Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Pharm Res ; 33(2): 358-66, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26415645

ABSTRACT

PURPOSE: To assess the potential of triblock copolymers based on poly(ethylene glycol) (PEG) and functionalized poly(ε-caprolactone) as temperature/pH responsive gels for controlled delivery of macromolecules. METHODS: Poly(α-carboxylate-co-α-benzylcarboxylate-ε-caprolactone)-PEG-poly(α-carboxylate-co-α-benzylcarboxylate-ε-caprolactone) (PCBCL-PEG-PCBCL) was synthesized through ring opening polymerization of α-benzyl carboxylate-ε-caprolactone by PEG, followed by 30% debenzylation of the lateral blocks. The effect of Tris buffer and pH on the sol-gel transition temperature of PCBCL-PEG-PCBCL was assessed. The temperature/pH responsive release of tetramethylrhodamine-dextran (TMR-D) (10 and 40 kDa) from PCBCL-PEG-PCBCL was investigated. RESULTS: Replacement of water with Tris buffer reduced PCBCL-PEG-PCBCL sol-gel transition temperature. Thermo-reversible hydrogels were only formed at pHs ≥ 5.0, but PCBCL-PEG-PCBCL transition temperature was not affected by pH above pH 5.0. In contrast to Pluronic F127 that released 100% of TMR-D within 2 h, PCBCL-PEG-PCBCL hydrogel controlled TMR-D release efficiently at pH = 7.4 and 37°C (~27 and 11% TMRD 10 and 40 kDa release within 150 h, respectively). At 50°C or pH = 9.0, TMR-D release was increased slightly, while at room temperature or pH = 5.0, no control over TMR-D release was observed by PCBCL-PEG-PCBCL hydrogel. CONCLUSION: PCBCL-PEG-PCBCL hydrogel provides depot release of macromolecules at physiological conditions. This release can be triggered through changes in the temperature or pH.


Subject(s)
Delayed-Action Preparations/chemistry , Hydrogels/chemistry , Polyesters/chemistry , Polyethylene Glycols/chemistry , Dextrans/administration & dosage , Fluorescent Dyes/administration & dosage , Hydrogen-Ion Concentration , Rhodamines/administration & dosage , Temperature
2.
J Neurosurg Spine ; : 1-13, 2020 Jul 03.
Article in English | MEDLINE | ID: mdl-32619986

ABSTRACT

OBJECTIVE: Excitotoxicity due to neuronal damage and glutamate release is one of the first events that leads to the progression of neuronal degeneration and functional impairment. This study is based on a paradigm shift in the therapeutic approach for treating spinal cord injury (SCI). The authors tested a new treatment targeting removal of CNS glutamate into the blood circulation by injection of the blood glutamate scavengers (BGSs) recombinant enzyme glutamate-oxaloacetate transaminase (rGOT1) and its cosubstrate oxaloacetic acid (OxAc). Their primary objective was to investigate whether BGS treatment, followed by treadmill exercises in mice with SCI, could attenuate excitotoxicity, inflammation, scarring, and axonal degeneration and, at a later time point, improve functional recovery. METHODS: A pharmacokinetic experiment was done in C57BL/6 naive mice to verify rGOT1/OxAc blood activity and to characterize the time curve of glutamate reduction in the blood up to 24 hours. The reduction of glutamate in CSF after BGS administration in mice with SCI was confirmed by high-performance liquid chromatography. Next, SCI (left hemisection) was induced in the mice, and the mice were randomly assigned to one of the following groups at 1 hour postinjury: control (underwent SCI and received PBS), treadmill exercises, rGOT1/OxAc treatment, or rGOT1/OxAc treatment followed by treadmill exercises. Treatment started 1 hour postinjury with an injection of rGOT1/OxAc and continued for 5 consecutive days. Starting 1 week after SCI, the exercises and the combined treatment groups recommenced the treadmill exercise regimen 5 days a week for 3 months. Locomotor function was assessed for 3 months using the horizontal grid walking test and CatWalk. Axonal anterograde and wallerian degenerations were evaluated using tetramethylrhodamine dextran. Tissue sections were immunofluorescently stained for Iba1, GFAP, GAP-43, synaptophysin, and NeuN. RESULTS: BGS treatment decreased the CSF glutamate level up to 50%, reduced axonal wallerian degeneration, and increased axonal survival and GAP-43 expression in neuronal cells. Combined treatment reduced inflammation, scarring, and lesion size. Additionally, the combination of BGS treatment and exercises increased synapses around motor neurons and enhanced axonal regeneration through the lesion site. This resulted in motor function improvement 3 months post-SCI. CONCLUSIONS: As shown by biochemical, immunohistochemical, and functional analysis, BGSs exhibit a substantial neuroprotective effect by reducing excitotoxicity and secondary damage after SCI. Furthermore, in combination with exercises, they reduced axonal degeneration and scarring and resulted in improved functional recovery.

3.
Neurotoxicology ; 40: 86-96, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24308912

ABSTRACT

Ototoxicity induced by aminoglycoside antibiotics appears to occur both in hair cells (HCs) and the cochlear nerves that innervate them. Although HC loss can be easily quantified, neuronal lesions are difficult to quantify because two types of afferent dendrites and two types of efferent axons are tangled beneath the hair cells. In the present study, ototoxicity was induced by gentamicin in combination with the diuretic agent furosemide. Neuronal lesions were quantified in cochlear whole-mount preparations combined with microsections across the habenular perforate (HP) openings to achieve a clear picture of the topographic relationship between neuronal damage and HC loss. Multiple immunostaining methods were employed to differentiate the two types of afferent dendrites and two types of efferent axons. The results show that co-administration of gentamicin and furosemide resulted in a typical dynamic pattern of HC loss that spread from the basal turn to the outer hair cells to the apex and inner hair cells, depending on the dose and survival time after drug administration. Lesions of the innervation appeared to occur at two stages. At the early stage (2-4 days), the loss of labeling of the two types of afferent dendrites was more obvious than the loss of labeled efferent axons. At the late stage (2-4 weeks), the loss of labeled efferent axons was more rapid. In the high-dose gentamicin group, the loss of outer HCs was congruent with afferent dendrite loss at the early stage and efferent axon loss at the late stage. In the low-dose gentamicin group, the loss of labeling for cochlear innervation was more severe and widespread. Thus, we hypothesize that the gentamicin-induced damage to cochlear innervation occurs independently of hair cell loss.


Subject(s)
Anti-Bacterial Agents/toxicity , Cochlea/drug effects , Gentamicins/toxicity , Hair Cells, Auditory, Outer/drug effects , Olivary Nucleus/drug effects , Animals , Cochlea/innervation , Cochlea/pathology , Female , Hair Cells, Auditory, Outer/pathology , Male , Mice , Mice, Inbred C57BL , Neural Pathways , Olivary Nucleus/pathology , Spiral Ganglion/drug effects , Spiral Ganglion/pathology
SELECTION OF CITATIONS
SEARCH DETAIL