Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Biol Rep ; 50(8): 6517-6528, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37329481

ABSTRACT

BACKGROUND: SARGASSUM FUSIFORME: (S. fusiforme) is a brown alga that has been utilized as a medicine for a long time. Polysaccharides extracted from S. fusiforme demonstrate antitumor activities. METHODS: The impact of S. fusiforme polysaccharides (SFPS 191,212) on the proliferation, apoptosis, and cell cycle kinetics of B16F10 murine melanoma cells were thoroughly investigated in this work. The anticancer activities of the SFPS 191,212 compounds were assayed in the B16F10 cells at both transcriptional and translational levels. RESULTS: The compound exhibited concentration-dependent effects. Moreover, SPFS 191,212 increased the numbers of apoptotic cells and arrested the cell cycle in the S phase of the quantitative real-time PCR. From western blotting, it was verified that the SFPS 191,212 treatment improved the expression of Bax, Caspase-9, and Caspase-3 genes and proteins, while it reduced phosphatidylinositol 3 kinase and Bcl-2 genes and proteins, suggesting the involvement of mitochondria. CONCLUSION: Overall, SFPS 191,212 can be further explored as a potential functional food or adjuvant agent for the prevention or treatment of melanoma.


Subject(s)
Melanoma , Sargassum , Mice , Animals , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Cell Cycle Checkpoints , Apoptosis , Polysaccharides/pharmacology
2.
Mar Drugs ; 21(11)2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37999385

ABSTRACT

The main purpose of this study was to analyze the structural properties and anti-inflammatory activity of the purified fractions derived from UV/H2O2-degraded polysaccharides from Sargassum fusiforme. Results indicated that twofractions with different monosaccharide compositions and morphological characteristics, PT-0.25 (yield 39.5%) and PT-0.5 (yield 23.9%), were obtained. The average molecular weights of PT-0.25 and PT-0.5 were 14.52 kDa and 22.89 kDa, respectively. In addition, PT-0.5 exhibited better anti-inflammatory activity with a clear dose dependence. The mechanism was associated with the inhibition of LPS-activated Toll-like receptor 4-mediated inflammatory pathways in RAW264.7 cells. The results showed that PT-0.5 was a complex polysaccharide mainly composed of 4-Fucp, t-Manp, 6-Galp, t-Fucp, and 3,4-GlcAp. These results would provide theoretical support for studying the structural properties and biological activities of UV/H2O2-degraded polysaccharides.


Subject(s)
Hydrogen Peroxide , Sargassum , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/metabolism , Sargassum/chemistry , Polysaccharides/chemistry , Anti-Inflammatory Agents
3.
Mar Drugs ; 21(8)2023 Jul 29.
Article in English | MEDLINE | ID: mdl-37623711

ABSTRACT

The high molecular weight and poor solubility of seaweed polysaccharides have limited their function and application. In this study, ultraviolet/hydrogen peroxide (UV/H2O2) treatment was used to prepare low-molecular-weight seaweed polysaccharides from Sargassum fusiforme. The effects of UV/H2O2 treatment on the physicochemical properties and anti-photoaging activity of S. fusiforme polysaccharides were studied. UV/H2O2 treatment effectively degraded polysaccharides from S. fusiforme (DSFPs), reducing their molecular weight from 271 kDa to 26 kDa after 2 h treatment. The treatment did not affect the functional groups in DSFPs but changed their molar percentage of monosaccharide composition and morphology. The effects of the treatment on the anti-photoaging function of S. fusiforme polysaccharides were investigated using human epidermal HaCaT cells in vitro. DFSPs significantly improved the cell viability and hydroxyproline secretion of UVB-irradiated HaCaT cells. In particular, DSFP-45 obtained from UV/H2O2 treatment for 45 min showed the best anti-photoaging effect. Moreover, DSFP-45 significantly increased the content and expression of collagen I and decreased those of pro-inflammatory cytokines, including interleukin-1ß, interleukin-6, and tumor necrosis factor-α. Thus, UV/H2O2 treatment could effectively improve the anti-photoaging activity of S. fusiforme polysaccharides. These results provide some insights for developing novel and efficient anti-photoaging drugs or functional foods from seaweed polysaccharides.


