Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Int J Mol Sci ; 25(5)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38473716

ABSTRACT

Despite the well-known relevance of polyamines to many forms of life, little is known about how polyamines regulate osteogenesis and skeletal homeostasis. Here, we report a series of in vitro studies conducted with human-bone-marrow-derived pluripotent stromal cells (MSCs). First, we show that during osteogenic differentiation, mRNA levels of most polyamine-associated enzymes are relatively constant, except for the catabolic enzyme spermidine/spermine N1-acetyltransferase 1 (SAT1), which is strongly increased at both mRNA and protein levels. As a result, the intracellular spermidine to spermine ratio is significantly reduced during the early stages of osteoblastogenesis. Supplementation of cells with exogenous spermidine or spermine decreases matrix mineralization in a dose-dependent manner. Employing N-cyclohexyl-1,3-propanediamine (CDAP) to chemically inhibit spermine synthase (SMS), the enzyme catalyzing conversion of spermidine into spermine, also suppresses mineralization. Intriguingly, this reduced mineralization is rescued with DFMO, an inhibitor of the upstream polyamine enzyme ornithine decarboxylase (ODC1). Similarly, high concentrations of CDAP cause cytoplasmic vacuolization and alter mitochondrial function, which are also reversible with the addition of DFMO. Altogether, these studies suggest that excess polyamines, especially spermidine, negatively affect hydroxyapatite synthesis of primary MSCs, whereas inhibition of polyamine synthesis with DFMO rescues most, but not all of these defects. These findings are relevant for patients with Snyder-Robinson syndrome (SRS), as the presenting skeletal defects-associated with SMS deficiency-could potentially be ameliorated by treatment with DFMO.


Subject(s)
Mesenchymal Stem Cells , Spermidine , Humans , Spermidine/metabolism , Spermine/metabolism , Spermine Synthase/genetics , Ornithine Decarboxylase/metabolism , Osteogenesis , Polyamines/metabolism , Mesenchymal Stem Cells/metabolism , RNA, Messenger
2.
Int J Mol Sci ; 25(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38928047

ABSTRACT

Polyamines are ubiquitous in almost all biological entities and involved in various crucial physiological processes. They are also closely associated with the onset and progression of many diseases. Polyaminopathies are a group of rare genetic disorders caused by alterations in the function of proteins within the polyamine metabolism network. Although the identified polyaminopathies are all rare diseases at present, they are genetically heritable, rendering high risks not only to the carriers but also to their descendants. Meanwhile, more polyaminopathic patients might be discovered with the increasing accessibility of gene sequencing. This review aims to provide a comprehensive overview of the structural variations of mutated proteins in current polyaminopathies, in addition to their causative genes, types of mutations, clinical symptoms, and therapeutic approaches. We focus on analyzing how alterations in protein structure lead to protein dysfunction, thereby facilitating the onset of diseases. We hope this review will offer valuable insights and references for the future clinical diagnosis and precision treatment of polyaminopathies.


Subject(s)
Mutation , Polyamines , Humans , Polyamines/metabolism , Animals
3.
Osteoporos Int ; 33(5): 1177-1180, 2022 May.
Article in English | MEDLINE | ID: mdl-34741636

ABSTRACT

Snyder-Robinson syndrome is an extremely rare genetic disorder, caused by mutations of the spermine synthase gene. We report a novel case of Snyder-Robinson syndrome, caused by a de novo mutation and first misdiagnosed with osteogenesis imperfecta. Clinical features, course, and genetic analysis are presented. The patient was treated with bisphosphonates for a decade, until developing an atypical femoral fracture. Teriparatide was then administered for 2 years and then changed to denosumab every 6 months, improving his bone density mass and preventing further fractures.


