Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Proc Natl Acad Sci U S A ; 121(26): e2405524121, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38885378

ABSTRACT

Aminotransferases (ATs) are an ancient enzyme family that play central roles in core nitrogen metabolism, essential to all organisms. However, many of the AT enzyme functions remain poorly defined, limiting our fundamental understanding of the nitrogen metabolic networks that exist in different organisms. Here, we traced the deep evolutionary history of the AT family by analyzing AT enzymes from 90 species spanning the tree of life (ToL). We found that each organism has maintained a relatively small and constant number of ATs. Mapping the distribution of ATs across the ToL uncovered that many essential AT reactions are carried out by taxon-specific AT enzymes due to wide-spread nonorthologous gene displacements. This complex evolutionary history explains the difficulty of homology-based AT functional prediction. Biochemical characterization of diverse aromatic ATs further revealed their broad substrate specificity, unlike other core metabolic enzymes that evolved to catalyze specific reactions today. Interestingly, however, we found that these AT enzymes that diverged over billion years share common signatures of multisubstrate specificity by employing different nonconserved active site residues. These findings illustrate that AT family enzymes had leveraged their inherent substrate promiscuity to maintain a small yet distinct set of multifunctional AT enzymes in different taxa. This evolutionary history of versatile ATs likely contributed to the establishment of robust and diverse nitrogen metabolic networks that exist throughout the ToL. The study provides a critical foundation to systematically determine diverse AT functions and underlying nitrogen metabolic networks across the ToL.


Subject(s)
Evolution, Molecular , Phylogeny , Transaminases , Substrate Specificity , Transaminases/genetics , Transaminases/metabolism , Catalytic Domain/genetics , Nitrogen/metabolism
2.
Proc Natl Acad Sci U S A ; 120(28): e2301007120, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37399371

ABSTRACT

Wood-decaying fungi are the major decomposers of plant litter. Heavy sequencing efforts on genomes of wood-decaying fungi have recently been made due to the interest in their lignocellulolytic enzymes; however, most parts of their proteomes remain uncharted. We hypothesized that wood-decaying fungi would possess promiscuous enzymes for detoxifying antifungal phytochemicals remaining in the dead plant bodies, which can be useful biocatalysts. We designed a computational mass spectrometry-based untargeted metabolomics pipeline for the phenotyping of biotransformation and applied it to 264 fungal cultures supplemented with antifungal plant phenolics. The analysis identified the occurrence of diverse reactivities by the tested fungal species. Among those, we focused on O-xylosylation of multiple phenolics by one of the species tested, Lentinus brumalis. By integrating the metabolic phenotyping results with publicly available genome sequences and transcriptome analysis, a UDP-glycosyltransferase designated UGT66A1 was identified and validated as an enzyme catalyzing O-xylosylation with broad substrate specificity. We anticipate that our analytical workflow will accelerate the further characterization of fungal enzymes as promising biocatalysts.


Subject(s)
Glucosyltransferases , Lentinula , Metabolomics , Metabolomics/methods , Lentinula/enzymology , Glucosyltransferases/chemistry , Glucosyltransferases/isolation & purification , Glucosyltransferases/metabolism , Phytochemicals/metabolism , Xylose/metabolism , Genome, Fungal , Liquid Chromatography-Mass Spectrometry
3.
Beilstein J Org Chem ; 20: 959-972, 2024.
Article in English | MEDLINE | ID: mdl-38711588

ABSTRACT

Terpenoids are one of the largest class of natural products with diverse structures and activities. This enormous diversity is embedded in enzymes called terpene synthases (TSs), which generate diverse terpene skeletons via sophisticated cyclization cascades. In addition to the many highly selective TSs, there are many promiscuous TSs that accept multiple prenyl substrates, or even noncanonical ones, with 6, 7, 8, 11, and 16 carbon atoms, synthesized via chemical approaches, C-methyltransferases, or engineered lepidopteran mevalonate pathways. The substrate promiscuity of TSs not only expands the structural diversity of terpenes but also highlights their potential for the discovery of novel terpenoids via combinatorial biosynthesis. In this review, we focus on the current knowledge on multisubstrate terpene synthases (MSTSs) and highlight their potential applications.