Subject(s)
Hydrogen Peroxide , Skin Neoplasms , Humans , Hydrogen Peroxide/pharmacology , Cell Survival , Collagen Type I , Cytokines
4.
Mar Drugs ; 21(5)2023 May 08.
Article in English | MEDLINE | ID: mdl-37233483

ABSTRACT

Studies have shown that Sargassum fusiforme and its extracts are effective herbal treatments for leukemia. We previously found that a polysaccharide from Sargassum fusiforme, SFP 2205, stimulated apoptosis in human erythroleukemia (HEL) cells. However, the structural characterization and antitumoral mechanisms of SFP 2205 remain uncertain. Here, we studied the structural characteristics and anticancer mechanisms of SFP 2205 in HEL cells and a xenograft mouse model. The results demonstrated that SFP 2205, with a molecular weight of 41.85 kDa, consists of mannose, rhamnose, galactose, xylose, glucose, and fucose with monosaccharides composition of 14.2%, 9.4%, 11.8%, 13.7%, 11.0%, and 38.3%, respectively. On animal assays, SFP 2205 significantly inhibited growth of HEL tumor xenografts with no discernible toxicity to normal tissues. Western blotting showed that SFP 2205 therapy improved Bad, Caspase-9, and Caspase-3 protein expression, and ultimately induced HEL tumor apoptosis, indicating mitochondrial pathway involvement. Furthermore, SFP 2205 blocked the PI3K/AKT signaling pathway and 740 Y-P, an activator of the PI3K/AKT pathway, rescued the effects of SFP 2205 on HEL cell proliferation and apoptosis. Overall, SFP 2205 may be a potential functional food additive or adjuvant for preventing or treating leukemia.


Subject(s)
Leukemia , Neoplasms , Sargassum , Humans , Mice , Animals , Proto-Oncogene Proteins c-akt , Phosphatidylinositol 3-Kinases , Sargassum/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemistry
5.
Chem Biodivers ; 20(8): e202300264, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37370194

ABSTRACT

Sargassum fusiforme polysaccharide (SFP) is a kind of biologically active macromolecule with biological functions. In this study, oxidative stress and high-fat HepG2 cell models were established to investigate its lipid-lowering activity and mechanism of action. It was found that SFP and its two isolated fractions had antioxidant effects on the cells. It was also found the polysaccharides decreased the content of total cholesterol and total triglyceride in the high-fat cells. RT-qPCR assays revealed that the three polysaccharides down-regulated the mRNA expression level of ACC, PPARγ, and SREBP-2. It could be concluded that the hypolipidemic effect of SFPs is achieved via multiple pathways, including the regulation on the expression level of lipid metabolism-related key enzymes and factors, and binding with bile acids. The hypolipidemic effect of SFPs could be partially due to their antioxidant activity. SFPs developed in the present work have potential as ingredients of functional foods with hypolipidemic effect.


Subject(s)
Sargassum , Humans , Sargassum/chemistry , Hep G2 Cells , Polysaccharides/pharmacology , Polysaccharides/chemistry
6.
Phytochem Anal ; 2023 May 14.
Article in English | MEDLINE | ID: mdl-37183174

ABSTRACT

INTRODUCTION: Sargassum fusiforme (Harvey) Setchell, also known as Tot (in Korean) and Hijiki (in Japanese), is widely consumed in Korea, Japan, and China due to its health promoting properties. However, the bioactive component behind the biological activity is still unknown. OBJECTIVES: We aimed to optimise the extraction conditions for achieving maximum tyrosinase inhibition activity by using two sophisticated statistical tools, that is, response surface methodology (RSM) and artificial neural network (ANN). Moreover, high-resolution mass spectrometry (HRMS) was used to tentatively identify the components, which are then further studied for molecular docking study using 2Y9X protein. METHODOLOGY: RSM central composite design was used to conduct extraction using microwave equipment, which was then compared to ANN. Electrospray ionisation tandem mass spectrometry (ESI-MS/MS) was used to tentatively identify bioactive components, which were then docked to the 2Y9X protein using AutoDock Vina and MolDock software. RESULTS: Maximum tyrosinase inhibition activity of 79.530% was achieved under optimised conditions of time: 3.27 min, temperature: 128.885°C, ethanol concentration: 42.13%, and microwave intensity: 577.84 W. Furthermore, 48 bioactive compounds were tentatively identified in optimised Sargassum fusiforme (OSF) extract, and among them, seven phenolics, five flavonoids, five lignans, six terpenes, and five sulfolipids and phospholipids were putatively reported for the first time in Sargassum fusiforme. Among 48 bioactive components, trifuhalol-A, diphlorethohydroxycarmalol, glycyrrhizin, and arctigenin exhibited higher binding energies for 2Y9X. CONCLUSION: Taken together, these findings suggest that OSF extract can be used as an effective skin-whitening source on a commercial level and could be used in topical formulations by replacing conventional drugs.

7.
World J Microbiol Biotechnol ; 39(11): 318, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37743438

ABSTRACT

The present study evaluates the antibacterial properties of alkaloids and the crude extracts (ethanol, n-hexane and ethyl acetate) from seaweed Sargassum fusiforme against coral pathogens (Photobacterium galatheae, Vibrio harveyi, Bordetella trematum, and Ochrobactrum pseudogrignonese) isolated from coral Porites lutea. To our knowledge, this is the first in vitro assay for such extracts on Porites lutea coral pathogens. Bacterial pathogens have been identified using 16S RNA and BankIt into gene bank and given the accession numbers (OR401000; OR401001; OR401336, and OR400998 respectively). GC-Mass profiling conducted for n-hexane compounds confirmed the presence of thirty-eight molecules, twelve of which have been previously reported for their bioactivity. The results revealed that alkaloids and n-hexane extract demonstrated eminent antibacterial activity compared to the other extracts against the tested coral pathogenic bacteria. Molecular docking was conducted to evaluate the twelve previously mentioned bioactive molecules to get a full understanding of the interaction of those bioactive molecules on vital bacterial proteins (Hemolysin protein (PDB ID: 1XEZ) and Cytoplasmic proteins (PDB ID: 3TZC)). Docked twelve molecules against hemolysin protein (PDB ID: 1XEZ) came exactly in line with the docked result of the same molecules with cytoplasmic proteins (PDB ID: 3TZC), proving the bioactivity of 6-O-Palmitoyl-L-ascorbic acid, 3TMS derivative; Glycerol monostearate, 2TMS derivative and Eicosanoic acid complexes in antibacterial activity action and score higher than reference ligand. Those three compounds will be investigated separately in future in vitro assay soon. Our conclusions align with the study's antibacterial in vitro assay results. The present study reports the novelty of different extracts of S. fusiforme as an antibacterial agent against coral pathogenic bacteria that trigger diseases in Porites lutea.


Subject(s)
Anthozoa , Hemolysin Proteins , Animals , Molecular Docking Simulation , Anti-Bacterial Agents/pharmacology
8.
Curr Issues Mol Biol ; 44(2): 626-639, 2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35723329

ABSTRACT

Fine dust generated by particulate matter (PM) pollution is a serious ecological issue in industrialized countries and causes disorders of the respiratory system and skin in humans. In the previous study, Sargassum fusiforme was treated with citric acid to remove heavy metals. In this study, the transfer of PM-mediated inflammatory responses through the skin to macrophages was evaluated. Moreover, the anti-adhesive effects of calcium alginate isolated from S. fusiforme (SFCA) against PM-induced inflammation were investigated. The structures of processing and unprocessing SFCA were then analyzed by Fourier-transform infrared spectroscopy (FT-IR), revealing minimal change after acid-processing. SFCA had protective effects both in PM-stimulated HaCaT keratinocytes and RAW 264.7 macrophages. In cellular environments, it was found that SFCA attenuated signal protein expressions such as inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, prostaglandin E2 (PGE2), and pro-inflammatory cytokines. Furthermore, macrophages were added to the culture medium of PM-stimulated keratinocytes to induce inflammation. SFCA was observed to significantly inhibit inflammatory responses; additionally, SFCA showed an in vivo anti-adhesive effect in zebrafish embryos.

