Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
Add more filters

Publication year range
1.
J Biol Chem ; 300(6): 107340, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705390

ABSTRACT

Triclosan (TCS) is an antimicrobial toxicant found in a myriad of consumer products and has been detected in human tissues, including breastmilk. We have evaluated the impact of lactational TCS on UDP-glucuronosyltransferase 1A1 (UGT1A1) expression and bilirubin metabolism in humanized UGT1 (hUGT1) neonatal mice. In hUGT1 mice, expression of the hepatic UGT1A1 gene is developmentally delayed resulting in elevated total serum bilirubin (TSB) levels. We found that newborn hUGT1 mice breastfed or orally treated with TCS presented lower TSB levels along with induction of hepatic UGT1A1. Lactational and oral treatment by gavage with TCS leads to the activation of hepatic nuclear receptors constitutive androstane receptor (CAR), peroxisome proliferator-activated receptor alpha (PPARα), and stress sensor, activating transcription factor 4 (ATF4). When CAR-deficient hUGT1 mice (hUGT1/Car-/-) were treated with TCS, TSB levels were reduced with a robust induction of hepatic UGT1A1, leaving us to conclude that CAR is not tied to UGT1A1 induction. Alternatively, when PPARα-deficient hUGT1 mice (hUGT1/Pparα-/-) were treated with TCS, hepatic UGT1A1 was not induced. Additionally, we had previously demonstrated that TCS is a potent inducer of ATF4, a transcriptional factor linked to the integrated stress response. When ATF4 was deleted in liver of hUGT1 mice (hUGT1/Atf4ΔHep) and these mice treated with TCS, we observed superinduction of hepatic UGT1A1. Oxidative stress genes in livers of hUGT1/Atf4ΔHep treated with TCS were increased, suggesting that ATF4 protects liver from excessive oxidative stress. The increase oxidative stress may be associated with superinduction of UGT1A1. The expression of ATF4 in neonatal hUGT1 hepatic tissue may play a role in the developmental repression of UGT1A1.


Subject(s)
Activating Transcription Factor 4 , Animals, Newborn , Bilirubin , Glucuronosyltransferase , Liver , PPAR alpha , Triclosan , Animals , Glucuronosyltransferase/metabolism , Glucuronosyltransferase/genetics , PPAR alpha/metabolism , PPAR alpha/genetics , Mice , Activating Transcription Factor 4/metabolism , Activating Transcription Factor 4/genetics , Triclosan/pharmacology , Humans , Bilirubin/pharmacology , Bilirubin/metabolism , Liver/metabolism , Liver/drug effects , Mice, Knockout , Female , Constitutive Androstane Receptor , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Cytoplasmic and Nuclear/genetics
2.
FASEB J ; 38(1): e23397, 2024 01.
Article in English | MEDLINE | ID: mdl-38149908

ABSTRACT

Toxoplasma gondii relies heavily on the de novo pyrimidine biosynthesis pathway for fueling the high uridine-5'-monophosphate (UMP) demand during parasite growth. The third step of de novo pyrimidine biosynthesis is catalyzed by dihydroorotase (DHO), a metalloenzyme that catalyzes the reversible condensation of carbamoyl aspartate to dihydroorotate. Here, functional analyses of TgDHO reveal that tachyzoites lacking DHO are impaired in overall growth due to decreased levels of UMP, and the noticeably growth restriction could be partially rescued after supplementation with uracil or high concentrations of L-dihydroorotate in vitro. When pyrimidine salvage pathway is disrupted, both DHOH35A and DHOD284E mutant strains proliferated much slower than DHO-expressing parasites, suggesting an essential role of both TgDHO His35 and Asp284 residues in parasite growth. Additionally, DHO deletion causes the limitation of bradyzoite growth under the condition of uracil supplementation or uracil deprivation. During the infection in mice, the DHO-deficient parasites are avirulent, despite the generation of smaller tissue cysts. The results reveal that TgDHO contributes to parasite growth both in vitro and in vivo. The significantly differences between TgDHO and mammalian DHO reflect that DHO can be exploited to produce specific inhibitors targeting apicomplexan parasites. Moreover, potential DHO inhibitors exert beneficial effects on enzymatic activity of TgDHO and T. gondii growth in vitro. In conclusion, these data highlight the important role of TgDHO in parasite growth and reveal that it is a promising anti-parasitic target for future control of toxoplasmosis.