Subject(s)
Mental Retardation, X-Linked , Osteogenesis Imperfecta , Spermine Synthase , Diagnosis, Differential , Humans , Mental Retardation, X-Linked/diagnosis , Mental Retardation, X-Linked/genetics , Osteogenesis Imperfecta/diagnosis , Osteogenesis Imperfecta/drug therapy , Osteogenesis Imperfecta/genetics , Spermine Synthase/genetics
4.
J Biol Chem ; 295(10): 3247-3256, 2020 03 06.
Article in English | MEDLINE | ID: mdl-31996374

ABSTRACT

Snyder-Robinson syndrome (SRS) is an X-linked intellectual disability syndrome caused by a loss-of-function mutation in the spermine synthase (SMS) gene. Primarily affecting males, the main manifestations of SRS include osteoporosis, hypotonic stature, seizures, cognitive impairment, and developmental delay. Because there is no cure for SRS, treatment plans focus on alleviating symptoms rather than targeting the underlying causes. Biochemically, the cells of individuals with SRS accumulate excess spermidine, whereas spermine levels are reduced. We recently demonstrated that SRS patient-derived lymphoblastoid cells are capable of transporting exogenous spermine and its analogs into the cell and, in response, decreasing excess spermidine pools to normal levels. However, dietary supplementation of spermine does not appear to benefit SRS patients or mouse models. Here, we investigated the potential use of a metabolically stable spermine mimetic, (R,R)-1,12-dimethylspermine (Me2SPM), to reduce the intracellular spermidine pools of SRS patient-derived cells. Me2SPM can functionally substitute for the native polyamines in supporting cell growth while stimulating polyamine homeostatic control mechanisms. We found that both lymphoblasts and fibroblasts from SRS patients can accumulate Me2SPM, resulting in significantly decreased spermidine levels with no adverse effects on growth. Me2SPM administration to mice revealed that Me2SPM significantly decreases spermidine levels in multiple tissues. Importantly, Me2SPM was detectable in brain tissue, the organ most affected in SRS, and was associated with changes in polyamine metabolic enzymes. These findings indicate that the (R,R)-diastereomer of 1,12-Me2SPM represents a promising lead compound in developing a treatment aimed at targeting the molecular mechanisms underlying SRS pathology.


Subject(s)
Mental Retardation, X-Linked/pathology , Spermidine/metabolism , Spermine/analogs & derivatives , Acetyltransferases/genetics , Acetyltransferases/metabolism , Animals , Brain/metabolism , Chromatography, High Pressure Liquid , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , Male , Mental Retardation, X-Linked/metabolism , Mice , Mice, Inbred C57BL , Polyamines/analysis , Polyamines/metabolism , Spermine/administration & dosage , Spermine/metabolism , Spermine/pharmacology , Spermine Synthase/genetics , Tumor Cells, Cultured
5.
BMC Med Genet ; 21(1): 168, 2020 08 24.
Article in English | MEDLINE | ID: mdl-32838743

ABSTRACT

BACKGROUND: Loss of function mutations in the spermine synthase gene (SMS) have been reported to cause a rare X-linked intellectual disability known as Snyder-Robinson Syndrome (SRS). Besides intellectual disability, SRS is also characterized by reduced bone density, osteoporosis and facial dysmorphism. SRS phenotypes evolve with age from childhood to adulthood. METHODS: Whole exome sequencing was performed to know the causative gene/pathogenic variant. Later we confirmed the pathogenic variant through Sanger sequencing. Furthermore, we also performed the mutational analysis through HOPE SERVER and SWISS-MODEL. Also, radiographs were also obtained for affected individual to confirm the disease features. RESULTS: In this article, we report the first Pakistani family consisting of three patients with SRS and a novel missense pathogenic variant in the SMS gene (c.905 C > T p.(Ser302Leu)). In addition to the typical phenotypes, one patient presented with early-onset seizures. Clinical features, genetic and in-silico analysis linked the affected patients of the family with Snyder-Robinson and suggest that this novel mutation affects the spermine synthase activity. CONCLUSION: A novel missense variant in the SMS, c.905C > T p. (Ser302Leu), causing Snyder- Robinson Syndrome (SRS) is reported in three members of Pakistani Family.


Subject(s)
Exome Sequencing/methods , Mental Retardation, X-Linked/genetics , Mutation, Missense/genetics , Spermine Synthase/genetics , Adolescent , Child , Face/abnormalities , Family Health , Female , Humans , Male , Mental Retardation, X-Linked/complications , Osteoporosis/complications , Osteoporosis/diagnosis , Pakistan , Pedigree
6.
J Biol Chem ; 291(29): 14904-12, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27268251

ABSTRACT

The content of spermidine and spermine in mammalian cells has important roles in protein and nucleic acid synthesis and structure, protection from oxidative damage, activity of ion channels, cell proliferation, differentiation, and apoptosis. Spermidine is essential for viability and acts as the precursor of hypusine, a post-translational addition to eIF5A allowing the translation of mRNAs encoding proteins containing polyproline tracts. Studies with Gy mice and human patients with the very rare X-linked genetic condition Snyder-Robinson syndrome that both lack spermine synthase show clearly that the correct spermine:spermidine ratio is critical for normal growth and development.


Subject(s)
Mammals/metabolism , Polyamines/metabolism , Animals , Apoptosis , Cell Differentiation , Cell Proliferation , Humans , Ion Channels/metabolism , Polyamines/toxicity , Spermine Synthase/metabolism
7.
Int J Mol Sci ; 17(1)2016 Jan 08.
Article in English | MEDLINE | ID: mdl-26761001

ABSTRACT

Missense mutations in spermine synthase (SpmSyn) protein have been shown to cause the Snyder-Robinson syndrome (SRS). Depending on the location within the structure of SpmSyn and type of amino acid substitution, different mechanisms resulting in SRS were proposed. Here we focus on naturally occurring amino acid substitutions causing SRS, which are situated away from the active center of SpmSyn and thus are not directly involved in the catalysis. Two of the mutations, M35R and P112L, are reported for the first time in this study. It is demonstrated, both experimentally and computationally, that for such mutations the major effect resulting in dysfunctional SpmSyn is the destabilization of the protein. In vitro experiments indicated either no presence or very little amount of the mutant SpmSyn in patient cells. In silico modeling predicted that all studied mutations in this work destabilize SpmSyn and some of them abolish homo-dimer formation. Since dimerization and structural stability are equally important for the wild type function of SpmSyn, it is proposed that the SRS caused by mutations occurring in the N-domain of SpmSyn is a result of dysfunctional mutant proteins being partially unfolded and degraded by the proteomic machinery of the cell or being unable to form a homo-dimer.


Subject(s)
Mental Retardation, X-Linked/enzymology , Mental Retardation, X-Linked/genetics , Mutation, Missense , Spermine Synthase/genetics , Amino Acid Sequence , Computer Simulation , Enzyme Stability , Humans , Models, Molecular , Molecular Sequence Data , Protein Folding , Protein Multimerization , Sequence Alignment , Spermine Synthase/chemistry , Spermine Synthase/metabolism
8.
IUBMB Life ; 66(1): 8-18, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24395705

ABSTRACT

Polyamines play important roles in cell physiology including effects on the structure of cellular macromolecules, gene expression, protein function, nucleic acid and protein synthesis, regulation of ion channels, and providing protection from oxidative damage. Vertebrates contain two polyamines, spermidine and spermine, as well as their precursor, the diamine putrescine. Although spermidine has an essential and unique role as the precursor of hypusine a post-translational modification of the elongation factor eIF5A, which is necessary for this protein to function in protein synthesis, no unique role for spermine has been identified unequivocally. The existence of a discrete spermine synthase enzyme that converts spermidine to spermine suggest that spermine must be needed and this is confirmed by studies with Gy mice and human patients with Snyder-Robinson syndrome in which spermine synthase is absent or greatly reduced. In both cases, this leads to a severe phenotype with multiple effects among which are intellectual disability, other neurological changes, hypotonia, and reduced growth of muscle and bone. This review describes these alterations and focuses on the roles of spermine which may contribute to these phenotypes including reducing damage due to reactive oxygen species, protection from stress, permitting correct current flow through inwardly rectifying K(+) channels, controlling activity of brain glutamate receptors involved in learning and memory, and affecting growth responses. Additional possibilities include acting as storage reservoir for maintaining appropriate levels of free spermidine and a possible non-catalytic role for spermine synthase protein.


Subject(s)
Mental Retardation, X-Linked/metabolism , Mental Retardation, X-Linked/pathology , Spermine/metabolism , Animals , Humans , Mice , Spermine Synthase/metabolism
9.
Rare ; 22024.
Article in English | MEDLINE | ID: mdl-38770537

ABSTRACT

Snyder-Robinson syndrome (SRS) is a rare X-linked recessive disorder characterized by a collection of clinical features including mild to severe intellectual disability, hypertonia, marfanoid habitus, facial asymmetry, osteoporosis, developmental delay and seizures. Whole genome sequencing (WGS) identified a mutation in the spermine synthase (SMS) gene (c.746 A>G, p.Tyr249Cys) in a male with kyphosis, seizures, and osteoporosis. His phenotype is unique in that he does not have intellectual disability (ID) but does have a mild learning disability. This case demonstrates a milder presentation of SRS and expands the phenotype beyond the reported literature.

10.
J Bone Miner Res ; 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39331754

ABSTRACT

Spermine synthase, encoded by the SMS gene, is involved in polyamine metabolism, as it is required for the synthesis of spermine from its precursor molecule spermidine. Pathogenic variants of SMS are known to cause Snyder-Robinson syndrome (SRS), an X-linked recessive disorder causing various symptoms, including intellectual disability, muscular hypotonia, infertility, but also skeletal abnormalities, such as facial dysmorphisms and osteoporosis. Since the impact of a murine SMS deficiency has so far only been analysed in Gy mice, where a large genomic deletion also includes the neighbouring Phex gene, there is only limited knowledge about the potential role of SMS in bone cell regulation. In the present manuscript we describe two patients carrying distinct SMS variants, both diagnosed with osteoporosis. Whereas the first patient displayed all characteristic hallmarks of SRS, the second patient was initially diagnosed, based on laboratory findings, as a case of adult-onset hypophosphatasia. In order to study the impact of SMS inactivation on bone remodelling we took advantage of a newly developed mouse model carrying a pathogenic SMS variant (p.G56S). Compared to their wildtype littermates 12-week-old male SmsG56S/0 mice displayed reduced trabecular bone mass and cortical thickness, as assessed by µCT analysis of the femur. This phenotype was histologically confirmed by the analysis of spine and tibia sections, where we also observed a moderate enrichment of non-mineralized osteoid in SmsG56S/0 mice. Cellular and dynamic histomorphometry further identified a reduced bone formation rate as a main cause of the low bone mass phenotype. Likewise, primary bone marrow cells from SmsG56S/0 mice displayed reduced capacity to form a mineralized matrix ex vivo, thereby suggesting a cell-autonomous mechanism. Taken together, our data identify SMS as an enzyme with physiological relevance for osteoblast activity, thereby demonstrating an important role of polyamine metabolism in the control of bone remodeling.


Spermine synthase, encoded by the SMS gene, catalyzes the synthesis of spermine from its precursor molecule spermidine. Pathogenic variants of the SMS gene cause the Snyder-Robinson syndrome (SRS), which is characterized by various musculoskeletal and extraskeletal symptoms. This study presents case reports of two individuals with SMS variants and investigates the skeletal pathomechanism using a mouse model of SRS. The bone mass of these mice was decreased due to a reduced bone formation rate. Moreover, ex vivo cultured osteoblasts isolated from this mouse line showed a decrease in mineralization capacity. Our data demonstrate that spermine synthase is a key enzyme that is required to promote the activity of bone-forming osteoblasts.

11.
Am J Med Genet A ; 161A(9): 2316-20, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23897707

ABSTRACT

Snyder-Robinson syndrome is a rare form of X-linked intellectual disability caused by mutations in the spermine synthase (SMS) gene, and characterized by intellectual disability, thin habitus with diminished muscle mass, osteoporosis, kyphoscoliosis, facial dysmorphism (asymmetry, full lower lip), long great toes, and nasal or dysarthric speech. Physical signs seem to evolve from childhood to adulthood. We describe the first Italian patient with Snyder-Robinson syndrome and a novel nonsense mutation in SMS (c.200G>A; p.G67X). Apart from the typical features of the syndrome, the index patient presented with an ectopic right kidney and epilepsy from the first year of age that was characterized by focal motor seizures and negative myoclonus. The clinical and molecular evaluation of this family and the review of the literature expand the phenotype of Snyder-Robinson syndrome to include myoclonic or myoclonic-like seizures (starting even in the first years of life) and renal abnormalities in affected males.


Subject(s)
Codon, Nonsense , Mental Retardation, X-Linked/diagnosis , Mental Retardation, X-Linked/genetics , Phenotype , Spermine Synthase/genetics , Humans , Infant , Male , Pedigree
12.
Med Sci (Basel) ; 11(2)2023 04 04.
Article in English | MEDLINE | ID: mdl-37092498

ABSTRACT

Recent identification of four additional polyaminopathies, including Bachmann-Bupp syndrome, have benefited from previous research on Snyder-Robinson syndrome in order to advance from research to treatment more quickly. As a result of the discovery of these conditions, the potential for treatment within this pathway, and for other possible unidentified polyaminopathies, the International Center for Polyamine Disorders (ICPD) was created to help promote understanding of these conditions, research opportunities, and appropriate care for families. This case study provides insights from two new patients diagnosed with Bachmann-Bupp syndrome, further expanding our understanding of this ultra-rare condition, as well as a general discussion about other known polyaminopathies. This work also presents considerations for collaborative research efforts across these conditions, along with others that are likely to be identified in time, and outlines the role that the ICPD hopes to fill as more patients with these polyaminopathies continue to be identified and diagnosed.


Subject(s)
Eflornithine , Polyamines , Humans , Polyamines/metabolism
13.
Mol Syndromol ; 12(3): 194-199, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34177437

ABSTRACT

Snyder-Robinson syndrome (SRS) is an extremely rare X-linked intellectual disability syndrome (MRXSSR; MIM #309583). The main clinical features of SRS include psychomotor delay, hypotonia, and asthenic-type body habitus - reduced body weight and bone abnormalities (osteoporosis, fractures, kyphoscoliosis). We report a case of SRS with a hemizygous missense variant in the SMS gene,c.334C>G (p.Pro112Ala), in a 4-year-old boy, who initially developed hypotonia, delayed motor skills, and subsequently epilepsy. This variant in SMS was found to be de novo. To the best of our knowledge, this novel SMS gene variant has never been previously reported in disease-related variation databases, such as ClinVar or HGMD.

14.
Eur J Med Genet ; 63(4): 103777, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31580924

ABSTRACT

Snyder-Robinson syndrome (SRS) is an X-linked syndromic intellectual disability condition caused by variants in the spermine synthase gene (SMS). The syndrome is characterized by facial dysmorphism, thin body build, kyphoscoliosis, osteoporosis, hypotonia, developmental delay and associated neurological features (seizures, unsteady gait, abnormal speech). Until now, only missense variants with a functionally characterized partial loss of function (LoF) have been described. Here we describe the first complete LoF variant, Met303Lysfs*, in a male patient with a severe form of Snyder-Robinson syndrome. He presented with multiple malformations and severly delayed development, and died at 4 months of age. Functional in vitro assays showed a complete absence of functional SMS protein. Taken together, our findings and those of previously reported patients confirm that pathogenic variants of SMS are indeed LoF and that there might exist a genotype-phenotype correlation between the type of variant and the severity of the syndrome.