9.
Mar Drugs ; 20(3)2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35323500

ABSTRACT

Hematopoietic damage is a serious side effect of cytotoxic drugs, and agents promoting hematopoiesis are quite important for decreasing the death rate in cancer patients. In our previous work, we prepared the simulated digestive product of fucoidan from Sargassum fusiforme, DSFF, and found that DSFF could activate macrophages. However, more investigations are needed to further evaluate whether DSFF could promote hematopoiesis in the chemotherapy process. In this study, the protective effect of DSFF (1.8-7.2 mg/kg, i.p.) on cyclophosphamide-induced hematopoietic damage in mice and the underlying mechanisms were investigated. Our results show that DSFF could restore the numbers of white blood cells, neutrophils, and platelets in the peripheral blood, and could also retard bone marrow cell decrease in mice with cyclophosphamide-induced hematopoietic damage. UPLC/Q-Extraction Orbitrap/MS/MS-based lipidomics results reveal 16 potential lipid biomarkers in a serum that responded to hematopoietic damage in mice. Among them, PC (20:1/14:0) and SM (18:0/22:0) were the key lipid molecules through which DSFF exerted protective actions. In a validation experiment, DSFF (6.25-100 µg/mL) could also promote K562 cell proliferation and differentiation in vitro. The current findings indicated that DSFF could affect the blood cells and bone marrow cells in vivo and thus showed good potential and application value in alleviating the hematopoietic damage caused by cyclophosphamide.


Subject(s)
Cyclophosphamide/toxicity , Hematopoiesis/drug effects , Myeloablative Agonists/toxicity , Polysaccharides/pharmacology , Protective Agents/pharmacology , Sargassum , Animals , Biomarkers/blood , Bone Marrow/drug effects , Bone Marrow/metabolism , Cell Proliferation/drug effects , DNA/metabolism , Humans , K562 Cells , Leukocyte Count , Lipidomics , Mice , Neutrophils/drug effects , Platelet Count
10.
Mar Drugs ; 20(4)2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35447930

ABSTRACT

A method for batch preparation of fucoxanthin from brown algae was established, which possessed the advantages of high yield and high purity. The ultrasonic-assisted extraction method was used to obtain a crude extract from Sargassum fusiforme as the separation sample. Then the crude extract was separated by elution-extrusion countercurrent chromatography. The optimum preparation conditions of fucoxanthin were determined as follows: n-hexane-ethanol-water (20:9:11, v:v:v) as a two-phase solvent system, the mobile phase flow rate was 5 mL min-1, the revolution speed was 800 r min-1, the loading capacity was 60 mg 10 mL-1 and the temperature was 25 °C. By this method, 12.8 mg fucoxanthin with a purity of 94.72% was obtained from the crude extract of Sargassum fusiforme. In addition, when the loading capacity was 50 mg 10 mL-1, the purity of fucoxanthin reached 96.01%. Two types of by-products, chlorophyll and pheophytin, could also be obtained during the process of separation. This optimal method was further applied to separate fucoxanthin from Laminaria japonica and Undaria pinnatifida, and 6.0 mg and 9.7 mg fucoxanthin with a purity of 96.24% and 92.62% were acquired, respectively. Therefore, it was demonstrated that the preparation method of fucoxanthin established in this study had an applicability to brown algae, which improved the utilization value of raw materials.


Subject(s)
Phaeophyceae , Sargassum , Chromatography, High Pressure Liquid , Complex Mixtures , Countercurrent Distribution/methods , Phaeophyceae/chemistry , Sargassum/chemistry , Xanthophylls/chemistry
11.
Molecules ; 27(15)2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35897872

ABSTRACT

In this study, a polysaccharide-based hydrogel microsphere (SFP/SA) was prepared using S. fusiforme polysaccharide (SFP) and sodium alginate (SA). Fourier transform infrared spectroscopy (FT-IR) demonstrated that SFP was effectively loaded onto the hydrogel microsphere. Texture profile analysis (TPA) and differential scanning calorimetry (DSC) showed that, with the increase of SFP concentration, the hardness of SFP/SA decreased, while the springiness and cohesiveness of SFP/SA increased, and the thermal stability of SFP/SA improved. The equilibrium adsorption capacity of SFP/SA increased from 8.20 mg/g (without SFP) to 67.95 mg/g (SFP accounted 80%) without swelling, and from 35.05 mg/g (without SFP) to 81.98 mg/g (SFP accounted 80%) after 24 h swelling. The adsorption of crystal violet (CV) dye by SFP/SA followed pseudo-first order and pseudo-second order kinetics (both with R2 > 0.99). The diffusion of intraparticle in CV dye was not the only influencing factor. Moreover, the adsorption of CV dye for SFP/SA (SFP accounted 60%) fit the Langmuir and Temkin isotherm models. SFP/SA exhibited good regenerative adsorption capacity. Its adsorption rate remained at > 97% at the 10th consecutive cycle while SFP accounted for 80%. The results showed that the addition of Sargassum fusiforme polysaccharide could increase the springiness, cohesiveness and thermal stability of the hydrogel microsphere, as well as improve the adsorption capacity of crystal violet dye.