Subject(s)
Parasites , Toxoplasma , Animals , Mice , Dihydroorotase , Pyrimidines/pharmacology , Uracil , Uridine Monophosphate , Mammals
3.
J Biol Chem ; 299(3): 102955, 2023 03.
Article in English | MEDLINE | ID: mdl-36720308

ABSTRACT

Inorganic arsenic (iAs) is an environmental toxicant that can lead to severe health consequences, which can be exacerbated if exposure occurs early in development. Here, we evaluated the impact of oral iAs treatment on UDP-glucuronosyltransferase 1A1 (UGT1A1) expression and bilirubin metabolism in humanized UGT1 (hUGT1) mice. We found that oral administration of iAs to neonatal hUGT1 mice that display severe neonatal hyperbilirubinemia leads to induction of intestinal UGT1A1 and a reduction in total serum bilirubin values. Oral iAs administration accelerates neonatal intestinal maturation, an event that is directly associated with UGT1A1 induction. As a reactive oxygen species producer, oral iAs treatment activated the Keap-Nrf2 pathway in the intestinal tract and liver. When Nrf2-deficient hUGT1 mice (hUGT1/Nrf2-/-) were treated with iAs, it was shown that activated Nrf2 contributed significantly toward intestinal maturation and UGT1A1 induction. However, hepatic UGT1A1 was not induced upon iAs exposure. We previously demonstrated that the nuclear receptor PXR represses liver UGT1A1 in neonatal hUGT1 mice. When PXR was deleted in hUGT1 mice (hUGT1/Pxr-/-), derepression of UGT1A1 was evident in both liver and intestinal tissue in neonates. Furthermore, when neonatal hUGT1/Pxr-/- mice were treated with iAs, UGT1A1 was superinduced in both tissues, confirming PXR release derepressed key regulatory elements on the gene that could be activated by iAs exposure. With iAs capable of generating reactive oxygen species in both liver and intestinal tissue, we conclude that PXR deficiency in neonatal hUGT1/Pxr-/- mice allows greater access of activated transcriptional modifiers such as Nrf2 leading to superinduction of UGT1A1.


Subject(s)
Arsenic , Glucuronosyltransferase , NF-E2-Related Factor 2 , Pregnane X Receptor , Animals , Mice , Animals, Newborn , Arsenic/toxicity , Bilirubin/blood , Glucuronosyltransferase/genetics , Glucuronosyltransferase/metabolism , Liver/enzymology , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Reactive Oxygen Species/metabolism , Pregnane X Receptor/genetics , Pregnane X Receptor/metabolism
4.
Int J Mol Sci ; 25(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38892176

ABSTRACT

Currently, an important group of biomaterials used in the research in the field of tissue engineering is thermosensitive chitosan hydrogels. Their main advantage is the possibility of introducing their precursors (sols) into the implantation site using a minimally invasive method-by injection. In this publication, the results of studies on the new chitosan structures in the form of thermosensitive hydrogels containing graphene oxide as a nanofiller are presented. These systems were prepared from chitosan lactate and chitosan chloride solutions with the use of a salt of pyrimidine nucleotide-uridine 5'-monophosphate disodium salt-as the cross-linking agent. In order to perform the characterization of the developed hydrogels, the sol-gel transition temperature of the colloidal systems was first determined based on rheological measurements. The hydrogels were also analyzed using FTIR spectroscopy and SEM. Biological studies assessed the cytotoxicity (resazurin assay) and genotoxicity (alkaline version of the comet assay) of the nanocomposite chitosan hydrogels against normal human BJ fibroblasts. The conducted research allowed us to conclude that the developed hydrogels containing graphene oxide are an attractive material for potential use as scaffolds for the regeneration of damaged tissues.


Subject(s)
Chitosan , Graphite , Hydrogels , Nanocomposites , Chitosan/chemistry , Hydrogels/chemistry , Nanocomposites/chemistry , Humans , Graphite/chemistry , Fibroblasts/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Temperature , Cell Line , Cell Survival/drug effects , Tissue Engineering/methods , Rheology
5.
Saudi Pharm J ; 32(1): 101914, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38111672

ABSTRACT

SARS-CoV-2 is accountable for severe social and economic disruption around the world causing COVID-19. Non-structural protein-15 (NSP15) possesses a domain that is vital to the viral life cycle and is known as uridylate-specific endoribonuclease (EndoU). This domain binds to the uridine 5'-monophosphate (U5P) so that the protein may carry out its native activity. It is considered a vital drug target to inhibit the growth of the virus. Thus, in this current study, ML-based QSAR and virtual screening of U5P analogues targeting Nsp15 were performed to identify potential molecules against SARS-CoV-2. Screening of 816 unique U5P analogues using ML-based QSAR identified 397 compounds ranked on their predicted bioactivity (pIC50). Further, molecular docking and hydrogen bond interaction analysis resulted in the selection of the top three compounds (53309102, 57398422, and 76314921). Molecular dynamics simulation of the most promising compounds showed that two molecules 53309102 and 57398422 acted as potential binders of Nsp15. The compound was able to inhibit nsp15 activity as it was successfully bound to the active site of the nsp15 protein. This was achieved by the formation of relevant contacts with enzymatically critical amino acid residues (His235, His250, and Lys290). Principal component analysis and free energy landscape studies showed stable complex formation while MM/GBSA calculation showed lower binding energies for 53309102 (ΔGTOTAL = -29.4 kcal/mol) and 57398422 (ΔGTOTAL = -39.4 kcal/mol) compared to the control U5P (ΔGTOTAL = -18.8 kcal/mol). This study aimed to identify analogues of U5P inhibiting the NSP15 function that potentially could be used for treating COVID-19.

6.
J Biol Chem ; 296: 100722, 2021.
Article in English | MEDLINE | ID: mdl-33932402

ABSTRACT

Nicotine is the key addictive constituent of tobacco. It is not a carcinogen, but it drives smoking and the continued exposure to the many carcinogens present in tobacco. The investigation into nicotine biotransformation has been ongoing for more than 60 years. The dominant pathway of nicotine metabolism in humans is the formation of cotinine, which occurs in two steps. The first step is cytochrome P450 (P450, CYP) 2A6-catalyzed 5'-oxidation to an iminium ion, and the second step is oxidation of the iminium ion to cotinine. The half-life of nicotine is longer in individuals with low P450 2A6 activity, and smokers with low activity often decrease either the intensity of their smoking or the number of cigarettes they use compared with those with "normal" activity. The effect of P450 2A6 activity on smoking may influence one's tobacco-related disease risk. This review provides an overview of nicotine metabolism and a summary of the use of nicotine metabolite biomarkers to define smoking dose. Some more recent findings, for example, the identification of uridine 5'-diphosphoglucuronosyltransferase 2B10 as the catalyst of nicotine N-glucuronidation, are discussed. We also describe epidemiology studies that establish the contribution of nicotine metabolism and CYP2A6 genotype to lung cancer risk, particularly with respect to specific racial/ethnic groups, such as those with Japanese, African, or European ancestry. We conclude that a model of nicotine metabolism and smoking dose could be combined with other lung cancer risk variables to more accurately identify former smokers at the highest risk of lung cancer and to intervene accordingly.


Subject(s)
Lung Neoplasms/metabolism , Nicotine/metabolism , Biomarkers, Tumor/metabolism , Cytochrome P-450 CYP2A6/metabolism , Half-Life , Humans , Lung Neoplasms/enzymology , Smoking/metabolism
7.
J Pharmacol Sci ; 150(2): 100-109, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36055748

ABSTRACT

Although femoral artery dysfunctions, including aberrant vascular reactivity to vasoactive substances, are common in many chronic disorders, such as diabetes and hypertension, their inducible and/or progressive factors remain unclear. Methylglyoxal (MGO), a highly reactive dicarbonyl compound, has been implicated in the pathogenesis of various chronic disorders. However, its direct correlation with extracellular nucleotides including uridine 5'-diphosphate (UDP) in the femoral artery function is currently unknown. Therefore, we investigated the acute effect of MGO on UDP-induced contraction in the rat femoral artery. MGO (4.2 × 10-4 M for 1 h) enhanced the UDP-induced contraction. This enhancement was not abolished in all conditions, including nitric oxide synthase inhibition, cyclooxygenase inhibition, or endothelial denudation. In the endothelium-denuded arteries, the p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580 (10-5 M) suppressed the UDP-induced contraction in both control and MGO-treated groups, while MGO enhanced the p38 MAPK activation regardless of the UDP presence. Moreover, in the endothelium-denuded arteries, the Syk tyrosine kinase inhibitor piceatannol (10-5 M) suppressed the UDP-induced contraction. These results suggest that MGO augments UDP-induced contraction in rat femoral arteries and that this may be partly due to the alterations in the activities of Syk tyrosine kinase and p38 MAPK in the smooth muscle.


Subject(s)
Pyruvaldehyde , Uridine Diphosphate , Animals , Femoral Artery/metabolism , Magnesium Oxide/pharmacology , Muscle Contraction , Pyruvaldehyde/pharmacology , Rats , Syk Kinase , Uridine Diphosphate/pharmacology , p38 Mitogen-Activated Protein Kinases/metabolism
8.
Biol Pharm Bull ; 45(4): 446-451, 2022.
Article in English | MEDLINE | ID: mdl-35370268

ABSTRACT

Single-walled carbon nanotubes (SWCNTs) are made from rolled single graphene sheets with a diameter in the nanometer range and are potential carriers for drug delivery systems. However, their effects on uridine 5'-diphosphate-glucuronosyltransferase (UGT) 1A activities remain unclear. The present study aimed to investigate the effect of two kinds of SWCNTs (EC1.5-P- and FH-P-SWCNTs) and other nanocarbons on human UGT1A activity due to the proposed application of SWCNTs in drug and gene delivery. ß-Estradiol 3-glucuronidation, which is catalyzed mainly by UGT1A1, was inhibited by 99 and 76% in the presence of 0.1 mg/mL EC1.5-P- and FH-P-SWCNTs in human liver microsomes, respectively. The observed decrease of free UGT1A1 protein in the enzyme reaction mixture suggests a higher interaction with SWCNTs, and indicates the inhibition of ß-estradiol 3-glucuronidation. Imipramine N-glucuronidation, which is formed mainly by UGT1A4, was also decreased by SWCNTs. Serotonin glucuronidation, which is mainly responsible for UGT1A6, was only influenced by specific nanocarbons in human liver microsomes. The attenuation of free UGT1A6 protein was observed with SWCNTs and carbon black, indicating that UGT1A6 activity was not influenced by the direct interaction of SWCNTs. We also observed a 127% increase by FH-P-SWCNTs for propofol glucuronidation in human liver microsomes, which is catalyzed mainly by UGT1A9. The values of maximum velocity and intrinsic clearance for propofol glucuronidation in the presence of FH-P-SWCNT were 1.8- and 2.0-fold higher than those of the control in human liver microsomes. These results suggest that the effects of SWCNTs on UGT1A are different among isoforms.


Subject(s)
Nanotubes, Carbon , Glucuronides/metabolism , Glucuronosyltransferase/metabolism , Humans , Liver/metabolism , Uridine Diphosphate
9.
Biol Pharm Bull ; 45(8): 1116-1123, 2022.
Article in English | MEDLINE | ID: mdl-35908893

ABSTRACT

Flavones, which are distributed in a variety of plants and foods in nature, possess significant biological activities, including antitumor and anti-inflammatory effects, and are metabolized into glucuronides by uridine 5'-diphosphate (UDP)-glucuronosyltransferase (UGT) enzymes in humans. In this study, apigenin, acacetin, and genkwanin, flavones having hydroxyl groups at C5, C7, and/or C4'positions were focused on, and the regioselective glucuronidation in human liver and intestinal microsomes was examined. Two glucuronides (namely, AP-7G and AP-4'G for apigenin, AC-5G and AC-7G for acacetin, and GE-5G and GE-4'G for genkwanin) were formed from each flavone by liver and intestinal microsomes, except for only GE-4'G formation from genkwanin by intestinal microsomes. The order of total glucuronidation activities was liver microsomes > intestinal microsomes for apigenin and acacetin, and liver microsomes < intestinal microsomes for genkwanin. The order of CLint values (x-intercept) based on v versus V/[S] plots for apigenin glucuronidation was AP-7G > AP-4'G in liver microsomes and AP-7G < AP-4'G in intestinal microsomes. The order of CLint values was AC-5G < AC-7G for acacetin and GE-5G < GE-4'G genkwanin glucuronidation in both liver and intestinal microsomes. This suggests that the abilities and roles of UGT enzymes in the glucuronidation of apigenin, acacetin, and genkwanin in humans differ depending on the chemical structure of flavones.


Subject(s)
Apigenin , Flavones , Microsomes , Glucuronides/metabolism , Glucuronosyltransferase/metabolism , Humans , Intestines/metabolism , Liver/metabolism , Microsomes/metabolism , Microsomes, Liver/metabolism
10.
Xenobiotica ; 52(7): 676-686, 2022 Jul.
Article in English | MEDLINE | ID: mdl-36317558

ABSTRACT

The metabolism of most medications approved for the treatment of attention deficit/hyperactivity disorder (ADHD) is not fully understood.In vitro studies using cryopreserved, plated human hepatocytes (cPHHs) and pooled human liver microsomes (HLMs) were performed to more thoroughly characterise the metabolism of several ADHD medications.The use of enzyme-specific chemical inhibitors indicated a role for CYP2D6 in atomoxetine (ATX) metabolism, and roles for CYP3A4/5 in guanfacine (GUA) metabolism.The 4-hydroxy-atomoxetine and N-desmethyl-atomoxetine pathways represented 98.4% and 1.5% of ATX metabolism in cPHHs, respectively. The 3-OH-guanfacine pathway represented at least 2.6% of GUA metabolism in cPHHs, and 71% in HLMs.The major metabolising enzyme for methylphenidate (MPH) and dexmethylphenidate (dMPH) could not be identified using these methods because these compounds were too unstable. Hydrolysis of these medications was spontaneous and did not require the presence of protein to occur.Clonidine (CLD), amphetamine (AMPH), and dextroamphetamine (dAMPH) did not deplete substantially in cPHHs nor HLMs, suggesting that these compounds may not undergo considerable hepatic metabolism. The major circulating metabolites of AMPH and dAMPH (benzoic acid and hippuric acid) were not observed in either system, and therefore could not be characterised. Additionally, inhibition experiments suggested a very minimal role for CYP2D6 in CLD and AMPH metabolism.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Humans , Attention Deficit Disorder with Hyperactivity/drug therapy
11.
Chem Pharm Bull (Tokyo) ; 70(10): 669-678, 2022.
Article in English | MEDLINE | ID: mdl-36184449

ABSTRACT

This study aimed to evaluate the interspecies difference in metabolism of mulberrin and examine the interaction between mulberrin and CYP enzymes or recombinant human uridine 5'-diphosphate (UDP)-glucuronosyltransferase (UGT) enzymes. Liver microsomes from human (HLMs), Beagle dog (DLMs), minipig (PLMs), monkey (MLMs), rabbit (RLMs), rat (RAMs), and mouse (MIMs) were used to investigate metabolic diversity among different species. Additionally, recombinant human supersomes were used to confirm that metabolic enzymes are involved in the biotransformation of mulberrin. We also evaluated the influence of mulberrin on protein expression by Western blot analysis. Mulberrin metabolism showed significant interspecies differences. We found four and two metabolites in phase I and II reaction systems, respectively. In phase I metabolism profiles of mulberrin for HLMs, PLMs and MLMs conformed to the classic Michaelis-Menten kinetics, RAMs and MIMs followed biphasic kinetics; phase II reaction of mulberrin in HLMs, DLMs, PLMs, MLMs, RLMs, RAMs and MIMs followed biphasic kinetics. UGT1A1 were the major CYP isoforms responsible for the metabolism of mulberrin. Mulberrin showed potent inhibitory effects against CYP3A4, CYP2C9, CYP2E1, UGT1A1, UGT1A3 and UGT2B7 with IC50 values of 54.21, 9.93, 39.12, 3.84, 2.01, 16.36 µM, respectively. According to Western blot analysis, mulberrin can upregulate the protein expression of CYP2C19, and downregulate the expression levels of CYP3A5 and CYP2C9 in HepG2 cells as concentration increased. The interspecies comparisons can help find other species with metabolic pathways similar to those in humans for future in vivo studies.


Subject(s)
Cytochrome P-450 CYP3A , Uridine Diphosphate , Animals , Benzene Derivatives , Cytochrome P-450 CYP2C19/metabolism , Cytochrome P-450 CYP2C9/metabolism , Cytochrome P-450 CYP2C9/pharmacology , Cytochrome P-450 CYP2E1/metabolism , Cytochrome P-450 CYP2E1/pharmacology , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/pharmacology , Diphosphates/metabolism , Diphosphates/pharmacology , Dogs , Glucuronosyltransferase/metabolism , Glucuronosyltransferase/pharmacology , Humans , Mice , Microsomes, Liver/metabolism , Protein Isoforms/metabolism , Protein Isoforms/pharmacology , Rabbits , Rats , Species Specificity , Swine , Swine, Miniature/metabolism , Uridine/metabolism , Uridine/pharmacology , Uridine Diphosphate/metabolism , Uridine Diphosphate/pharmacology
12.
Biol Pharm Bull ; 44(11): 1635-1644, 2021.
Article in English | MEDLINE | ID: mdl-34719641

ABSTRACT

Cytochrome P450 (P450) and uridine 5'-diphosphate (UDP)-glucuronosyltransferase (UGT) catalyze oxidation and glucuronidation in drug metabolism, respectively. It is believed that P450 and UGT work separately because they perform distinct reactions and exhibit opposite membrane topologies on the endoplasmic reticulum (ER). However, given that some chemicals are sequentially metabolized by P450 and UGT, it is reasonable to consider that the enzymes may interact and work cooperatively. Previous research by our team detected protein-protein interactions between P450 and UGT by analyzing solubilized rat liver microsomes with P450-immobilized affinity column chromatography. Although P450 and UGT have been known to form homo- and hetero-oligomers, this is the first report indicating a P450-UGT association. Based on our previous study, we focused on the P450-UGT interaction and reported lines of evidence that the P450-UGT association is a functional protein-protein interaction that can alter the enzymatic capabilities, including enhancement or suppression of the activities of P450 and UGT, helping UGT to acquire novel regioselectivity, and inhibiting substrate binding to P450. Biochemical and molecular bioscientific approaches suggested that P450 and UGT interact with each other at their internal hydrophobic domains in the ER membrane. Furthermore, several in vivo studies have reported the presence of a functional P450-UGT association under physiological conditions. The P450-UGT interaction is expected to function as a novel post-translational factor for inter-individual differences in the drug-metabolizing enzymes.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Endoplasmic Reticulum/metabolism , Glucuronosyltransferase/metabolism , Intracellular Membranes/metabolism , Animals , Endoplasmic Reticulum/enzymology , Humans , Individuality , Intracellular Membranes/enzymology , Protein Interaction Domains and Motifs , Protein Processing, Post-Translational
13.
Molecules ; 25(19)2020 Oct 08.
Article in English | MEDLINE | ID: mdl-33050066

ABSTRACT

AB-FUBINACA, a synthetic indazole carboxamide cannabinoid, has been used worldwide as a new psychoactive substance. Because drug abusers take various drugs concomitantly, it is necessary to explore potential AB-FUBINACA-induced drug-drug interactions caused by modulation of drug-metabolizing enzymes and transporters. In this study, the inhibitory effects of AB-FUBINACA on eight major human cytochrome P450s (CYPs) and six uridine 5'-diphospho-glucuronosyltransferases (UGTs) of human liver microsomes, and on eight clinically important transport activities including organic cation transporters (OCT)1 and OCT2, organic anion transporters (OAT)1 and OAT3, organic anion transporting polypeptide transporters (OATP)1B1 and OATP1B3, P-glycoprotein, and breast cancer resistance protein (BCRP) in transporter-overexpressing cells were investigated. AB-FUBINACA inhibited CYP2B6-mediated bupropion hydroxylation via mixed inhibition with Ki value of 15.0 µM and competitively inhibited CYP2C8-catalyzed amodiaquine N-de-ethylation, CYP2C9-catalyzed diclofenac 4'-hydroxylation, CYP2C19-catalyzed [S]-mephenytoin 4'-hydroxylation, and CYP2D6-catalyzed bufuralol 1'-hydroxylation with Ki values of 19.9, 13.1, 6.3, and 20.8 µM, respectively. AB-FUBINACA inhibited OCT2-mediated MPP+ uptake via mixed inhibition (Ki, 54.2 µM) and competitively inhibited OATP1B1-mediated estrone-3-sulfate uptake (Ki, 94.4 µM). However, AB-FUBINACA did not significantly inhibit CYP1A2, CYP2A6, CYP3A4, UGT1A1, UGT1A3, UGT1A4, UGT1A6, or UGT2B7 enzyme activities at concentrations up to 100 µM. AB-FUBINACA did not significantly inhibit the transport activities of OCT1, OAT1/3, OATP1B3, P-glycoprotein, or BCRP at concentrations up to 250 µM. As the pharmacokinetics of AB-FUBINACA in humans and animals remain unknown, it is necessary to clinically evaluate potential in vivo pharmacokinetic drug-drug interactions induced by AB-FUBINACA-mediated inhibition of CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, OCT2, and OATP1B1 activities.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Glucuronosyltransferase/metabolism , Indazoles/metabolism , Membrane Transport Proteins/metabolism , Uridine Diphosphate/metabolism , Cannabinoids/metabolism , Cell Line , Cytochrome P-450 Enzyme Inhibitors/metabolism , Drug Interactions/physiology , HEK293 Cells , Humans , Microsomes, Liver/metabolism
14.
J Lipid Res ; 60(10): 1776-1786, 2019 10.
Article in English | MEDLINE | ID: mdl-31409741

ABSTRACT

Lung cancer causes more deaths than any other cancer. Sphingolipids encompass metabolically interconnected species whose balance has pivotal effects on proliferation, migration, and apoptosis. In this study, we paralleled quantification of sphingolipid species with quantitative (q)PCR analyses of metabolic enzymes in order to identify dysregulated routes of sphingolipid metabolism in different subtypes of lung cancers. Lung samples were submitted to histopathological reexamination in order to confirm cancer type/subtype, which included adenocarcinoma histological subtypes and squamous cell and neuroendocrine carcinomas. Compared with benign lesions and tumor-free parenchyma, all cancers featured decreased sphingosine-1-phosphate and SMs. qPCR analyses evidenced differential mechanisms leading to these alterations between cancer types, with neuroendocrine carcinomas upregulating SGPL1, but CERT1 being downregulated in adenocarcinomas and squamous cell carcinomas. 2-Hydroxyhexosylceramides (2-hydroxyHexCers) were specifically increased in adenocarcinomas. While UDP-glycosyltransferase 8 (UGT8) transcript levels were increased in all cancer subtypes, fatty acid 2-hydroxylase (FA2H) levels were higher in adenocarcinomas than in squamous and neuroendocrine carcinomas. As a whole, we report differing mechanisms through which all forms of lung cancer achieve low SM and lysosphingolipids. Our results also demonstrate that FA2H upregulation is required for the accumulation of 2-hydroxyHexCers in lung cancers featuring high levels of UGT8.


Subject(s)
Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , Ceramides/chemistry , Ceramides/metabolism , Ganglioside Galactosyltransferase/genetics , Mixed Function Oxygenases/genetics , Adult , Aged, 80 and over , Female , Humans , Hydroxylation , Male , Middle Aged , RNA, Messenger/genetics
15.
J Biol Chem ; 293(46): 17829-17837, 2018 11 16.
Article in English | MEDLINE | ID: mdl-30262668

ABSTRACT

Androgens such as testosterone and dihydrotestosterone are a critical driver of prostate cancer progression. Cancer resistance to androgen deprivation therapies ensues when tumors engage metabolic processes that produce sustained androgen levels in the tissue. However, the molecular mechanisms involved in this resistance process are unclear, and functional imaging modalities that predict impending resistance are lacking. Here, using the human LNCaP and C4-2 cell line models of prostate cancer, we show that castration treatment-sensitive prostate cancer cells that normally have an intact glucuronidation pathway that rapidly conjugates and inactivates dihydrotestosterone and thereby limits androgen signaling, become glucuronidation deficient and resistant to androgen deprivation. Mechanistically, using CRISPR/Cas9-mediated gene ablation, we found that loss of UDP glucuronosyltransferase family 2 member B15 (UGT2B15) and UGT2B17 is sufficient to restore free dihydrotestosterone, sustained androgen signaling, and development of castration resistance. Furthermore, loss of glucuronidation enzymatic activity was also detectable with a nonsteroid glucuronidation substrate. Of note, glucuronidation-incompetent cells and the resultant loss of intracellular conjugated dihydrotestosterone were detectable in vivo by 18F-dihydrotestosterone PET. Together, these findings couple a mechanism with a functional imaging modality to identify impending castration resistance in prostate cancers.


Subject(s)
Dihydrotestosterone/metabolism , Prostatic Neoplasms, Castration-Resistant/diagnostic imaging , Prostatic Neoplasms, Castration-Resistant/metabolism , Testosterone/metabolism , Animals , Cell Line, Tumor , Dihydrotestosterone/chemistry , Fluorine Radioisotopes , Glucuronosyltransferase/genetics , Glucuronosyltransferase/metabolism , Glycosylation , Humans , Male , Mice , Minor Histocompatibility Antigens/genetics , Minor Histocompatibility Antigens/metabolism , Positron-Emission Tomography , Radiopharmaceuticals/chemistry , Receptors, Androgen/physiology , Signal Transduction , Testosterone/chemistry
16.
Mol Pharm ; 16(2): 632-647, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30608694

ABSTRACT

There is an urgent need (recognized in FDA guidance, 2018) to optimize the dose of medicines given to patients for maximal drug efficacy and limited toxicity (precision dosing), which can be facilitated by quantitative systems pharmacology (QSP) models. Accurate quantification of proteins involved in drug clearance is essential to build and improve QSP models for any target population. Here we describe application of label-free proteomics in microsomes from 23 human livers to simultaneously quantify 188 enzymes and 66 transporters involved in xenobiotic disposition, including 17 cytochrome P450s (CYPs), 10 UDP-glucuronosyltransferases (UGTs), 7 ATP-binding cassette (ABC) transporters, and 11 solute carrier (SLC) transporters; six of these proteins are quantified for the first time. The methodology allowed quantification of thousands of proteins, allowing estimation of sample purity and understanding of global patterns of protein expression. There was overall good agreement with targeted quantification and enzyme activity data, where this was available. The effects of sex, age, genotype, and BMI on enzyme and transporter expression were assessed. Decreased expression of enzymes and transporters with increasing BMI was observed, but a tendency for older donors to have higher BMIs may have confounded this result. The effect of genotype on enzymes expression was, however, clear-cut, with CYP3A5*1/*3 genotype expressed 16-fold higher compared with its mostly inactive *3/*3 counterpart. Despite the complex, time-consuming data analysis required for label-free methodology, the advantages of the label-free method make it a valuable approach to populate a broad range of system parameters simultaneously for target patients within pharmacology and toxicology models.


Subject(s)
Liver/metabolism , Proteomics/methods , Adolescent , Adult , Aged , Chromatography, Liquid , Cytochrome P-450 Enzyme System/metabolism , Female , Glucuronosyltransferase/metabolism , Humans , Male , Membrane Transport Proteins/metabolism , Middle Aged , Tandem Mass Spectrometry , Young Adult
17.
Xenobiotica ; 49(8): 912-921, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30301385

ABSTRACT

This was the first study to construct a physiologically-based pharmacokinetic (PBPK) model for mirabegron which incorporates the overall elimination pathways of metabolism by cytochrome P450 (CYP) 3A4, uridine 5'-diphosphate-glucuronosyltransferase (UGT) 2B7, and butyrylcholinesterase (BChE) and renal excretion. The objective was to assess the risk of drug-drug interactions (DDIs) by estimating the contribution of each elimination pathway and simulating the magnitude of the DDIs with UGT2B7 inhibitors. A PBPK model for mirabegron was constructed to reproduce the plasma concentration-time curves from a phase 1 study and the magnitude of the DDI with ketoconazole taking into account the overall elimination pathways. The PBPK model was subsequently verified using data from other DDI studies. The constructed PBPK model estimated the contribution for each elimination pathway: 44% and 29% for CYP3A4 and UGT2B7 in the liver, 1.6% for UGT2B7 in the kidney, 3.2% for BChE in plasma, and 22% for renal excretion. Co-administration of probenecid (an UGT2B7 inhibitor) or fluconazole (an UGT2B7 and CYP3A4 inhibitor) was predicted to increase area under the curve for mirabegron to 115% or 174%, respectively. In conclusion, PBPK modeling and simulation revealed a low DDI risk for mirabegron following co-administration with BChE or UGT2B7 inhibitors.


Subject(s)
Acetanilides/pharmacokinetics , Butyrylcholinesterase/metabolism , Cytochrome P-450 CYP3A/metabolism , Glucuronosyltransferase/metabolism , Models, Biological , Thiazoles/pharmacokinetics , Acetanilides/blood , Drug Interactions , Fluconazole/pharmacology , Humans , Reproducibility of Results , Thiazoles/blood
18.
Molecules ; 24(16)2019 Aug 19.
Article in English | MEDLINE | ID: mdl-31430908

ABSTRACT

APINACA (known as AKB48, N-(1-adamantyl)-1-pentyl-1H-indazole-3-carboxamide), an indazole carboxamide synthetic cannabinoid, has been used worldwide as a new psychoactive substance. Drug abusers take various drugs concomitantly, and therefore, it is necessary to characterize the potential of APINACA-induced drug-drug interactions due to the modulation of drug-metabolizing enzymes and transporters. In this study, the inhibitory effects of APINACA on eight major human cytochrome P450s (CYPs) and six uridine 5'-diphospho-glucuronosyltransferases (UGTs) in human liver microsomes, as well as on the transport activities of six solute carrier transporters and two efflux transporters in transporter-overexpressed cells, were investigated. APINACA exhibited time-dependent inhibition of CYP3A4-mediated midazolam 1'-hydroxylation (Ki, 4.5 µM; kinact, 0.04686 min-1) and noncompetitive inhibition of UGT1A9-mediated mycophenolic acid glucuronidation (Ki, 5.9 µM). APINACA did not significantly inhibit the CYPs 1A2, 2A6, 2B6, 2C8/9/19, or 2D6 or the UGTs 1A1, 1A3, 1A4, 1A6, or 2B7 at concentrations up to 100 µM. APINACA did not significantly inhibit the transport activities of organic anion transporter (OAT)1, OAT3, organic anion transporting polypeptide (OATP)1B1, OATP1B3, organic cation transporter (OCT)1, OCT2, P-glycoprotein, or breast cancer resistance protein at concentrations up to 250 µM. These data suggest that APINACA can cause drug interactions in the clinic via the inhibition of CYP3A4 or UGT1A9 activities.


Subject(s)
Biological Transport/drug effects , Cannabinoids/pharmacology , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Cytochrome P-450 Enzyme System/metabolism , Glucuronosyltransferase/antagonists & inhibitors , Cell Line , Drug Interactions , HEK293 Cells , Humans , Membrane Transport Proteins/metabolism , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Organic Anion Transporters/metabolism
19.
New Phytol ; 217(1): 332-343, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28967675

ABSTRACT

Lesion mimic mutants are valuable to unravel the mechanisms governing the programmed cell death (PCD) process. Uridine 5'-diphosphoglucose-glucose (UDPG) functions as a signaling molecule activating multiple pathways in animals, but little is known about its function in plants. Two novel allelic mutants of spl29 with typical PCD characters and reduced pollen viability were obtained by ethane methyl sulfonate mutagenesis in rice cv Kitaake. The enzymatic analyses showed that UDP-N-acetylglucosamine pyrophosphorylase 1 (UAP1) irreversibly catalyzed the decomposition of UDPG. Its activity was severely destroyed and caused excessive UDPG accumulation, with the lesion occurrence associated with the enhanced caspase-like activities in spl29-2. At the transcriptional level, several key genes involved in endoplasmic reticulum stress and the unfolded protein response were abnormally expressed. Moreover, exogenous UDPG could aggravate lesion initiation and development in spl29-2. Importantly, exogenous UDPG and its derivative UDP-N-acetylglucosamine could induce reactive oxygen species (ROS) accumulation and lesion mimics in Kitaake seedlings. These results suggest that the excessive accumulation of UDPG, caused by the mutation of UAP1, was a key biochemical event resulting in the lesion mimics in spl29-2. Thus, our findings revealed that UDPG might be an important component involved in ROS accumulation, PCD execution and lesion mimicking in rice, which also provided new clues for investigating the connection between sugar metabolism and PCD process.


Subject(s)
Apoptosis , Nucleotidyltransferases/metabolism , Oryza/physiology , Reactive Oxygen Species/metabolism , Uridine Diphosphate Glucose/metabolism , Caspases/metabolism , Endoplasmic Reticulum Stress , Mutation , Nucleotidyltransferases/genetics , Oryza/enzymology , Oryza/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Pollen/enzymology , Pollen/genetics , Pollen/physiology
20.
Eur J Haematol ; 100(2): 147-153, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29114966

ABSTRACT

OBJECTIVES: To explore putative associations between specific variants in either the glutathione S-transferase (GST), haptoglobin (HP) or uridine 5'-diphospho-glucuronosyltransferase 1A1 (UGT1A1) genes and clinically important phenotypes in sickle cell anaemia (HbSS). METHODS: 371 HbSS participants were recruited from the Sickle Cell Clinic of the Sickle Cell Unit at the University of the West Indies, Kingston, Jamaica. Markers within four GST superfamily genes, the HP gene and the UGT1A1 gene were analysed using PCR-based assays. RESULTS: Multivariable regression revealed statistically significant associations between the GSTP1 Ile105Val heterozygote and HbA2 levels (P = .016), HbF percentage (P = .001), MCH concentration (P = .028) and reticulocyte count (P = .032), while the GSTM3 D/D homozygote was significantly associated with HbA2 levels (P = .032). The UGT1A1 (TA)6 /(TA)8 heterozygote showed statistically significant associations with HbA2 levels (P = .019), HbF percentage (P < .001), haemoglobin levels (P = .008), PCV values (P = .007) and RBC counts (P = .041). CONCLUSION: This exploratory cross-sectional study has generated novel and informative genotype-phenotype estimates of association, but larger studies are needed to determine whether these specific variants within the GST, UGT1A1 and HP genes are related to interindividual phenotypic variability in HbSS.


Subject(s)
Anemia, Sickle Cell/diagnosis , Anemia, Sickle Cell/genetics , Genetic Variation , Glucuronosyltransferase/genetics , Glutathione Transferase/genetics , Haptoglobins/genetics , Phenotype , Adult , Biomarkers , Cross-Sectional Studies , Erythrocyte Indices , Female , Genetic Association Studies , Hemoglobin, Sickle/genetics , Humans , Jamaica , Male , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL