLINE | ID: mdl-31736240

ABSTRACT

The Polycomb repressive complex 2 is an epigenetic writer and recruiter with a role in transcriptional silencing. Constitutional pathogenic variants in its component proteins have been found to cause two established overgrowth syndromes: Weaver syndrome (EZH2-related overgrowth) and Cohen-Gibson syndrome (EED-related overgrowth). Imagawa et al. (2017) initially reported a singleton female with a Weaver-like phenotype with a rare coding SUZ12 variant-the same group subsequently reported two additional affected patients. Here we describe a further 10 patients (from nine families) with rare heterozygous SUZ12 variants who present with a Weaver-like phenotype. We report four frameshift, two missense, one nonsense, and two splice site variants. The affected patients demonstrate variable pre- and postnatal overgrowth, dysmorphic features, musculoskeletal abnormalities and developmental delay/intellectual disability. Some patients have genitourinary and structural brain abnormalities, and there may be an association with respiratory issues. The addition of these 10 patients makes a compelling argument that rare pathogenic SUZ12 variants frequently cause overgrowth, physical abnormalities, and abnormal neurodevelopmental outcomes in the heterozygous state. Pathogenic SUZ12 variants may be de novo or inherited, and are sometimes inherited from a mildly-affected parent. Larger samples sizes will be needed to elucidate whether one or more clinically-recognizable syndromes emerge from different variant subtypes.


Subject(s)
Growth Disorders/genetics , Phenotype , Polycomb Repressive Complex 2/genetics , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Intellectual Disability/genetics , Male , Mutation , Neoplasm Proteins , Transcription Factors
20.
Am J Med Genet C Semin Med Genet ; 181(4): 519-531, 2019 12.
Article in English | MEDLINE | ID: mdl-31724824

ABSTRACT

The EZH2, EED, and SUZ12 genes encode proteins that comprise core components of the polycomb repressive complex 2 (PRC2), an epigenetic "writer" with H3K27 methyltransferase activity, catalyzing the addition of up to three methyl groups on histone 3 at lysine residue 27 (H3K27). Partial loss-of-function variants in genes encoding the EZH2 and EED subunits of the complex lead to overgrowth, macrocephaly, advanced bone age, variable intellectual disability, and distinctive facial features. EZH2-associated overgrowth, caused by constitutional heterozygous mutations within Enhancer of Zeste homologue 2 (EZH2), has a phenotypic spectrum ranging from tall stature without obvious intellectual disability or dysmorphic features to classical Weaver syndrome (OMIM #277590). EED-associated overgrowth (Cohen-Gibson syndrome; OMIM #617561) is caused by germline heterozygous mutations in Embryonic Ectoderm Development (EED), and manifests overgrowth and intellectual disability (OGID), along with other features similar to Weaver syndrome. Most recently, rare coding variants in SUZ12 have also been described that present with clinical characteristics similar to the previous two syndromes. Here we review the PRC2 complex and clinical syndromes of OGID associated with core components EZH2, EED, and SUZ12.


Subject(s)
Enhancer of Zeste Homolog 2 Protein/genetics , Growth Disorders/genetics , Phenotype , Polycomb Repressive Complex 2/genetics , Humans , Neoplasm Proteins , Syndrome , Transcription Factors
SELECTION OF CITATIONS
SEARCH DETAIL