Subject(s)
Sargassum , Water Pollutants, Chemical , Adsorption , Alginates/chemistry , Gentian Violet/chemistry , Hydrogels/chemistry , Hydrogen-Ion Concentration , Kinetics , Microspheres , Spectroscopy, Fourier Transform Infrared , Water Pollutants, Chemical/chemistry
12.
Mar Drugs ; 19(4)2021 Mar 27.
Article in English | MEDLINE | ID: mdl-33801706

ABSTRACT

We recently found that dietary supplementation with the seaweed Sargassum fusiforme, containing the preferential LXRß-agonist 24(S)-saringosterol, prevented memory decline and reduced amyloid-ß (Aß) deposition in an Alzheimer's disease (AD) mouse model without inducing hepatic steatosis. Here, we examined the effects of 24(S)-saringosterol as a food additive on cognition and neuropathology in AD mice. Six-month-old male APPswePS1ΔE9 mice and wildtype C57BL/6J littermates received 24(S)-saringosterol (0.5 mg/25 g body weight/day) (APPswePS1ΔE9 n = 20; C57BL/6J n = 19) or vehicle (APPswePS1ΔE9 n = 17; C57BL/6J n = 19) for 10 weeks. Cognition was assessed using object recognition and object location tasks. Sterols were analyzed by gas chromatography/mass spectrometry, Aß and inflammatory markers by immunohistochemistry, and gene expression by quantitative real-time PCR. Hepatic lipids were quantified after Oil-Red-O staining. Administration of 24(S)-saringosterol prevented cognitive decline in APPswePS1ΔE9 mice without affecting the Aß plaque load. Moreover, 24(S)-saringosterol prevented the increase in the inflammatory marker Iba1 in the cortex of APPswePS1ΔE9 mice (p < 0.001). Furthermore, 24(S)-saringosterol did not affect the expression of lipid metabolism-related LXR-response genes in the hippocampus nor the hepatic neutral lipid content. Thus, administration of 24(S)-saringosterol prevented cognitive decline in APPswePS1ΔE9 mice independent of effects on Aß load and without adverse effects on liver fat content. The anti-inflammatory effects of 24(S)-saringosterol may contribute to the prevention of cognitive decline.


Subject(s)
Alzheimer Disease/drug therapy , Anti-Inflammatory Agents/pharmacology , Behavior, Animal/drug effects , Cerebral Cortex/drug effects , Cognition/drug effects , Nootropic Agents/pharmacology , Stigmasterol/analogs & derivatives , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/psychology , Animals , Calcium-Binding Proteins/metabolism , Cell Line, Tumor , Cerebral Cortex/metabolism , Cerebral Cortex/physiopathology , Disease Models, Animal , Humans , Male , Mice, Inbred C57BL , Mice, Transgenic , Microfilament Proteins/metabolism , Microglia/drug effects , Microglia/metabolism , Recognition, Psychology/drug effects , Stigmasterol/pharmacology
13.
Mar Drugs ; 19(9)2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34564147