Subject(s)
Loss of Function Mutation , Mental Retardation, X-Linked/etiology , Spermine Synthase/genetics , Humans , Infant , Male , Mental Retardation, X-Linked/pathology , Prognosis
15.
Autops Case Rep ; 8(3): e2018031, 2018.
Article in English | MEDLINE | ID: mdl-30237987

ABSTRACT

Snyder-Robinson syndrome, also known as spermine synthase deficiency, is an X-linked intellectual disability syndrome (OMIM #390583). First described by Drs. Snyder and Robinson in 1969, this syndrome is characterized by an asthenic body habitus, facial dysmorphism, broad-based gait, and osteoporosis with frequent fractures. We report here a pediatric autopsy of a 4 year old male with a history of intellectual disability, gait abnormalities, multiple fractures, and seizures previously diagnosed with Snyder-Robinson syndrome with an SMS gene mutation (c.831G>T:p.L277F). The cause of death was hypoxic-ischemic encephalopathy secondary to prolonged seizure activity. Although Snyder-Robinson syndrome is rare, the need to recognize clinical findings in order to trigger genetic testing has likely resulted in under diagnosis.

16.
Med Sci (Basel) ; 6(4)2018 Dec 07.
Article in English | MEDLINE | ID: mdl-30544565

ABSTRACT

Loss-of-function mutations of the spermine synthase gene (SMS) result in Snyder-Robinson Syndrome (SRS), a recessive X-linked syndrome characterized by intellectual disability, osteoporosis, hypotonia, speech abnormalities, kyphoscoliosis, and seizures. As SMS catalyzes the biosynthesis of the polyamine spermine from its precursor spermidine, SMS deficiency causes a lack of spermine with an accumulation of spermidine. As polyamines, spermine, and spermidine play essential cellular roles that require tight homeostatic control to ensure normal cell growth, differentiation, and survival. Using patient-derived lymphoblast cell lines, we sought to comprehensively investigate the effects of SMS deficiency on polyamine homeostatic mechanisms including polyamine biosynthetic and catabolic enzymes, derivatives of the natural polyamines, and polyamine transport activity. In addition to decreased spermine and increased spermidine in SRS cells, ornithine decarboxylase activity and its product putrescine were significantly decreased. Treatment of SRS cells with exogenous spermine revealed that polyamine transport was active, as the cells accumulated spermine, decreased their spermidine level, and established a spermidine-to-spermine ratio within the range of wildtype cells. SRS cells also demonstrated elevated levels of tissue transglutaminase, a change associated with certain neurodegenerative diseases. These studies form a basis for further investigations into the leading biochemical changes and properties of SMS-mutant cells that potentially represent therapeutic targets for the treatment of Snyder-Robinson Syndrome.

17.
Autops. Case Rep ; 8(3): e2018031, July-Sept. 2018. ilus, tab
Article in English | LILACS | ID: biblio-911906

ABSTRACT

Snyder-Robinson syndrome, also known as spermine synthase deficiency, is an X-linked intellectual disability syndrome (OMIM #390583). First described by Drs. Snyder and Robinson in 1969, this syndrome is characterized by an asthenic body habitus, facial dysmorphism, broad-based gait, and osteoporosis with frequent fractures. We report here a pediatric autopsy of a 4 year old male with a history of intellectual disability, gait abnormalities, multiple fractures, and seizures previously diagnosed with Snyder-Robinson syndrome with an SMS gene mutation (c.831G>T:p.L277F). The cause of death was hypoxic-ischemic encephalopathy secondary to prolonged seizure activity. Although Snyder-Robinson syndrome is rare, the need to recognize clinical findings in order to trigger genetic testing has likely resulted in under diagnosis.


Subject(s)
Humans , Male , Child, Preschool , Mental Retardation, X-Linked/pathology , Autopsy , Fatal Outcome , Hypoxia-Ischemia, Brain/pathology , Intellectual Disability/pathology , Mental Retardation, X-Linked/diagnosis , Seizures/pathology , Spermine Synthase
SELECTION OF CITATIONS
SEARCH DETAIL