Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 178(5): 1176-1188.e15, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31442406

ABSTRACT

Adaptive immunity provides life-long protection by generating central and effector memory T cells and the most recently described tissue resident memory T (TRM) cells. However, the cellular origin of CD4 TRM cells and their contribution to host defense remain elusive. Using IL-17A tracking-fate mouse models, we found that a significant fraction of lung CD4 TRM cells derive from IL-17A-producing effector (TH17) cells following immunization with heat-killed Klebsiella pneumonia (Kp). These exTH17 TRM cells are maintained in the lung by IL-7, produced by lymphatic endothelial cells. During a memory response, neither antibodies, γδ T cells, nor circulatory T cells are sufficient for the rapid host defense required to eliminate Kp. Conversely, using parabiosis and depletion studies, we demonstrated that exTH17 TRM cells play an important role in bacterial clearance. Thus, we delineate the origin and function of airway CD4 TRM cells during bacterial infection, offering novel strategies for targeted vaccine design.


Subject(s)
Klebsiella Infections/immunology , Th17 Cells/immunology , Animals , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Diphtheria Toxin/pharmacology , Disease Models, Animal , Female , Immunologic Memory , Interleukin-17/genetics , Interleukin-17/metabolism , Klebsiella Infections/pathology , Klebsiella pneumoniae/immunology , Klebsiella pneumoniae/pathogenicity , Lung/drug effects , Lung/metabolism , Lung/microbiology , Mice , Mice, Inbred C57BL , Th17 Cells/cytology , Th17 Cells/metabolism
2.
J Allergy Clin Immunol ; 153(1): 111-121, 2024 01.
Article in English | MEDLINE | ID: mdl-37730134

ABSTRACT

BACKGROUND: Accumulating evidence indicates that asthma has systemic effects and affects brain function. Although airway inflammation is proposed to initiate afferent communications with the brain, the signaling pathways have not been established. OBJECTIVE: We sought to identify the cellular and molecular pathways involved in afferent lung-brain communication during airway inflammation in asthma. METHODS: In 23 adults with mild asthma, segmental bronchial provocation with allergen (SBP-Ag) was used to provoke airway inflammation and retrieve bronchoalveolar lavage fluid for targeted protein analysis and RNA sequencing to determine gene expression profiles. Neural responses to emotional cues in nodes of the salience network were assessed with functional magnetic resonance imaging at baseline and 48 hours after SBP-Ag. RESULTS: Cell deconvolution and gene coexpression network analysis identified 11 cell-associated gene modules that changed in response to SBP-Ag. SBP-Ag increased bronchoalveolar lavage eosinophils and expression of an eosinophil-associated module enriched for genes related to TH17-type inflammation (eg, IL17A), as well as cell proliferation in lung and brain (eg, NOTCH1, VEGFA, and LIF). Increased expression of genes in this module, as well as several TH17-type inflammation-related proteins, was associated with an increase from baseline in salience network reactivity. CONCLUSIONS: Our results identify a specific inflammatory pathway linking asthma-related airway inflammation and emotion-related neural function. Systemically, TH17-type inflammation has been implicated in both depression and neuroinflammation, with impacts on long-term brain health. Thus, our data emphasize that inflammation in the lung in asthma may have profound effects outside of the lung that may be targetable with novel therapeutic approaches.


Subject(s)
Asthma , Mental Disorders , Adult , Humans , Neuroinflammatory Diseases , Asthma/metabolism , Lung/pathology , Eosinophils/pathology , Bronchoalveolar Lavage Fluid , Inflammation , Brain
3.
J Allergy Clin Immunol ; 149(4): 1329-1339, 2022 04.
Article in English | MEDLINE | ID: mdl-34857395

ABSTRACT

BACKGROUND: Prurigo nodularis (PN) is a debilitating, difficult-to-treat, intensely pruritic, chronic inflammatory skin disease characterized by hyperkeratotic skin nodules. The pathogenesis of PN is not well understood but is believed to involve cross talk between sensory nerve fibers, immune cells, and the epidermis. It is centered around the neuroimmune cytokine IL-31, driving an intractable itch-scratch cycle. OBJECTIVE: We sought to provide a comprehensive view of the transcriptomic changes in PN skin and characterize the mechanism of action of the anti-IL-31 receptor inhibitor nemolizumab. METHOD: RNA sequencing of biopsy samples obtained from a cohort of patients treated with the anti-IL-31 receptor inhibitor nemolizumab and taken at baseline and week 12. Generation and integration of patient data with RNA-Seq data generated from reconstructed human epidermis stimulated with IL-31 and other proinflammatory cytokines. RESULTS: Our results demonstrate that nemolizumab effectively decreases IL-31 responses in PN skin, leading to effective suppression of downstream inflammatory responses including TH2/IL-13 and TH17/IL-17 responses. This is accompanied by decreased keratinocyte proliferation and normalization of epidermal differentiation and function. Furthermore, our results demonstrate how transcriptomic changes associated with nemolizumab treatment correlate with improvement in lesions, pruritus, stabilization of extracellular matrix remodeling, and processes associated with cutaneous nerve function. CONCLUSION: These data demonstrate a broad response to IL-31 receptor inhibition with nemolizumab and confirm the critical upstream role of IL-31 in PN pathogenesis.


Subject(s)
Prurigo , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use , Chronic Disease , Cytokines/therapeutic use , Humans , Prurigo/drug therapy , Prurigo/genetics , Pruritus/drug therapy , Pruritus/genetics , Transcriptome
4.
J Allergy Clin Immunol ; 149(4): 1348-1357, 2022 04.
Article in English | MEDLINE | ID: mdl-34653514

ABSTRACT

BACKGROUND: Type-17 inflammation characterizes psoriasis, a chronic skin disease. Because several inflammatory cytokines contribute to psoriasis pathogenesis, inhibiting the simultaneous production of these cytokines in TH17 cells may be beneficial in psoriasis. We found that Cav1.4, encoded by CACNA1F, was the only Cav1 calcium channel expressed in TH17 cells. OBJECTIVE: We sought to investigate the role of Cav1.4 expression in early TH17-activation events and effector functions, as well as its association with TH17 signature genes in lesional psoriatic (LP) skins. METHODS: Transcriptional gene signatures associated with CACNA1F expression were examined in LP skins by RT-PCR and in situ hybridization. Cav1 inhibitor and/or shRNA lentivectors were used to assess the contribution of Cav1.4 in TH17 activation and effector functions in a 3-dimensional skin reconstruction model. RESULTS: CACNA1F expression correlated with inflammatory cytokine expression that characterizes LP skins and was preferentially associated with RORC expression in CD4+ and CD4- cells from LP biopsies. Nicardipine, a Cav1 channel antagonist, markedly reduced inflammatory cytokine production by TH17 cells from blood or LP skin. This was associated with decreased TCR-induced early calcium events at cell membrane and proximal signaling events. The knockdown of Cav1.4 in TH17 cells impaired cytokine production. Finally, Cav1 inhibition reduced the expression of the keratinocyte genes characteristic of TH17-mediated psoriasis inflammation in human skin equivalents. CONCLUSIONS: Cav1.4 channels promote TH17-cell functions both at the periphery and in inflammatory psoriatic skin.


Subject(s)
Calcium Channels , Psoriasis , Calcium Channels/metabolism , Cytokines/metabolism , Humans , Inflammation/metabolism , Psoriasis/metabolism , Skin/pathology , Th17 Cells/pathology
5.
J Allergy Clin Immunol ; 150(5): 1237-1241.e3, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35750105

ABSTRACT

BACKGROUND: Germline mutations of signal transducer and activator of transcription 3 (STAT3) are responsible for 2 distinct human diseases: autosomal-dominant hyper-IgE syndrome (AD-HIES) caused by STAT3 loss-of-function mutations and STAT3 gain-of-function disease. So far, these entities have been regarded as antithetic, with AD-HIES mainly associated with characteristic infections and a connective tissue phenotype and STAT3 gain-of-function characterized by lymphoproliferation and poly-autoimmunity. The R335W substitution in the DNA-binding domain of STAT3 was initially described in 2 patients with typical AD-HIES, but paradoxically, recent functional analysis demonstrated a gain-of-function effect of this variant. OBJECTIVES: A patient with Sjögren syndrome and features of AD-HIES with this mutation is described and the molecular consequences are further characterized. METHODS: This study provides a clinical and immunological description of the patient. STAT phosphorylation in primary patient cells was studied and A4 cells transfected with the patient allele were used to study phosphorylation kinetics, transcriptional activity, and target-gene induction. RESULTS: The hybrid clinical features of the patient were associated with normal TH17 cells. Enhanced and prolonged STAT3 phosphorylation, an increased STAT3 driven luciferase reporter activity upon IL-6 stimulation, but reduced IL-6-induced SOCS3 production were all observed. CONCLUSIONS: The germline R335W-STAT3 variant displays a mixed behavior in vitro that mainly shows gain-of-function, but also loss-of-function features. This is matched by an ambiguous clinical and immunological phenotype that dismantles the classical antithetic dualism of gain- versus loss-of-function. Germline STAT3 mutation-related disease represents a pathological spectrum with the p.R335W associated phenotype locating between the 2 recognized clinical disease patterns.


Subject(s)
Job Syndrome , STAT3 Transcription Factor , Humans , STAT3 Transcription Factor/metabolism , Interleukin-6/genetics , Job Syndrome/genetics , Mutation , Phosphorylation
6.
J Allergy Clin Immunol ; 149(2): 467-479, 2022 02.
Article in English | MEDLINE | ID: mdl-34953791

ABSTRACT

Asthma is classically described as having either a type 2 (T2) eosinophilic phenotype or a non-T2 neutrophilic phenotype. T2 asthma usually responds to classical bronchodilation therapy and corticosteroid treatment. Non-T2 neutrophilic asthma is often more severe. Patients with non-T2 asthma or late-onset T2 asthma show poor response to the currently available anti-inflammatory therapies. These therapeutic failures result in increased morbidity and cost associated with asthma and pose a major health care problem. Recent evidence suggests that some non-T2 asthma is associated with elevated TH17 cell immune responses. TH17 cells producing Il-17A and IL-17F are involved in the neutrophilic inflammation and airway remodeling processes in severe asthma and have been suggested to contribute to the development of subsets of corticosteroid-insensitive asthma. This review explores the pathologic role of TH17 cells in corticosteroid insensitivity of severe asthma and potential targets to treat this endotype of asthma.


Subject(s)
Adrenal Cortex Hormones/therapeutic use , Asthma/immunology , Th17 Cells/immunology , Asthma/drug therapy , Cell Differentiation , Humans , Interleukin-17/antagonists & inhibitors , Interleukin-17/physiology , Interleukin-6/antagonists & inhibitors , Neutrophils/immunology , Severity of Illness Index , Th17 Cells/cytology , rho-Associated Kinases/antagonists & inhibitors
7.
Appetite ; 175: 106050, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35447164

ABSTRACT

Sodium is the main cation present in the extracellular fluid. Sodium and water content in the body are responsible for volume and osmotic homeostasis through mechanisms involving sodium and water excretion and intake. When body sodium content decreases below the homeostatic threshold, a condition termed sodium deficiency, highly motivated sodium seeking, and intake occurs. This is termed sodium appetite. Classically, sodium and water intakes are controlled by a number of neuroendocrine mechanisms that include signaling molecules from the renin-angiotensin-aldosterone system acting in the central nervous system (CNS). However, recent findings have shown that sodium and water intakes can also be influenced by inflammatory agents and mediators acting in the CNS. For instance, central infusion of IL-1ß or TNF-α can directly affect sodium and water consumption in animal models. Some dietary conditions, such as high salt intake, have been shown to change the intestinal microbiome composition, stimulating the immune branch of the gut-brain axis through the production of inflammatory cytokines, such as IL-17, which can stimulate the brain immune system. In this review, we address the latest findings supporting the hypothesis that immune signaling in the brain could produce a reduction in thirst and sodium appetite and, therefore, contribute to sodium intake control.


Subject(s)
Sodium, Dietary , Sodium , Animals , Appetite/physiology , Brain-Gut Axis , Thirst/physiology , Water , Drinking
8.
J Allergy Clin Immunol ; 147(1): 335-348.e11, 2021 01.
Article in English | MEDLINE | ID: mdl-32407834

ABSTRACT

BACKGROUND: The cross-talk between the host and its microbiota plays a key role in the promotion of health. The production of metabolites such as polyamines by intestinal-resident bacteria is part of this symbiosis shaping host immunity. The polyamines putrescine, spermine, and spermidine are abundant within the gastrointestinal tract and might substantially contribute to gut immunity. OBJECTIVE: We aimed to characterize the polyamine spermidine as a modulator of T-cell differentiation and function. METHODS: Naive T cells were isolated from wild-type mice or cord blood from healthy donors and submitted to polarizing cytokines, with and without spermidine treatment, to evaluate CD4+ T-cell differentiation in vitro. Moreover, mice were subjected to oral supplementation of spermidine, or its precursor l-arginine, to assess the frequency and total numbers of regulatory T (Treg) cells in vivo. RESULTS: Spermidine modulates CD4+ T-cell differentiation in vitro, preferentially committing naive T cells to a regulatory phenotype. After spermidine treatment, activated T cells lacking the autophagy gene Atg5 fail to upregulate Foxp3 to the same extent as wild-type cells. These results indicate that spermidine's polarizing effect requires an intact autophagic machinery. Furthermore, dietary supplementation with spermidine promotes homeostatic differentiation of Treg cells within the gut and reduces pathology in a model of T-cell transfer-induced colitis. CONCLUSION: Altogether, our results highlight the beneficial effects of spermidine, or l-arginine, on gut immunity by promoting Treg cell development.


Subject(s)
Cell Differentiation/drug effects , Colitis/immunology , Immunity, Mucosal/drug effects , Spermidine/pharmacology , T-Lymphocytes, Regulatory/immunology , Animals , Cell Differentiation/immunology , Mice , Mice, Inbred BALB C , Mice, Knockout
9.
J Allergy Clin Immunol ; 148(3): 895-901.e6, 2021 09.
Article in English | MEDLINE | ID: mdl-33891982

ABSTRACT

BACKGROUND: Food protein-induced enterocolitis syndrome (FPIES) is a non-IgE-mediated food allergy characterized by profuse vomiting within hours of ingestion of the causative food. We have previously reported that FPIES is associated with systemic innate immune activation in the absence of a detectable antigen-specific antibody or T-cell response. The mechanism of specific food recognition by the immune system remains unclear. OBJECTIVE: Our aim was to identify immune mechanisms underlying FPIES reactions by proteomic and flow cytometric analysis of peripheral blood. METHODS: Children with a history of FPIES underwent supervised oral food challenge. Blood samples were taken at baseline, at symptom onset, and 4 hours after symptom onset. We analyzed samples from 23 children (11 reactors and 12 outgrown). A total of 184 protein markers were analyzed by proximity ligation assay and verified by multiplex immunoassay. Analysis of cell subset activation was performed by mass cytometry and spectral cytometry. RESULTS: Symptomatic FPIES challenge results were associated with significant elevation of levels of cytokines and chemokines, including IL-17 family markers (IL-17A, IL-22, IL-17C, and CCL20) and T-cell activation (IL-2), and innate inflammatory markers (IL-8, oncostatin M, leukemia inhibitory factor, TNF-α, IL-10, and IL-6). The level of the mucosal damage marker regenerating family member 1 alpha (REG1A) was also significantly increased. These biomarkers were not increased in asymptomatic challenges or IgE-mediated allergy. The level of phospho-STAT3 was significantly elevated in myeloid and T cells after challenge in individuals with symptoms. Mass cytometry indicated preferential activation of nonconventional T-cell populations, including γδ T cells and CD3+CD4-CD8-CD161+ cells; however, the potential sources of IL-17 in PBMCs were primarily CD4+ TH17 cells. CONCLUSIONS: These results demonstrate a unique IL-17 signature and activation of innate lymphocytes in FPIES.


Subject(s)
Cytokines/immunology , Food Hypersensitivity/immunology , Adolescent , Biomarkers/blood , Child , Child, Preschool , Double-Blind Method , Female , Food Hypersensitivity/blood , Humans , Immunologic Tests , Inflammation/blood , Inflammation/immunology , Male , Myeloid Cells/immunology , Proteomics , T-Lymphocytes/immunology
10.
J Allergy Clin Immunol ; 147(1): 199-212, 2021 01.
Article in English | MEDLINE | ID: mdl-32709423

ABSTRACT

BACKGROUND: Our current understanding of atopic dermatitis (AD) and psoriasis pathophysiology is largely derived from skin biopsy studies that cause scarring and may be impractical in large-scale clinical trials. Although tape strips show promise as a minimally invasive technique in these common diseases, a comprehensive molecular profiling characterizing and differentiating the 2 diseases in tape strips is unavailable. OBJECTIVE: Our aim was to construct a global transcriptome of tape strips from lesional and nonlesional skin of adults with moderate-to-severe AD and psoriasis. METHODS: A total of 20 tape strips were obtained from lesional and nonlesional skin of patients with AD and psoriasis and skin from controls (n = 20 each); the strips were subjected to RNA sequencing (RNA-seq), with quantitative RT-PCR validation of immune and barrier biomarkers. RESULTS: We detected RNA-seq profiles in 96 of 100 of samples (96%), with 4123 and 5390 genes differentially expressed in AD and psoriasis lesions versus in controls, respectively (fold change ≥ 2; false discovery rate [FDR] < 0.05). Nonlesional tape-stripped skin from patients with AD was more similar to lesional skin than to nonlesional skin of patients with psoriasis, which showed larger differentiation from lesions. AD and psoriasis tissues shared increases in levels of dendritic cell and T-cell markers (CD3, ITGAX/CD11c, and CD83), but AD tissues showed preferential TH2 skewing (IL-13, CCL17/TARC, and CCL18), whereas psoriasis was characterized by higher levels of expression of TH17-related (IL-17A/F and IL-36A/IL-36G), TH1-related (IFN-γ and CXCL9/CXCL10), and innate immunity-related (nitric oxide synthase 2/inducible nitric oxide synthase and IL-17C) products (FDR < 0.05). Terminal differentiation (FLG2 and LCE5A), tight junction (CLDN8), and lipid biosynthesis and metabolism (FA2H and ALOXE3) products were significantly downregulated in both AD and psoriasis (FDR < 0.05). Nitric oxide synthase 2/inducible nitric oxide synthase expression (determined by quantitative PCR) differentiated AD and psoriasis with 100% accuracy. CONCLUSION: RNA-seq tape strip profiling detected distinct immune and barrier signatures in lesional and nonlesional AD and psoriasis skin, suggesting their utility as a minimally invasive alternative to biopsies for detecting disease biomarkers.


Subject(s)
Cytokines , Dermatitis, Atopic , Psoriasis , RNA-Seq , T-Lymphocytes, Helper-Inducer/immunology , Adolescent , Adult , Cytokines/genetics , Cytokines/immunology , Dermatitis, Atopic/genetics , Dermatitis, Atopic/immunology , Female , Filaggrin Proteins , Humans , Male , Middle Aged , Psoriasis/genetics , Psoriasis/immunology
11.
J Hepatol ; 75(2): 414-423, 2021 08.
Article in English | MEDLINE | ID: mdl-33774059

ABSTRACT

BACKGROUND & AIMS: Little is known about the composition of intrahepatic immune cells and their contribution to the pathogenesis of primary sclerosing cholangitis (PSC). Herein, we aimed to create an atlas of intrahepatic T cells and thereby perform an in-depth characterization of T cells in inflamed human liver. METHODS: Different single-cell RNA sequencing methods were combined with in silico analyses on intrahepatic and peripheral T cells from patients with PSC (n = 11) and healthy donors (HDs, n = 4). Multi-parameter flow cytometry and functional in vitro experiments were conducted on samples from patients with PSC (n = 24), controls with other liver diseases and HDs. RESULTS: We identified a population of intrahepatic naive-like CD4+ T cells, which was present in all liver diseases tested, but particularly expanded in PSC. This population had a transcriptome and T cell receptor repertoire similar to circulating naive T cells but expressed a set of genes associated with tissue residency. Their periductal location supported the concept of tissue-resident naive-like T cells in livers of patients with PSC. Trajectory inference suggested that these cells had the developmental propensity to acquire a T helper 17 (TH17) polarization state. Functional and chromatin accessibility experiments revealed that circulating naive T cells in patients with PSC were predisposed to polarize towards TH17 cells. CONCLUSION: We report the first atlas of intrahepatic T cells in PSC, which led to the identification of a previously unrecognized population of tissue-resident naive-like T cells in the inflamed human liver and to the finding that naive CD4+ T cells in PSC harbour the propensity to develop into TH17 cells. LAY SUMMARY: The composition of intrahepatic immune cells in primary sclerosing cholangitis (PSC) and their contribution to disease pathogenesis is widely unknown. We analysed intrahepatic T cells and identified a previously uncharacterized population of liver-resident CD4+ T cells which are expanded in the livers of patients with PSC compared to healthy liver tissue and other liver diseases. These cells are likely to contribute to the pathogenesis of PSC and could be targeted in novel therapeutic approaches.


Subject(s)
Cholangitis, Sclerosing/physiopathology , Hepatocytes/physiology , T-Lymphocytes/physiology , Cholangitis, Sclerosing/enzymology , Humans , Liver/pathology , Liver/physiopathology , Exome Sequencing/methods
12.
Microb Pathog ; 161(Pt A): 105200, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34537272

ABSTRACT

Several autoimmune diseases have long been linked to viral and bacterial infections. In contrast, the possibility of fungal infections causing autoimmune diseases has received almost no attention. However, major fungal infections can cause severe autoimmune diseases, by decreasing TREG cells and increasing production of interleukin-23, CD4 TH17 T-cells, interleukin-17 and other cytokines, including interleukin-22. Several factors can cause fungal infections, including antibiotic usage. Bacterial and fungal populations compete in mammalian oropharyngeal, respiratory, gastrointestinal, and genitourinary tracts. Antibiotic usage decreases bacteria and thereby favors fungal populations over bacterial populations. This leads to an explanatory hypothesis for the pathogenesis of severe autoimmune diseases by major fungal infections. The increase in fungal populations in individuals susceptible to major fungal infections can also explain the higher incidence of autoimmune diseases. CD4 TH17 T-cells and certain interleukins can be one path of pathogenesis between major fungal infections and increased incidences of major autoimmune diseases, including type 1 diabetes, multiple sclerosis, and various types of arthritis.


Subject(s)
Autoimmune Diseases , Multiple Sclerosis , Mycoses , Animals , Humans , Interleukin-23 , T-Lymphocytes , T-Lymphocytes, Regulatory
13.
Pharmacol Res ; 166: 105459, 2021 04.
Article in English | MEDLINE | ID: mdl-33545313

ABSTRACT

Schisandrin B (Sch B) is the major active constituent of the traditional Chinese medicine Schisandra chinensis and has anti-inflammatory activity, but the target of Sch B remains unclear. T helper 17 (TH17) cells have been involved in the pathogenesis of many autoimmune and inflammatory diseases. Here, we showed that Sch B could decrease IL-17A production of CD4+ T cells by targeting STAT3 in vitro. Importantly, Sch B has therapeutic effects on DSS-induced acute and chronic colitis, CD4+CD45RBhigh T cell-induced colitis. Furthermore, we identified TH17 cells as the direct target of Sch B for mediating its anti-inflammatory activity. Sch B could serve as a lead for developing new therapeutics against TH17 cells or IL-17A cytokine-driven diseases.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Inflammatory Bowel Diseases/drug therapy , Lignans/therapeutic use , Polycyclic Compounds/therapeutic use , Th17 Cells/drug effects , Animals , Anti-Inflammatory Agents/pharmacology , Cell Differentiation/drug effects , Cells, Cultured , Cyclooctanes/pharmacology , Cyclooctanes/therapeutic use , Female , Humans , Inflammatory Bowel Diseases/pathology , Lignans/pharmacology , Mice, Inbred C57BL , Polycyclic Compounds/pharmacology , Th17 Cells/pathology
14.
J Allergy Clin Immunol ; 145(1): 199-214.e11, 2020 01.
Article in English | MEDLINE | ID: mdl-31605740

ABSTRACT

BACKGROUND: Psoriasis is a frequent inflammatory skin disease that is mainly mediated by IL-23, IL-1ß, and IL-17 cytokines. Although psoriasis is a hyperproliferative skin disorder, the possible role of amino acid transporters has remained unexplored. OBJECTIVE: We sought to investigate the role of the essential amino acid transporter L-type amino acid transporter (LAT) 1 (SLC7A5) in psoriasis. METHODS: LAT1 floxed mice were crossed to Cre-expressing mouse strains under the control of keratin 5, CD4, and retinoic acid receptor-related orphan receptor γ. We produced models of skin inflammation induced by imiquimod (IMQ) and IL-23 and tested the effect of inhibiting LAT1 (JPH203) and mammalian target of rapamycin (mTOR [rapamycin]). RESULTS: LAT1 expression is increased in keratinocytes and skin-infiltrating lymphocytes of psoriatic lesions in human subjects and mice. LAT1 deletion in keratinocytes does not dampen the inflammatory response or their proliferation, which could be maintained by increased expression of the alternative amino acid transporters LAT2 and LAT3. Specific deletion of LAT1 in γδ and CD4 T cells controls the inflammatory response induced by IMQ. LAT1 deletion or inhibition blocks expansion of IL-17-secreting γ4+δ4+ and CD4 T cells and dampens the release of IL-1ß, IL-17, and IL-22 in the IMQ-induced model. Moreover, inhibition of LAT1 blocks expansion of human γδ T cells and IL-17 secretion by human CD4 T cells. IL-23 and IL-1ß stimulation upregulates LAT1 expression and induces mTOR activation in IL-17+ γδ and TH17 cells. Deletion or inhibition of LAT1 efficiently controls IL-23- and IL-1ß-induced phosphatidylinositol 3-kinase/AKT/mTOR activation independent of T-cell receptor signaling. CONCLUSION: Targeting LAT1-mediated amino acid uptake is a potentially useful immunosuppressive strategy to control skin inflammation mediated by the IL-23/IL-1ß/IL-17 axis.


Subject(s)
Adaptive Immunity , Amino Acid Transport System y+L/immunology , Immunity, Innate , Large Neutral Amino Acid-Transporter 1/immunology , Psoriasis/immunology , Skin/immunology , Th17 Cells/immunology , Amino Acid Transport System y+L/genetics , Animals , Cytokines/genetics , Cytokines/immunology , Disease Models, Animal , Gene Expression Regulation , Humans , Inflammation/genetics , Inflammation/immunology , Inflammation/pathology , Large Neutral Amino Acid-Transporter 1/genetics , Mice , Mice, Transgenic , Psoriasis/genetics , Psoriasis/pathology , Signal Transduction/genetics , Signal Transduction/immunology , Skin/pathology , Th17 Cells/pathology
15.
J Allergy Clin Immunol ; 145(3): 933-946.e4, 2020 03.
Article in English | MEDLINE | ID: mdl-31626843

ABSTRACT

BACKGROUND: Inducible CD4+CD25+ regulatory T (iTreg) cells can become pathogenic effector cells, enhancing lung allergic responses. OBJECTIVE: We aimed to define the underlying cellular and molecular pathways activated by TGF-ß, which determine the suppressor or enhancing activities of iTreg cells. METHODS: Sensitized wild-type and CD8-deficient (CD8-/-) mice were challenged with allergen. Isolated CD4+CD25- T cells were activated by using anti-CD3/anti-CD28. To generate suppressor iTreg cells, cells were then differentiated in the presence of TGF-ß, whereas IL-17-producing effector T cells were additionally exposed to IL-6. After TGF-ß, Smad3 and TGF-ß-activated kinase 1 (TAK1) kinase levels were monitored. The consequences of inhibiting either kinase were determined in vitro and after transfer into CD8-/- recipients. Quantitative PCR and chromatin immunoprecipitation were used to monitor gene expression and histone modifications at the retinoic acid-related orphan receptor γt (Rorγt) locus. RESULTS: In wild-type mice, iTreg cells suppressed lung allergic responses linked to Smad3-dependent forkhead box P3 (Foxp3) expression and IL-10 production. In the presence of IL-6, iTreg cells converted to TH17 cells, mediating a neutrophil-dependent enhancement of lung allergic responses in CD8-/- mice. Conversion was regulated by TAK1. Inhibition or silencing of TAK1 prevented expression of Rorγt and TH17 differentiation through histone modifications of Rorγt; Foxp3 expression and iTreg cell-mediated suppression remained intact. In the same cell, TGF-ß induced coexpression of Smad3 and TAK1 proteins; in the presence of IL-6, expression of Smad3 and Foxp3 but not TAK1 decreased. CONCLUSION: TGF-ß regulates iTreg cell outcomes through 2 distinct signal transduction pathways: one Smad3 dependent and the other TAK1 dependent. The balance of these pathways has important implications in TH17-mediated autoimmune diseases and neutrophil-dependent asthma.


Subject(s)
MAP Kinase Kinase Kinases/immunology , Respiratory Hypersensitivity/immunology , Smad3 Protein/immunology , T-Lymphocytes, Regulatory/immunology , Transforming Growth Factor beta/immunology , Animals , Cell Differentiation/immunology , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction/immunology
16.
J Allergy Clin Immunol ; 144(5): 1254-1264, 2019 11.
Article in English | MEDLINE | ID: mdl-31271788

ABSTRACT

BACKGROUND: Chronic rhinosinusitis with nasal polyps (CRSwNP) is a heterogeneous disease with a spectrum of endotypes. TH2- and TH17-related cytokines are 2 central regulators involved in the inflammation associated with CRSwNP. OBJECTIVE: We sought to investigate the interregulation of TH2 and TH17 pathways in Chinese patients with CRSwNP. METHODS: Levels of key TH2- and TH17-related factors were measured in homogenates of polyp tissue obtained from patients with CRSwNP. The relationship of these factors and their expression in groups classified according to tissue IL-5 and IL-17 concentrations were analyzed. Cross-regulation of TH2 and TH17 cytokines and the effects of dexamethasone treatment were studied in dispersed nasal polyp cells. Associations between TH2- and TH17 related factors and comorbid atopic status and asthma, disease recurrence, and edema scores were also explored. RESULTS: Four CRSwNP groups were classified based on expression or nonexpression of mutually exclusive TH2- and TH17-related factors. The TH2 cytokines IL-4 and IL-13 inhibited expression of TH17-related factors, whereas the TH17 cytokines IL-17 and TGF-ß1 enhanced expression of TH2-related factors. Dexamethasone treatment inhibited both the TH2 and TH17 pathways. A patient's atopic status was related to their TH2 immune response. Edema scores were positively correlated with the TH2 pathway and negatively correlated with the TH17 pathway. CONCLUSION: The TH2 and TH17 pathways are mutually exclusive and regulate each other, favoring the development of a TH2 immune response in Chinese patients with CRSwNP.


Subject(s)
Nasal Polyps/immunology , Rhinitis/immunology , Sinusitis/immunology , Th17 Cells/immunology , Th2 Cells/immunology , Adult , Cells, Cultured , Chronic Disease , Female , Humans , Interleukin-17/metabolism , Interleukin-5/metabolism , Male , Middle Aged , Paracrine Communication
17.
J Allergy Clin Immunol ; 144(1): 144-156, 2019 07.
Article in English | MEDLINE | ID: mdl-30685456

ABSTRACT

BACKGROUND: Atopic dermatitis (AD) shows differential clinical presentation in older compared with younger patients. Nevertheless, changes in the AD molecular profile with age are unknown. OBJECTIVE: We sought to characterize age-related changes in the AD profile. METHODS: We evaluated age-specific changes in lesional and nonlesional tissues and blood from patients with moderate-to-severe AD (n = 246) and age-matched control subjects (n = 71) using immunohistochemistry, quantitative real-time PCR, and Singulex in a cross-sectional study. Patients were analyzed by age group (18-40, 41-60, and ≥61 years). RESULTS: Although disease severity/SCORAD scores were similar across AD age groups (mean, approximately 60 years; P = .873), dendritic cell infiltrates (CD1b+ and FcεRI+, P < .05) decreased with age. TH2 measures (IL5, IL13, CCL13, CCL18, and CCL26) significantly decreased with age in patients with AD, despite increasing with age in control subjects. Consistent with TH2 axis decreases, serum IgE levels and eosinophil counts negatively correlated with age in patients with AD (r = -0.24 and r = -0.23, respectively; P < .05). TH22-secreted IL22 expression levels also decreased with age uniquely in patients with AD (P < .05). Expression of TH1-related (IFNG, IL12/23p40, STAT1, and CXCL9; P < .05 for CXCL9) and TH17-related (IL17A and IL20; P < .05 for IL20) markers increased with age in both patients with AD and control subjects. Expression of terminal differentiation measures significantly increased in older patients with AD (loricrin [LOR] and filaggrin [FLG], P < .05), whereas expression of S100As (S100A8, P < .01) and hyperplasia markers (epidermal thickness, keratin 16, and Ki67; P < .05 for keratin 16) decreased. Serum trends in AD mimicked skin findings, with TH2 downregulation (CCL26; r = -0.32, P < .1) and TH1 upregulation (IFN-γ; r = 0.48, P < .01) with age. CONCLUSION: The adult AD profile varies with age. Although TH1/TH17 skewing increases in both patients with AD and control subjects, patients with AD show unique decreases in TH2/TH22 polarization and normalization of epithelial abnormalities. Thus age-specific treatment approaches might be beneficial for AD.


Subject(s)
Aging , Dermatitis, Atopic , Adolescent , Adult , Aged , Aged, 80 and over , Aging/blood , Aging/genetics , Aging/immunology , Cytokines/genetics , Cytokines/immunology , Dermatitis, Atopic/blood , Dermatitis, Atopic/genetics , Dermatitis, Atopic/immunology , Dermatitis, Atopic/pathology , Female , Filaggrin Proteins , Gene Expression , Humans , Male , Middle Aged , Phenotype , Severity of Illness Index , Skin/immunology , Skin/pathology , Young Adult
18.
J Allergy Clin Immunol ; 144(4): 1011-1024, 2019 10.
Article in English | MEDLINE | ID: mdl-31356921

ABSTRACT

BACKGROUND: Moderate-to-severe atopic dermatitis (AD) has been associated with significant disease burden and systemic abnormalities and often requires systemic treatments. Currently, safe and effective oral systemic treatments for moderate-to-severe AD are not yet available. ASN002 is an oral inhibitor of the Janus kinase/spleen tyrosine kinase signaling pathways, targeting several cytokine axes (TH2/TH22/TH17/TH1) and epidermal differentiation. OBJECTIVE: We sought to evaluate the effect of ASN002 on the cellular and molecular biomarker profile of patients with moderate-to-severe AD and to correlate changes in biomarkers to improvements in clinical severity measures and pruritus. METHODS: Thirty-six patients with moderate-to-severe AD were randomized to groups with dose escalation of ASN002 (20, 40, and 80 mg) and a placebo group. Skin biopsy specimens were performed at baseline, day 15, and day 29. Gene expression studies were conducted by using microarray and quantitative RT-PCR, and cellular infiltrates and protein expression were studied by using immunohistochemistry. RESULTS: ASN002 reversed the lesional skin transcriptome toward a nonlesional phenotype. It also rapidly and significantly suppressed key inflammatory pathways implicated in AD pathogenesis, including TH2 (IL4 receptor [IL4R], IL13, CCL13/monocyte chemoattractant protein 4, CCL17/thymus and activation-regulated chemokine, CCL18/pulmonary and activation-regulated chemokine, CCL22/macrophage-derived chemokine, and CCL26/eotaxin-3), TH17/TH22 (lipocalins, PI3/elafin, CCL20, S100A7/S100A8/S100A9, and IL36G/IL36RN), and TH1 (IFNG, CXCL9/CXCL11, and MX1) axes and barrier-related measures (filaggrin [FLG] and CLDN23). Significant improvements in AD gene signatures were observed predominantly in the 40- and 80-mg groups. Smaller and largely nonsignificant molecular changes were seen in the 20-mg and placebo groups. CONCLUSION: The Janus kinase/spleen tyrosine kinase inhibitor ASN002 significantly suppressed key AD inflammatory pathways, corresponding to clinical response. ASN002 might be an effective novel therapeutic agent for moderate-to-severe AD.


Subject(s)
Acetonitriles/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Dermatitis, Atopic/drug therapy , Janus Kinases/antagonists & inhibitors , Piperidines/therapeutic use , Pyridazines/therapeutic use , Syk Kinase/antagonists & inhibitors , Adult , Biomarkers/metabolism , Dermatitis, Atopic/pathology , Double-Blind Method , Enzyme Inhibitors/therapeutic use , Epidermis/drug effects , Epidermis/pathology , Female , Filaggrin Proteins , Humans , Inflammation/drug therapy , Inflammation/pathology , Male , Middle Aged
19.
J Allergy Clin Immunol ; 143(6): 2095-2107, 2019 06.
Article in English | MEDLINE | ID: mdl-30576756

ABSTRACT

BACKGROUND: Peripheral blood skin-homing/cutaneous lymphocyte antigen (CLA)+ T cells emerge as biomarkers of cutaneous immune activation in patients with inflammatory skin diseases (atopic dermatitis [AD] and alopecia areata [AA]). However, blood phenotyping across these subsets is not yet available in patients with vitiligo. OBJECTIVE: We sought to measure cytokine production by circulating skin-homing (CLA+) versus systemic (CLA-) "polar" CD4+/CD8+ ratio and activated T-cell subsets in patients with vitiligo compared with patients with AA, AD, or psoriasis and control subjects. METHODS: Flow cytometry was used to measure levels of the cytokines IFN-γ, IL-13, IL-9, IL-17, and IL-22 in CD4+/CD8+ T cells in the blood of 19 patients with moderate-to-severe nonsegmental/generalized vitiligo, moderate-to-severe AA (n = 32), psoriasis (n = 24), or AD (n = 43) and control subjects (n = 30). Unsupervised clustering differentiated subjects into groups based on cellular frequencies. RESULTS: Patients with Vitiligo showed the highest CLA+/CLA- TH1/type 1 cytotoxic T-cell polarization, with parallel TH2/TH9/TH17/TH22 level increases to levels often greater than those seen in patients with AA, AD, or psoriasis (P < .05). Total regulatory T-cell counts were lower in patients with vitiligo than in control subjects and patients with AD or psoriasis (P < .001). Vitiligo severity correlated with levels of multiple cytokines (P < .1), whereas duration was linked with IFN-γ and IL-17 levels (P < .04). Patients and control subjects grouped into separate clusters based on blood biomarkers. CONCLUSIONS: Vitiligo is characterized by a multicytokine polarization among circulating skin-homing and systemic subsets, which differentiates it from other inflammatory/autoimmune skin diseases. Future targeted therapies should delineate the relative contribution of each cytokine axis to disease perpetuation.


Subject(s)
Alopecia Areata/diagnosis , Biomarkers/blood , Cytokines/blood , Dermatitis, Atopic/diagnosis , Skin/immunology , Th1 Cells/immunology , Vitiligo/diagnosis , Adult , Aged , Aged, 80 and over , Diagnosis, Differential , Disease Progression , Female , Flow Cytometry , Humans , Inflammation , Male , Middle Aged , Oligosaccharides/metabolism , Sialyl Lewis X Antigen/analogs & derivatives , Sialyl Lewis X Antigen/metabolism , Th2 Cells/immunology
20.
J Allergy Clin Immunol ; 143(5): 1878-1891, 2019 05.
Article in English | MEDLINE | ID: mdl-30339851

ABSTRACT

BACKGROUND: Ras homolog gene family H (RhoH) is a membrane-bound adaptor protein involved in proximal T-cell receptor signaling. Therefore RhoH plays critical roles in the differentiation of T cells; however, the function of RhoH in the effecter phase of the T-cell response has not been fully characterized. OBJECTIVE: We sought to explore the role of RhoH in inflammatory immune responses and investigated the involvement of RhoH in the pathogenesis of psoriasis. METHODS: We analyzed effector T-cell and systemic inflammation in wild-type and RhoH-null mice. RhoH expression in T cells in human PBMCs was quantified by using RT-PCR. RESULTS: RhoH deficiency in mice induced TH17 polarization during effector T-cell differentiation, thereby inducing psoriasis-like chronic dermatitis. Ubiquitin protein ligase E3 component N-recognin 5 (Ubr5) and nuclear receptor subfamily 2 group F member 6 (Nr2f6) expression levels decreased in RhoH-deficient T cells, resulting in increased protein levels and DNA binding activity of retinoic acid-related orphan receptor γt. The consequential increase in IL-17 and IL-22 production induced T cells to differentiate into TH17 cells. Furthermore, IL-22 binding protein/Fc chimeric protein reduced psoriatic inflammation in RhoH-deficient mice. Expression of RhoH in T cells was lower in patients with psoriasis with very severe symptoms. CONCLUSION: Our results indicate that RhoH inhibits TH17 differentiation and thereby plays a role in the pathogenesis of psoriasis. Additionally, IL-22 binding protein has therapeutic potential for the treatment of psoriasis.


Subject(s)
Dermatitis/metabolism , Interleukins/metabolism , Psoriasis/metabolism , Th17 Cells/immunology , Transcription Factors/metabolism , rho GTP-Binding Proteins/metabolism , Animals , Cell Differentiation , Cells, Cultured , Chronic Disease , Dermatitis/drug therapy , Dermatitis/genetics , Disease Models, Animal , Humans , Interleukins/genetics , Lymphocyte Activation , Mice , Mice, Inbred BALB C , Mice, Knockout , Psoriasis/drug therapy , Psoriasis/genetics , Receptors, Interleukin/therapeutic use , Repressor Proteins/genetics , Transcription Factors/genetics , Ubiquitin-Protein Ligases/genetics , rho GTP-Binding Proteins/genetics , Interleukin-22
SELECTION OF CITATIONS
SEARCH DETAIL