ABSTRACT

Dysregulation of cholesterol homeostasis is a major risk factor of atherosclerosis, which can lead to serious health problems, including heart attack and stroke. Liver X receptor (LXR) α and ß are transcription factors belonging to the nuclear receptor superfamily, which play important roles in cholesterol homeostasis. Selectively activating LXRß provides a promising strategy for the treatment of atherosclerosis. Here, we employed atherosclerotic apoE-knockout mice to evaluate the effects of saringosterol, a phytosterol with potent and selective action for LXRß, which we identified previously in edible marine seaweed Sargassum fusiforme. We found that saringosterol treatment reduced the atherosclerotic plaque burden without having undesirable adverse hepatic effects in apoE-deficient mice fed an atherogenic diet. Meanwhile, reduced serum levels of cholesterol, accompanied by altered expression of LXR-regulated genes involved in cholesterol absorption, transport, efflux, excretion, and elimination, were observed in apoE-knockout mice after saringosterol treatment. Together, our study not only establishes saringosterol as an effective cholesterol-lowering and anti-atherogenic phytosterol but also provides insights into the underlying mechanism.


Subject(s)
Atherosclerosis/drug therapy , Cholesterol/metabolism , Hypolipidemic Agents/therapeutic use , Sargassum , Stigmasterol/analogs & derivatives , Animals , Atherosclerosis/metabolism , Cytochrome P-450 Enzyme System/genetics , Diet, High-Fat , Hypolipidemic Agents/pharmacology , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Lipid Metabolism/drug effects , Liver/drug effects , Liver/metabolism , Macrophages/drug effects , Macrophages/metabolism , Membrane Transport Proteins/genetics , Mice, Knockout, ApoE , Stigmasterol/pharmacology , Stigmasterol/therapeutic use
14.
Mar Drugs ; 19(7)2021 Jun 24.
Article in English | MEDLINE | ID: mdl-34202845

ABSTRACT

Seaweed polysaccharides represent a kind of novel gut microbiota regulator. The advantages and disadvantages of using cecal and fecal microbiota to represent gut microbiota have been discussed, but the regulatory effects of seaweed polysaccharides on cecal and fecal microbiota, which would benefit the study of seaweed polysaccharide-based gut microbiota regulator, have not been compared. Here, the effects of two Sargassum fusiforme polysaccharides prepared by water extraction (SfW) and acid extraction (SfA) on the cecal and fecal microbiota of high-fat diet (HFD) fed mice were investigated by 16S rRNA gene sequencing. The results indicated that 16 weeks of HFD dramatically impaired the homeostasis of both the cecal and fecal microbiota, including the dominant phyla Bacteroidetes and Actinobacteria, and genera Coriobacteriaceae, S24-7, and Ruminococcus, but did not affect the relative abundance of Firmicutes, Clostridiales, Oscillospira, and Ruminococcaceae in cecal microbiota and the Simpson's index of fecal microbiota. Co-treatments with SfW and SfA exacerbated body weight gain and partially reversed HFD-induced alterations of Clostridiales and Ruminococcaceae. Moreover, the administration of SfW and SfA also altered the abundance of genes encoding monosaccharide-transporting ATPase, α-galactosidase, ß-fructofuranosidase, and ß-glucosidase with the latter showing more significant potency. Our findings revealed the difference of cecal and fecal microbiota in HFD-fed mice and demonstrated that SfW and SfA could more significantly regulate the cecal microbiota and lay important foundations for the study of seaweed polysaccharide-based gut microbiota regulators.


Subject(s)
Diet, High-Fat , Gastrointestinal Microbiome/drug effects , Polysaccharides/pharmacology , Sargassum , Animals , Cecum/microbiology , Feces/microbiology , Male , Mice , Mice, Inbred C57BL , Models, Animal , Phytotherapy
15.
Chem Biodivers ; 18(3): e2000930, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33471368

ABSTRACT

Enzymatic hydrolysate of the crude polysaccharide (SFP) extracted from Sargassum fusiforme was purified by column DEAE-52 and Sephadex G-100 to yield four components, namely, ESFP1, ESFP2, ESFP3 and ESFP4. These components were characterized by chemical composition assay, GC/MS, HPGPC, UV and FT-IR techniques. The in vitro antioxidant activities of the four purified fractions were investigated by measuring their radical scavenging activity and reducing power. The results suggested that all the four components possess good antioxidant activities. Among them, ESFP1 was found to possess the strongest 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical and hydroxyl radical-scavenging activity, and the greatest ferric reducing power. The immunomodulatory effect of these four polysaccharides was demonstrated by their ability to promote proliferation, and to enhance both phagocytic activity and NO release in a macrophage RAW264.7 model. The results revealed that the bioactivities of the polysaccharides are related to their molecular weight, and the uronic acid and sulfate contents.


Subject(s)
Antioxidants/pharmacology , Polysaccharides/pharmacology , Sargassum/chemistry , Animals , Antioxidants/chemistry , Antioxidants/isolation & purification , Biphenyl Compounds/antagonists & inhibitors , Cell Proliferation/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Mice , Molecular Structure , Molecular Weight , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/biosynthesis , Picrates/antagonists & inhibitors , Polysaccharides/chemistry , Polysaccharides/isolation & purification , RAW 264.7 Cells , Sargassum/metabolism , Stereoisomerism , Structure-Activity Relationship
16.
Molecules ; 26(11)2021 May 28.
Article in English | MEDLINE | ID: mdl-34071584

ABSTRACT

Avian leukosis virus subgroup J (ALV-J) is an immunosuppressive virus which has caused heavy losses to the poultry breeding industry. Currently, there is no effective medicine to treat this virus. In our previous experiments, the low-molecular-weight Sargassum fusiforme polysaccharide (SFP) was proven to possess antiviral activity against ALV-J, but its function was limited to the virus adsorption stage. In order to improve the antiviral activity of the SFP, in this study, three new SFP long-chain alkyl group nanomicelles (SFP-C12M, SFP-C14M and SFP-C16M) were prepared. The nanomicelles were characterized according to their physical and chemical properties. The nanomicelles were characterized by particle size, zeta potential, polydispersity index, critical micelle concentration and morphology. The results showed the particle sizes of the three nanomicelles were all approximately 200 nm and SFP-C14M and SFP-C16M were more stable than SFP-C12M. The newly prepared nanomicelles exhibited a better anti-ALV-J activity than the SFP, with SFP-C16M exhibiting the best antiviral effects in both the virus adsorption stage and the replication stage. The results of the giant unilamellar vesicle exposure experiment demonstrated that the new virucidal effect of the nanomicelles might be caused by damage to the phospholipid membrane of ALV-J. This study provides a potential idea for ALV-J prevention and development of other antiviral drugs.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Micelles , Nanoparticles/chemistry , Polysaccharides/chemistry , Poultry Diseases/prevention & control , Sargassum/metabolism , Adsorption , Animals , Avian Leukosis Virus/drug effects , Chemistry, Pharmaceutical/methods , Chickens , Dietary Carbohydrates/pharmacology , Gene Expression Regulation , Hydrophobic and Hydrophilic Interactions , Inhibitory Concentration 50 , Light , Magnetic Resonance Spectroscopy , Microscopy, Electron, Scanning , Nanotechnology , Particle Size , Poultry , Scattering, Radiation , Spectroscopy, Fourier Transform Infrared
17.
Mar Drugs ; 18(9)2020 Aug 27.
Article in English | MEDLINE | ID: mdl-32867177

ABSTRACT

A low fasting blood glucose level is a common symptom in diabetes patients and can be induced by high-fat diet (HFD) feeding at an early stage, which may play important roles in the development of diabetes, but has received little attention. In this study, five polysaccharides were prepared from Sargassumfusiforme and their effects on HFD-induced fasting hypoglycemia and gut microbiota dysbiosis were investigated. The results indicated that C57BL/6J male mice fed an HFD for 4 weeks developed severe hypoglycemia and four Sargassumfusiforme polysaccharides (SFPs), consisting of Sf-2, Sf-3, Sf-3-1, and Sf-A, significantly prevented early fasting hypoglycemia without inducing hyperglycemia. Sf-1 and Sf-A could also significantly prevent HFD-induced weight gain. Sf-2, Sf-3, Sf-3-1, and Sf-A mainly attenuated the HFD-induced decrease in Bacteroidetes, and all five SFPs had a considerable influence on the relative abundance of Oscillospira, Mucispirillum, and Clostridiales. Correlation analysis revealed that the fasting blood glucose level was associated with the relative abundance of Mucispinllum and Oscillospira. Receiver operating characteristic analysis indicated that Mucispinllum and Oscillospira exhibited good discriminatory power (AUC = 0.745-0.833) in the prediction of fasting hypoglycemia. Our findings highlight the novel application of SFPs (especially Sf-A) in glucose homeostasis and the potential roles of Mucispinllum and Oscillospira in the biological activity of SFPs.


Subject(s)
Blood Glucose/drug effects , Diet, High-Fat , Gastrointestinal Microbiome/drug effects , Hypoglycemia/prevention & control , Intestines/microbiology , Polysaccharides/pharmacology , Sargassum/metabolism , Animals , Biomarkers/blood , Blood Glucose/metabolism , Disease Models, Animal , Hypoglycemia/blood , Hypoglycemia/etiology , Male , Mice, Inbred C57BL , Polysaccharides/isolation & purification , Weight Gain/drug effects
18.
Chem Biodivers ; 17(6): e2000182, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32298046

ABSTRACT

Phytochemical investigation of Sargassum fusiforme (Harv.) Setch. led to the discovery of fifteen secondary metabolites, including three sterols, three monoterpenes, five nitrogenous compounds, two fatty acids, and two others. Among them, two compounds are new, while the other thirteen compounds were isolated from S. fusiforme for the first time. The structures of the two new compounds were identified by NMR and HR-ESI-MS data analyses, and the absolute configurations were established by comparing the calculated and experimental ECD spectroscopic data.


Subject(s)
Sargassum/chemistry , Circular Dichroism , Fatty Acids/chemistry , Fatty Acids/isolation & purification , Magnetic Resonance Spectroscopy , Molecular Conformation , Monoterpenes/chemistry , Monoterpenes/isolation & purification , Sargassum/metabolism , Sterols/chemistry , Sterols/isolation & purification
19.
Mar Drugs ; 15(2)2017 Feb 21.
Article in English | MEDLINE | ID: mdl-28230766

ABSTRACT

Phlorotannins are a group of complex polymers of phloroglucinol (1,3,5-trihydroxybenzene), which are unique compounds from marine brown algae. In our present study, a procedure for extraction and enrichment of phlorotannins from S. fusiforme with highly antioxidant potentials was established. After comparison of different extraction methods, the optimal extraction conditions were established as follows. The freeze-dried seaweed powder was extracted with 30% ethanol-water solvent with a solid/liquid ratio of 1:5 at temperature of 25 °C for 30 min. After extraction, the phlorotannins were fractioned by different solvents, among which the ethyl acetate fraction exhibited both the highest total phlorotannin content (88.48 ± 0.30 mg PGE/100 mg extract) and the highest antioxidant activities. The extracts obtained from these locations were further purified and characterized using a modified UHPLC-QQQ-MS method. Compounds with 42 different molecular weights were detected and tentatively identified, among which the fuhalol-type phlorotannins were the dominant compounds, followed by phlorethols and fucophlorethols with diverse degree of polymerization. Eckol-type phlorotannins including some newly discovered carmalol derivatives were detected in Sargassum species for the first time. Our study not only described the complex phlorotannins composition in S. fusiforme, but also highlighted the challenges involved in structural elucidation of these compounds.


Subject(s)
Biological Products/chemistry , Phaeophyceae/chemistry , Sargassum/chemistry , Tannins/chemistry , Antioxidants/chemistry , Molecular Weight , Phloroglucinol/chemistry , Polymerization , Polymers/chemistry , Seaweed/chemistry
20.
Saudi Pharm J ; 25(4): 464-468, 2017 May.
Article in English | MEDLINE | ID: mdl-28579876

ABSTRACT

In this study, our purpose is to discover the correlation between polysaccharides sulfated structure and anti-tumor activity. Sulfated polysaccharide from Sargassum fusiforme were synthesized with the chlorosulfonic acid pyridine method. The inhibitory effect of Sargassum fusiforme polysaccharides and the application of MTT assay before and after chemical modification on the proliferation of hepatocellular carcinoma HepG-2 cells in vitro were studied. Sulfated polysaccharide from sargassum fusiforme DS is 0.803. The modified polysaccharide has certain inhibitory effect on HepG-2 cells, and its inhibition on the cells growth has improved compared with the original SFPs. The sulfated polysaccharide from Sargassum fusiforme has the ability to enhance anti-tumor activities.

SELECTION OF CITATIONS
SEARCH DETAIL