4.
Plant J ; 110(3): 802-813, 2022 05.
Article in English | MEDLINE | ID: mdl-35141962

ABSTRACT

High pliability and promiscuity are observed widely exist in plant specialized metabolism, especially the hydroxycinnamic acid metabolism. Here, we identified an addition BAHD acyltransferase (EpHMT) that catalyzes phaselic acid biosynthesis and found that the substrate promiscuities of identified BAHD and SCPL acyltransferases are responsible for the diversity of hydroxycinnamic acid derivatives in purple coneflower.


Subject(s)
Biological Products , Echinacea , Acyltransferases/genetics , Acyltransferases/metabolism , Coumaric Acids , Echinacea/metabolism , Plants/metabolism
5.
J Cell Physiol ; 238(10): 2499-2511, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37642286

ABSTRACT

Family 1 UDP-glycosyltransferases (UGTs) are known to glycosylate multiple secondary plant metabolites and have been extensively studied. The increased availability of plant genome resources allows the identification of wide gene families, both functional and organizational. In this investigation, two MpUGT isoforms were cloned and functionally characterized from liverworts marchantia polymorpha and had high glycosylation activity against several flavonoids. MpUGT735A2 protein, in particular, tolerates a wide spectrum of substrates (flavonols, flavanones, flavones, stilbenes, bibenzyls, dihydrochalcone, phenylpropanoids, xanthones, and isoflavones). Overexpression of MpUGT735A2 and MpUGT743A1 in Arabidopsis thaliana enhances the accumulation of 3-O-glycosylated flavonol (kaempferol 3-O-glucoside-7-O-rhamnose), consistent with its in vitro enzymatic activity. Docking and mutagenesis techniques were applied to identify the structural and functional properties of MpUGT735A2 with promiscuous substrates. Mutation of Pro87 to Ser, or Gln88 to Val, substantially altered the regioselectivity for luteolin glycosylation, predominantly from the 3'-O- to the 7-O-position. The results were elucidated by focusing on the novel biocatalysts designed for producing therapeutic flavonoids. This investigation provides an approach to modulate MpUGT735A2 as a candidate gene for diverse glycosylation catalysis and a tool to design GTs with new substrate specificities for biomedical applications.

6.
Angew Chem Int Ed Engl ; 62(18): e202217212, 2023 04 24.
Article in English | MEDLINE | ID: mdl-36867112

ABSTRACT

Fungal epidithiodiketopiperazines (ETPs) possess large structural diversity and complexity due to modifications of the cyclodipeptide skeleton. Elucidation of the biosynthetic pathway of pretrichodermamide A (1) in Trichoderma hypoxylon revealed a flexible catalytic machinery of multiple enzymes for generating ETP diversity. Seven tailoring enzymes encoded by the tda cluster are involved in 1 biosynthesis, that is, four P450s TdaB and TdaQ for 1,2-oxazine formation, TdaI for C7'-hydroxylation, and TdaG for C4, C5-epoxidation, two methyltransferases TdaH for C6'- and TdaO for C7'-O-methylation, and a reductase TdaD for furan opening. Gene deletions led to the identification of 25 novel ETPs, including 20 shunt products, indicating the catalytic promiscuity of Tda enzymes. Particularly, TdaG and TdaD accept various substrates and catalyze regiospecific reactions at different stages of 1 biosynthesis. Our study not only uncovers a hidden library of ETP alkaloids, but also helps to understand the hidden chemical diversity of natural products by pathway manipulation.


Subject(s)
Methyltransferases , Oxazines/chemistry , Molecular Structure , Methyltransferases/metabolism , Models, Molecular
7.
Trends Biochem Sci ; 43(12): 984-996, 2018 12.
Article in English | MEDLINE | ID: mdl-30472990

ABSTRACT

The substrate specificity of enzymes is bound to be imperfect, because of unavoidable physicochemical limits. In extant metabolic enzymes, furthermore, such limits are seldom approached, suggesting that the degree of specificity of these enzymes, on average, is much lower than could be attained. During biological evolution, the activity of a single enzyme with available alternative substrates may be preserved to a significant or even substantial level for different reasons - for example when the alternative reaction contributes to fitness, or when its undesirable products are nevertheless dispatched by metabolite repair enzymes. In turn, the widespread occurrence of promiscuous reactions is a consistent source of metabolic 'messiness', from which both liabilities and opportunities ensue in the evolution of metabolic systems.


Subject(s)
Evolution, Molecular , Biochemistry , Catalysis , Substrate Specificity
8.
Int J Mol Sci ; 24(1)2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36613844

ABSTRACT

Xenobiotic reductase B (XenB) catalyzes the reduction of the aromatic ring or nitro groups of nitroaromatic compounds with methyl, amino or hydroxyl radicals. This reaction is of biotechnological interest for bioremediation, the reuse of industrial waste or the activation of prodrugs. However, the structural factors that explain the binding of XenB to different substrates are unknown. Molecular dynamics simulations and quantum mechanical calculations were performed to identify the residues involved in the formation and stabilization of the enzyme/substrate complex and to explain the use of different substrates by this enzyme. Our results show that Tyr65 and Tyr335 residues stabilize the ligands through hydrophobic interactions mediated by the aromatic rings of these aminoacids. The higher XenB activity determined with the substrates 1,3,5-trinitrobenzene and 2,4,6-trinitrotoluene is consistent with the lower energy of the highest occupied molecular orbital (LUMO) orbitals and a lower energy of the homo orbital (LUMO), which favors electrophile and nucleophilic activity, respectively. The electrostatic potential maps of these compounds suggest that the bonding requires a large hydrophobic region in the aromatic ring, which is promoted by substituents in ortho and para positions. These results are consistent with experimental data and could be used to propose point mutations that allow this enzyme to process new molecules of biotechnological interest.


Subject(s)
Pseudomonas putida , Trinitrotoluene , Oxidoreductases/metabolism , Pseudomonas putida/metabolism , Xenobiotics , Trinitrotoluene/chemistry , Trinitrotoluene/metabolism , Molecular Dynamics Simulation
9.
Angew Chem Int Ed Engl ; 60(4): 2030-2035, 2021 01 25.
Article in English | MEDLINE | ID: mdl-33026145

ABSTRACT

Genome mining of microbial natural products enables chemists not only to discover the bioactive molecules with novel skeletons, but also to identify the enzymes that catalyze diverse chemical reactions. Exploring the substrate promiscuity and catalytic mechanism of those biosynthetic enzymes facilitates the development of potential biocatalysts. SfaB is an acyl adenylate-forming enzyme that adenylates a unique building block, 3-isocyanobutanoic acid, in the biosynthetic pathway of the diisonitrile natural product SF2768 produced by Streptomyces thioluteus, and this AMP-ligase was demonstrated to accept a broad range of short-chain fatty acids (SCFAs). Herein, we repurpose SfaB to catalyze amidation or thioesterification between those SCFAs and various amine or thiol nucleophiles, thereby providing an alternative enzymatic approach to prepare the corresponding amides and thioesters in vitro.


Subject(s)
Adenosine Monophosphate/metabolism , Butyric Acid/metabolism , Enzymes/metabolism , Adenosine Triphosphate/metabolism , Catalysis , Enzyme Stability , Esterification , Streptomyces/enzymology , Streptomyces/metabolism , Substrate Specificity , Sulfhydryl Compounds/metabolism
10.
Arch Microbiol ; 202(6): 1419-1424, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32185409

ABSTRACT

NotF from Aspergillus sp. MF297-2 and BrePT from Aspergillus versicolor catalyze a reverse C2-prenylation of brevianamide F in the biosynthetic pathway of brevianamides and notoamides. NotF was reported to use only brevianamide F as substrate while BrePT demonstrated broad substrate promiscuity. With high identity at amino acid level, it is interesting to reinvestigate the catalytic activities of these two prenyltransferases in vitro toward 14 cyclodipeptides. Product identification of the in vitro assays by MS proved that NotF and BrePT share similar catalytic ability and substrate promiscuity.


Subject(s)
Aspergillus/metabolism , Dimethylallyltranstransferase/metabolism , Indole Alkaloids/metabolism , Aspergillus/genetics , Dimethylallyltranstransferase/chemistry , Dimethylallyltranstransferase/genetics , Prenylation , Substrate Specificity
11.
Appl Microbiol Biotechnol ; 104(23): 9965-9977, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33064187

ABSTRACT

Nylon 5 and nylon 6,5 are recently explored as new commercial polyamides, of which the monomer includes δ-valerolactam. In this study, a novel catalytic activity of lysine 2-monooxygenase (DavB) was explored to produce δ-valerolactam from L-pipecolic acid (L-PA), functioning as oxidative decarboxylase on a cyclic compound. Recombinant Escherichia coli BS01 strain expressing DavB from Pseudomonas putida could synthesize δ-valerolactam from L-pipecolic acid with a concentration of 90.3 mg/L. Through the co-expression of recombinant apoptosis-inducing protein (rAIP) from Scomber japonicus, glucose dehydrogenase (GDH) from Bacillus subtilis, Δ1-piperideine-2-carboxylae reductase (DpkA) from P. putida and lysine permease (LysP) from E. coli with DavB, δ-valerolactam was produced with the highest concentration of 242 mg/L. α-Dioxygenases (αDox) from Oryza sativa could act as a similar catalyst on L-pipecolic acid. A novel δ-valerolactam synthesis pathway was constructed entirely via microbial conversion from feedstock lysine in this study. Our system has great potential in the development of a bio-nylon production process. KEY POINTS: • DavB performs as an oxidative decarboxylase on L-PA with substrate promiscuity. • Strain with rAIP, GDH, DpkA, LysP, and DavB coexpression could produce δ-valerolactam. • This is the first time to obtain valerolactam entirely via biosynthesis from lysine.


Subject(s)
Escherichia coli , Metabolic Engineering , Escherichia coli/genetics , Lysine , Nylons , Piperidones
12.
Chem Biodivers ; 17(6): e2000100, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32239712

ABSTRACT

A facile and convenient synthesis of new pyridazines suitable for use as antimicrobial agents was reported. The hydrazide intermediate was coupled with various benzaldehydes and/or acetophenones and cyclized instantaneously to afford target pyridazine derivatives. The structures of new pyridazines were confirmed by IR, 1 H- and 13 C-NMR, elemental analysis in addition to representative LC/MS. Antimicrobial activity was screened against 10 bacterial and fungal strains. The new pyridazines showed strong to very strong antibacterial activity against Gram-negative (GNB) bacteria, while none of them showed significant antifungal activity at the same concentration range. Chloro derivatives exhibited the highest antibacterial activity with MICs (0.892-3.744 µg/mL) lower than that of chloramphenicol (2.019-8.078 µg/mL) against E. coli, P. aeruginosa, and S. marcescens. Prediction of ADME parameters, pharmacokinetics, and substrate promiscuity revealed that these new pyridazines could be promising drug candidates. Cytotoxic studies on rat hepatocytes showed how much safe these new pyridazines on living organisms (IC50 >64 µg/mL). MOE docking studies showed a good overlay of these new pyridazines with co-crystallized ligand within an E. coli DNA gyrase subunit B active sites (4KFG).


Subject(s)
Anti-Infective Agents/chemical synthesis , Molecular Docking Simulation , Pyridazines/chemistry , Animals , Anti-Infective Agents/metabolism , Anti-Infective Agents/pharmacology , Binding Sites , Catalytic Domain , Cell Survival/drug effects , Cells, Cultured , DNA Gyrase/chemistry , DNA Gyrase/metabolism , Escherichia coli/drug effects , Escherichia coli/enzymology , Fungi/drug effects , Gram-Negative Bacteria/drug effects , Half-Life , Hepatocytes/cytology , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Microbial Sensitivity Tests , Pyridazines/metabolism , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Thermodynamics
13.
Angew Chem Int Ed Engl ; 58(22): 7480-7484, 2019 05 27.
Article in English | MEDLINE | ID: mdl-30848865

ABSTRACT

The addition of water to non-activated carbon-carbon double bonds catalyzed by fatty acid hydratases (FAHYs) allows for highly regio- and stereoselective oxyfunctionalization of renewable oil feedstock. So far, the applicability of FAHYs has been limited to free fatty acids, mainly owing to the requirement of a carboxylate function for substrate recognition and binding. Herein, we describe for the first time the hydration of oleic acid (OA) derivatives lacking this free carboxylate by the oleate hydratase from Elizabethkingia meningoseptica (OhyA). Molecular docking of OA to the OhyA 3D-structure and a sequence alignment uncovered conserved amino acid residues at the entrance of the substrate channel as target positions for enzyme engineering. Exchange of selected amino acids gave rise to OhyA variants which showed up to an 18-fold improved conversion of OA derivatives, while retaining the excellent regio- and stereoselectivity in the olefin hydration reaction.


Subject(s)
Fatty Acids/metabolism , Flavobacteriaceae/enzymology , Hydro-Lyases/chemistry , Hydro-Lyases/metabolism , Oleic Acid/chemistry , Oleic Acid/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Catalysis , Models, Molecular , Molecular Docking Simulation , Protein Conformation , Stereoisomerism , Substrate Specificity
14.
BMC Evol Biol ; 18(1): 199, 2018 12 22.
Article in English | MEDLINE | ID: mdl-30577795

ABSTRACT

BACKGROUND: The family of D-isomer specific 2-hydroxyacid dehydrogenases (2HADHs) contains a wide range of oxidoreductases with various metabolic roles as well as biotechnological applications. Despite a vast amount of biochemical and structural data for various representatives of the family, the long and complex evolution and broad sequence diversity hinder functional annotations for uncharacterized members. RESULTS: We report an in-depth phylogenetic analysis, followed by mapping of available biochemical and structural data on the reconstructed phylogenetic tree. The analysis suggests that some subfamilies comprising enzymes with similar yet broad substrate specificity profiles diverged early in the evolution of 2HADHs. Based on the phylogenetic tree, we present a revised classification of the family that comprises 22 subfamilies, including 13 new subfamilies not studied biochemically. We summarize characteristics of the nine biochemically studied subfamilies by aggregating all available sequence, biochemical, and structural data, providing comprehensive descriptions of the active site, cofactor-binding residues, and potential roles of specific structural regions in substrate recognition. In addition, we concisely present our analysis as an online 2HADH enzymes knowledgebase. CONCLUSIONS: The knowledgebase enables navigation over the 2HADHs classification, search through collected data, and functional predictions of uncharacterized 2HADHs. Future characterization of the new subfamilies may result in discoveries of enzymes with novel metabolic roles and with properties beneficial for biotechnological applications.


Subject(s)
Alcohol Oxidoreductases/chemistry , Alcohol Oxidoreductases/classification , Knowledge Bases , Alcohol Oxidoreductases/metabolism , Amino Acid Sequence , Catalytic Domain , Coenzymes/metabolism , Likelihood Functions , Phylogeny , Substrate Specificity
15.
Appl Microbiol Biotechnol ; 102(22): 9621-9633, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30178202

ABSTRACT

Substrate and reaction promiscuity is a remarkable property of some enzymes and facilitates the adaptation to new metabolic demands in the evolutionary process. Substrate promiscuity is also a basis for protein engineering for biocatalysis. However, molecular principles of enzyme promiscuity are not well understood. Even for the widely studied PLP-dependent transaminases of class III, the reliable prediction of the biocatalytically important amine transaminase activity is still difficult if the desired activity is unrelated to the natural activity. Here, we show that 7,8-diaminopelargonic acid transaminase (synthase), previously considered to be highly specific, is able to convert (S)-(-)-1-phenylethylamine and a number of aldehydes and diketones. We were able to characterize the (S)-amine transaminase activity of 7,8-diaminopelargonic acid transaminase from Psychrobacter cryohalolentis (Pcryo361) and analyzed the three-dimensional structure of the enzyme. New substrate specificity for α-diketones was observed, though only a weak activity towards pyruvate was found. We examined the organization of the active site and binding modes of S-adenosyl-L-methionine and (S)-(-)-1-phenylethylamine using X-ray analysis and molecular docking. We suggest that the Pcryo361 affinity towards (S)-(-)-1-phenylethylamine arises from the recognition of the hydrophobic parts of the specific substrates, S-adenosyl-L-methionine and 7-keto-8-aminopelargonic acid, and from the flexibility of the active site. Our results support the observation that the conversion of amines is a promiscuous activity of many transaminases of class III and is independent from their natural function. The analysis of amine transaminase activity from among various transaminases will help to make the sequence-function prediction for biocatalysis more reliable.


Subject(s)
Aldehydes/metabolism , Bacterial Proteins/chemistry , Ketones/metabolism , Phenethylamines/metabolism , Psychrobacter/enzymology , Transaminases/chemistry , Aldehydes/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biocatalysis , Catalytic Domain , Fatty Acids/chemistry , Fatty Acids/metabolism , Ketones/chemistry , Kinetics , Molecular Docking Simulation , Phenethylamines/chemistry , Psychrobacter/chemistry , Psychrobacter/genetics , Substrate Specificity , Transaminases/metabolism
16.
Proc Natl Acad Sci U S A ; 112(3): 929-34, 2015 Jan 20.
Article in English | MEDLINE | ID: mdl-25564669

ABSTRACT

Enzyme promiscuity toward substrates has been discussed in evolutionary terms as providing the flexibility to adapt to novel environments. In the present work, we describe an approach toward exploring such enzyme promiscuity in the space of a metabolic network. This approach leverages genome-scale models, which have been widely used for predicting growth phenotypes in various environments or following a genetic perturbation; however, these predictions occasionally fail. Failed predictions of gene essentiality offer an opportunity for targeting biological discovery, suggesting the presence of unknown underground pathways stemming from enzymatic cross-reactivity. We demonstrate a workflow that couples constraint-based modeling and bioinformatic tools with KO strain analysis and adaptive laboratory evolution for the purpose of predicting promiscuity at the genome scale. Three cases of genes that are incorrectly predicted as essential in Escherichia coli--aspC, argD, and gltA--are examined, and isozyme functions are uncovered for each to a different extent. Seven isozyme functions based on genetic and transcriptional evidence are suggested between the genes aspC and tyrB, argD and astC, gabT and puuE, and gltA and prpC. This study demonstrates how a targeted model-driven approach to discovery can systematically fill knowledge gaps, characterize underground metabolism, and elucidate regulatory mechanisms of adaptation in response to gene KO perturbations.


Subject(s)
Escherichia coli/metabolism , Models, Biological , Escherichia coli/genetics , Escherichia coli/growth & development , Genome, Bacterial
17.
J Bacteriol ; 199(11)2017 06 01.
Article in English | MEDLINE | ID: mdl-28289083

ABSTRACT

Bacteria increase their metabolic capacity via the acquisition of genetic material or by the mutation of genes already present in the genome. Here, we explore the mechanisms and trade-offs involved when Shewanella oneidensis, a bacterium that typically consumes small organic and amino acids, rapidly evolves to expand its metabolic capacity to catabolize glucose after a short period of adaptation to a glucose-rich environment. Using whole-genome sequencing and genetic approaches, we discovered that deletions in a region including the transcriptional repressor (nagR) that regulates the expression of genes associated with catabolism of N-acetylglucosamine are the common basis for evolved glucose metabolism across populations. The loss of nagR results in the constitutive expression of genes for an N-acetylglucosamine permease (nagP) and kinase (nagK). We demonstrate that promiscuous activities of both NagP and NagK toward glucose allow for the transport and phosphorylation of glucose to glucose-6-phosphate, the initial events of glycolysis otherwise thought to be absent in S. oneidensis13C-based metabolic flux analysis uncovered that subsequent utilization was mediated by the Entner-Doudoroff pathway. This is an example whereby gene loss and preexisting enzymatic promiscuity, and not gain-of-function mutations, were the drivers of increased metabolic capacity. However, we observed a significant decrease in the growth rate on lactate after adaptation to glucose catabolism, suggesting that trade-offs may explain why glycolytic function may not be readily observed in S. oneidensis in natural environments despite it being readily accessible through just a single mutational event.IMPORTANCE Gains in metabolic capacity are frequently associated with the acquisition of novel genetic material via natural or engineered horizontal gene transfer events. Here, we explored how a bacterium that typically consumes small organic acids and amino acids expands its metabolic capacity to include glucose via a loss of genetic material, a process frequently associated with a deterioration of metabolic function. Our findings highlight how the natural promiscuity of transporters and enzymes can be a key driver in expanding metabolic diversity and that many bacteria may possess a latent metabolic capacity accessible through one or a few mutations that remove regulatory functions. Our discovery of trade-offs between growth on lactate and on glucose suggests why this easily gained trait is not observed in nature.


Subject(s)
Gene Expression Regulation, Bacterial , Glucose/metabolism , Shewanella/metabolism , Acetylglucosamine/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Glycolysis , Monosaccharide Transport Proteins/genetics , Monosaccharide Transport Proteins/metabolism , Shewanella/enzymology , Shewanella/genetics , Shewanella/growth & development
18.
Chembiochem ; 18(20): 2012-2015, 2017 10 18.
Article in English | MEDLINE | ID: mdl-28796424

ABSTRACT

Functionalized rare sugars were synthesized with 2-, 3-, and 6-tosylated glucose derivatives as acceptor substrates by transglucosylation with sucrose and the glucansucrase GTFR from Streptococcus oralis. The 2- and 3-tosylated glucose derivatives yielded the corresponding 1,6-linked disaccharides (isomaltose analogues), whereas the 6-tosylated glucose derivatives resulted in 1,3-linked disaccharides (nigerose analogue) with high regioselectivity in up to 95 % yield. Docking studies provided insight into the binding mode of the acceptors and suggested two different orientations that were responsible for the change in regioselectivity.


Subject(s)
Glucose/chemical synthesis , Glycosyltransferases/metabolism , Chemistry Techniques, Synthetic , Glucose/chemistry , Glucose/metabolism , Glycosylation , Glycosyltransferases/chemistry , Molecular Docking Simulation , Protein Conformation , Streptococcus oralis/enzymology
19.
Biochem J ; 473(14): 2165-77, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27208174

ABSTRACT

The presence of latent activities in enzymes is posited to underlie the natural evolution of new catalytic functions. However, the prevalence and extent of such substrate and catalytic ambiguity in evolved enzymes is difficult to address experimentally given the order-of-magnitude difference in the activities for native and, sometimes, promiscuous substrate/s. Further, such latent functions are of special interest when the activities concerned do not fall into the domain of substrate promiscuity. In the present study, we show a special case of such latent enzyme activity by demonstrating the presence of two mechanistically distinct reactions catalysed by the catalytic domain of receptor protein tyrosine phosphatase isoform δ (PTPRδ). The primary catalytic activity involves the hydrolysis of a phosphomonoester bond (C─O─P) with high catalytic efficiency, whereas the secondary activity is the hydrolysis of a glycosidic bond (C─O─C) with poorer catalytic efficiency. This enzyme also displays substrate promiscuity by hydrolysing diester bonds while being highly discriminative for its monoester substrates. To confirm these activities, we also demonstrated their presence on the catalytic domain of protein tyrosine phosphatase Ω (PTPRΩ), a homologue of PTPRδ. Studies on the rate, metal-ion dependence, pH dependence and inhibition of the respective activities showed that they are markedly different. This is the first study that demonstrates a novel sugar hydrolase and diesterase activity for the phosphatase domain (PD) of PTPRδ and PTPRΩ. This work has significant implications for both understanding the evolution of enzymatic activity and the possible physiological role of this new chemistry. Our findings suggest that the genome might harbour a wealth of such alternative latent enzyme activities in the same protein domain that renders our knowledge of metabolic networks incomplete.


Subject(s)
Receptor-Like Protein Tyrosine Phosphatases/chemistry , Receptor-Like Protein Tyrosine Phosphatases/metabolism , Catalysis , Catalytic Domain , Computational Biology , Receptor-Like Protein Tyrosine Phosphatases/genetics , Static Electricity , Substrate Specificity
20.
Chembiochem ; 17(1): 33-6, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26527586

ABSTRACT

Sucrose phosphorylases have been applied in the enzymatic production of glycosylated compounds for decades. However, several desirable acceptors, such as flavonoids or stilbenoids, that exhibit diverse antimicrobial, anticarcinogenic or antioxidant properties, remain poor substrates. The Q345F exchange in sucrose phosphorylase from Bifidobacterium adolescentis allows efficient glucosylation of resveratrol, (+)-catechin and (-)-epicatechin in yields of up to 97 % whereas the wild-type enzyme favours sucrose hydrolysis. Three previously undescribed products are made available. The crystal structure of the variant reveals a widened access channel with a hydrophobic aromatic surface that is likely to contribute to the improved activity towards aromatic acceptors. The generation of this channel can be explained in terms of a cascade of structural changes arising from the Q345F exchange. The observed mechanisms are likely to be relevant for the design of other tailor-made enzymes.


Subject(s)
Glucosyltransferases/chemistry , Glucosyltransferases/metabolism , Bifidobacterium/enzymology , Catalytic Domain , Glycosylation , Hydrolysis , Models, Molecular , Molecular Conformation , Sucrose/chemistry , Sucrose/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL