Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Plasmid ; 114: 102566, 2021 03.
Article in English | MEDLINE | ID: mdl-33582117

ABSTRACT

Salmonella enterica subsp. enterica serovar Napoli (S. Napoli) ranks among the top serovars causing human infections in Italy, although not common in other European countries. Isolates are generally pan-susceptible or resistant to aminoglycosides only, however data on antimicrobial resistance genes in strains of S. Napoli are limited. Recently an isolate encoding resistance to third generation cephalosporins was reported. This study aimed to characterize plasmid-encoded cephalosporin resistance due to the blaCTX-M-15 gene in a human S. Napoli isolate in Italy, and to investigate plasmid stability over time. S. Napoli 16/174478 was confirmed to be ESBL-producing. The blaCTX-M-15 gene was shown to be located on an IncI1α plasmid of 90,272 bp (50.03 GC%) encoding for 107 coding sequences (CDS). The plasmid was successfully transferred by conjugation to an E. coli 1816 recipient strain (conjugation frequency 3.9 × 10-2 transconjugants per donor). Transconjugants were confirmed to carry the IncI1α plasmid, and to be ESBL-producing strains as well. Moreover, transconjugant colonies maintained the plasmid for up to 10 passages. The identification of S. Napoli isolates able to produce ESBLs is of great concern, as this pathogen is frequently associated with invasive infections and a higher risk of bacteraemia, and its reservoir has not yet been clearly identified.


Subject(s)
Escherichia coli , Salmonella , Anti-Bacterial Agents/pharmacology , Escherichia coli/genetics , Humans , Italy , Plasmids/genetics , Salmonella/genetics , Serogroup , beta-Lactamases/genetics
2.
Int J Phytoremediation ; 23(1): 18-25, 2021.
Article in English | MEDLINE | ID: mdl-32634324

ABSTRACT

The environment is considered a reservoir of pathogens and a possible source of infection for animals and humans. The association between enteric pathogens and food plants has been demonstrated in several studies, while few studies have addressed possible interactions between human pathogens and aquatic plants. This study, performed by setting mesocosms, evaluates the interaction between an enteric pathogen (Salmonella enterica serovar Napoli, S. Napoli) and a macrophyte (Phragmites australis (Cav.) Trin. ex Steudel) and the possible ability of the bacterium to internalize into the plant. The results show that S. Napoli concentration decreased gradually in growth solution without plants (control) while it was able to persist adhering to submerged parts of plants in treated mesocosms. The adhesion of the bacterium remained stable for 20 days, then decreased gradually until the end of the experiment. In addition, S. Napoli was able to internalize and colonize stems and leaves. In conclusion, the study suggests that macrophytes can represent an alternative environmental reservoir of pathogens for humans and animals. The adhesion to roots and rhizomes and the internalization could contribute to the bacterial persistence in the aquatic ecosystems by playing an important role in ecology and transmission of pathogens.


Subject(s)
Ecosystem , Salmonella enterica , Animals , Biodegradation, Environmental , Plant Leaves , Plants
3.
BMC Genomics ; 21(1): 202, 2020 Mar 04.
Article in English | MEDLINE | ID: mdl-32131727

ABSTRACT

BACKGROUND: Salmonella enterica subsp. enterica serovar Napoli (S. Napoli) is among the top serovars causing human infections in Italy, although it is relatively uncommon in other European countries; it is mainly isolated from humans and the environment, but neither the reservoir nor its route of infection are clearly defined. This serovar is characterized by high genomic diversity, and molecular evidences revealed important similarities with typhoidal serovars. RESULTS: 179 S. Napoli genomes as well as 239 genomes of typhoidal and non-typhoidal serovars were analyzed in a comparative genomic study. Phylogenetic analysis and draft genome characterization in terms of Multi Locus Sequence Typing (MLST), plasmid replicons, Salmonella Pathogenicity Islands (SPIs), antimicrobial resistance genes (ARGs), phages, biocide and metal-tolerance genes confirm the high genetic variability of S. Napoli, also revealing a within-serovar phylogenetic structure more complex than previously known. Our work also confirms genomic similarity of S. Napoli to typhoidal serovars (S. Typhi and S. Paratyphi A), with S. Napoli samples clustering primarily according to ST, each being characterized by specific genomic traits. Moreover, two major subclades of S. Napoli can be clearly identified, with ST-474 being biphyletic. All STs span among isolation sources and years of isolation, highlighting the challenge this serovar poses to define its epidemiology and evolution. Altogether, S. Napoli strains carry less SPIs and less ARGs than other non-typhoidal serovars and seldom acquire plasmids. However, we here report the second case of an extended-spectrum ß-lactamases (ESBLs) producing S. Napoli strain and the first cases of multidrug resistant (MDR) S. Napoli strains, all isolated from humans. CONCLUSIONS: Our results provide evidence of genomic plasticity of S. Napoli, highlighting genomic similarity with typhoidal serovars and genomic features typical of non-typhoidal serovars, supporting the possibility of survival in different niches, both enteric and non-enteric. Presence of horizontally acquired ARGs and MDR profiles rises concerns regarding possible selective pressure exerted by human environment on this pathogen.


Subject(s)
DNA, Bacterial/genetics , Salmonella Infections/microbiology , Salmonella enterica/classification , Whole Genome Sequencing/methods , Drug Resistance, Multiple, Bacterial , Genomic Islands , Genomics , High-Throughput Nucleotide Sequencing , Humans , Italy , Phylogeny , Plasmids/genetics , Salmonella enterica/genetics , Salmonella enterica/immunology , Salmonella enterica/isolation & purification , Serogroup , Typhoid Fever/microbiology , beta-Lactam Resistance
4.
Foodborne Pathog Dis ; 14(3): 148-151, 2017 03.
Article in English | MEDLINE | ID: mdl-27982698

ABSTRACT

Salmonella enterica serotype Napoli (S. Napoli) is currently emerging in Europe and particularly in Italy, where in 2014 it caused a large outbreak associated with elevated rates of bacteremia. However, no study has yet investigated its invasive ability and phylogenetic classification. Here, we show that between 2010 and 2014, S. Napoli was the first cause of invasive salmonellosis affecting 40 cases out of 687 (invasive index: 5.8%), which is significantly higher than the invasive index of all the other nontyphoidal serotypes (2.0%, p < 0.05). Genomic and phylogenetic analyses of an invasive isolate revealed that S. Napoli belongs to Typhi subclade in clade A, Paratyphi A being the most related serotype and carrying almost identical pattern of typhoid-associated genes. This work presents evidence of invasive capacity of S. Napoli and argues for reconsideration of its nontyphoidal category.


Subject(s)
Disease Outbreaks , Salmonella Food Poisoning/epidemiology , Salmonella Infections/epidemiology , Salmonella enterica/genetics , Salmonella enterica/isolation & purification , DNA, Bacterial/isolation & purification , Genes, Bacterial , Humans , Incidence , Italy/epidemiology , Phylogeny , Salmonella Food Poisoning/diagnosis , Salmonella Infections/diagnosis , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL