Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 183
Filter
Add more filters

Publication year range
1.
Cell ; 174(1): 102-116.e14, 2018 06 28.
Article in English | MEDLINE | ID: mdl-29804837

ABSTRACT

RAG endonuclease initiates antibody heavy chain variable region exon assembly from V, D, and J segments within a chromosomal V(D)J recombination center (RC) by cleaving between paired gene segments and flanking recombination signal sequences (RSSs). The IGCR1 control region promotes DJH intermediate formation by isolating Ds, JHs, and RCs from upstream VHs in a chromatin loop anchored by CTCF-binding elements (CBEs). How VHs access the DJHRC for VH to DJH rearrangement was unknown. We report that CBEs immediately downstream of frequently rearranged VH-RSSs increase recombination potential of their associated VH far beyond that provided by RSSs alone. This CBE activity becomes particularly striking upon IGCR1 inactivation, which allows RAG, likely via loop extrusion, to linearly scan chromatin far upstream. VH-associated CBEs stabilize interactions of D-proximal VHs first encountered by the DJHRC during linear RAG scanning and thereby promote dominant rearrangement of these VHs by an unanticipated chromatin accessibility-enhancing CBE function.


Subject(s)
CCCTC-Binding Factor/metabolism , Chromatin/metabolism , Homeodomain Proteins/metabolism , V(D)J Recombination , Animals , Cell Line , DNA, Intergenic/genetics , DNA, Intergenic/metabolism , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/genetics , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/metabolism , Immunoglobulin Variable Region/genetics , Immunoglobulin Variable Region/metabolism , Mice , Mice, Inbred C57BL , Models, Molecular , Mutagenesis , Protein Sorting Signals , RNA, Guide, Kinetoplastida/metabolism , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism
2.
Mol Cell ; 82(1): 177-189.e4, 2022 01 06.
Article in English | MEDLINE | ID: mdl-34936881

ABSTRACT

The DNA-dependent protein kinase (DNA-PK) initially protects broken DNA ends but then promotes their processing during non-homologous end joining (NHEJ). Before ligation by NHEJ, DNA hairpin ends generated during V(D)J recombination must be opened by the Artemis nuclease, together with autophosphorylated DNA-PK. Structures of DNA-PK bound to DNA before and after phosphorylation, and in complex with Artemis and a DNA hairpin, reveal an essential functional switch. When bound to open DNA ends in its protection mode, DNA-PK is inhibited for cis-autophosphorylation of the so-called ABCDE cluster but activated for phosphorylation of other targets. In contrast, DNA hairpin ends promote cis-autophosphorylation. Phosphorylation of four Thr residues in ABCDE leads to gross structural rearrangement of DNA-PK, widening the DNA binding groove for Artemis recruitment and hairpin cleavage. Meanwhile, Artemis locks DNA-PK into the kinase-inactive state. Kinase activity and autophosphorylation of DNA-PK are regulated by different DNA ends, feeding forward to coordinate NHEJ events.


Subject(s)
DNA Damage , DNA End-Joining Repair , DNA, Neoplasm/metabolism , DNA-Activated Protein Kinase/metabolism , Uterine Cervical Neoplasms/enzymology , DNA, Neoplasm/genetics , DNA-Activated Protein Kinase/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Endonucleases/genetics , Endonucleases/metabolism , Enzyme Activation , Female , HEK293 Cells , HeLa Cells , Humans , Ku Autoantigen/genetics , Ku Autoantigen/metabolism , Nucleic Acid Conformation , Phosphorylation , Protein Binding , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology
3.
Trends Genet ; 40(6): 471-479, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643034

ABSTRACT

Enhancers are the key regulators of other DNA-based processes by virtue of their unique ability to generate nucleosome-depleted regions in a highly regulated manner. Enhancers regulate cell-type-specific transcription of tRNA genes by RNA polymerase III (Pol III). They are also responsible for the binding of the origin replication complex (ORC) to DNA replication origins, thereby regulating origin utilization, replication timing, and replication-dependent chromosome breaks. Additionally, enhancers regulate V(D)J recombination by increasing access of the recombination-activating gene (RAG) recombinase to target sites and by generating non-coding enhancer RNAs and localized regions of trimethylated histone H3-K4 recognized by the RAG2 PHD domain. Thus, enhancers represent the first step in decoding the genome, and hence they regulate biological processes that, unlike RNA polymerase II (Pol II) transcription, do not have dedicated regulatory proteins.


Subject(s)
DNA Replication , Enhancer Elements, Genetic , RNA Polymerase III , Transcription, Genetic , V(D)J Recombination , Animals , Humans , DNA Replication/genetics , Gene Expression Regulation/genetics , RNA Polymerase III/genetics , RNA Polymerase III/metabolism , Transcription, Genetic/genetics , V(D)J Recombination/genetics
4.
Mol Cell ; 74(3): 584-597.e9, 2019 05 02.
Article in English | MEDLINE | ID: mdl-30905508

ABSTRACT

V(D)J recombination is essential to generate antigen receptor diversity but is also a potent cause of genome instability. Many chromosome alterations that result from aberrant V(D)J recombination involve breaks at single recombination signal sequences (RSSs). A long-standing question, however, is how such breaks occur. Here, we show that the genomic DNA that is excised during recombination, the excised signal circle (ESC), forms a complex with the recombinase proteins to efficiently catalyze breaks at single RSSs both in vitro and in vivo. Following cutting, the RSS is released while the ESC-recombinase complex remains intact to potentially trigger breaks at further RSSs. Consistent with this, chromosome breaks at RSSs increase markedly in the presence of the ESC. Notably, these breaks co-localize with those found in acute lymphoblastic leukemia patients and occur at key cancer driver genes. We have named this reaction "cut-and-run" and suggest that it could be a significant cause of lymphocyte genome instability.


Subject(s)
Genomic Instability/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Translocation, Genetic/genetics , V(D)J Recombination/genetics , Animals , Base Sequence/genetics , COS Cells , Chlorocebus aethiops , Chromosomes/genetics , DNA/genetics , DNA Breaks, Double-Stranded , HEK293 Cells , Homeodomain Proteins/genetics , Humans , Mice , NIH 3T3 Cells , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Recombinases/genetics
5.
Mol Cell ; 73(1): 48-60.e5, 2019 01 03.
Article in English | MEDLINE | ID: mdl-30449725

ABSTRACT

The genome is organized into topologically associated domains (TADs) that enclose smaller subTADs. Here, we identify and characterize an enhancer that is located in the middle of the V gene region of the immunoglobulin kappa light chain (Igκ) locus that becomes active preceding the stage at which this locus undergoes V(D)J recombination. This enhancer is a hub of long-range chromatin interactions connecting subTADs in the V gene region with the recombination center at the J genes. Deletion of this element results in a highly altered long-range chromatin interaction pattern across the locus and, importantly, affects individual V gene utilization locus-wide. These results indicate the existence of an enhancer-dependent framework in the Igκ locus and further suggest that the composition of the diverse antibody repertoire is regulated in a subTAD-specific manner. This enhancer thus plays a structural role in orchestrating the proper folding of the Igκ locus in preparation for V(D)J recombination.


Subject(s)
Antibody Diversity , Cell Nucleus/immunology , Enhancer Elements, Genetic , Gene Rearrangement, B-Lymphocyte , Immunoglobulin kappa-Chains/immunology , Precursor Cells, B-Lymphoid/immunology , Receptors, Antigen, B-Cell/immunology , Animals , Cell Line, Tumor , Cell Nucleus/genetics , Cell Nucleus/metabolism , Cell Nucleus Shape , Chromatin Assembly and Disassembly , Genotype , HEK293 Cells , Humans , Immunoglobulin kappa-Chains/chemistry , Immunoglobulin kappa-Chains/genetics , Immunoglobulin kappa-Chains/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Phenotype , Precursor Cells, B-Lymphoid/metabolism , Protein Conformation , Receptors, Antigen, B-Cell/chemistry , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/metabolism , Structure-Activity Relationship
6.
Trends Immunol ; 44(10): 782-791, 2023 10.
Article in English | MEDLINE | ID: mdl-37640588

ABSTRACT

The DNA double-strand break (DSB) repair factor 53BP1 has long been implicated in V(D)J and class switch recombination (CSR) of mammalian lymphocyte receptors. However, the dissection of the underlying molecular activities is hampered by a paucity of studies [V(D)J] and plurality of phenotypes (CSR) associated with 53BP1 deficiency. Here, we revisit the currently accepted roles of 53BP1 in antibody diversification in view of the recent identification of its downstream effectors in DSB protection and latest advances in genome architecture. We propose that, in addition to end protection, 53BP1-mediated end-tethering stabilization is essential for CSR. Furthermore, we support a pre-DSB role during V(D)J recombination. Our perspective underscores the importance of evaluating repair of DSBs in relation to their dynamic architectural contexts.


Subject(s)
Antibodies , DNA Breaks, Double-Stranded , DNA Repair , Tumor Suppressor p53-Binding Protein 1 , Animals , Humans , Mice , Antibodies/genetics , Immunoglobulin Class Switching/genetics , Lymphocytes , Mammals
7.
Mol Cell ; 71(2): 332-342.e8, 2018 07 19.
Article in English | MEDLINE | ID: mdl-30017584

ABSTRACT

The modulator of retrovirus infection (MRI or CYREN) is a 30-kDa protein with a conserved N-terminal Ku-binding motif (KBM) and a C-terminal XLF-like motif (XLM). We show that MRI is intrinsically disordered and interacts with many DNA damage response (DDR) proteins, including the kinases ataxia telangiectasia mutated (ATM) and DNA-PKcs and the classical non-homologous end joining (cNHEJ) factors Ku70, Ku80, XRCC4, XLF, PAXX, and XRCC4. MRI forms large multimeric complexes that depend on its N and C termini and localizes to DNA double-strand breaks (DSBs), where it promotes the retention of DDR factors. Mice deficient in MRI and XLF exhibit embryonic lethality at a stage similar to those deficient in the core cNHEJ factors XRCC4 or DNA ligase IV. Moreover, MRI is required for cNHEJ-mediated DSB repair in XLF-deficient lymphocytes. We propose that MRI is an adaptor that, through multivalent interactions, increases the avidity of DDR factors to DSB-associated chromatin to promote cNHEJ.


Subject(s)
DNA Breaks, Double-Stranded , DNA End-Joining Repair , Animals , Cell Cycle Proteins/metabolism , Chromatin/genetics , Chromatin/metabolism , DNA Ligase ATP/genetics , DNA Repair , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Humans , Ku Autoantigen/genetics , Mice
8.
Proc Natl Acad Sci U S A ; 120(25): e2221894120, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37307443

ABSTRACT

The nonhomologous end-joining (NHEJ) pathway is a major DNA double-strand break repair pathway in mammals and is essential for lymphocyte development. Ku70 and Ku80 heterodimer (KU) initiates NHEJ, thereby recruiting and activating the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs). While DNA-PKcs deletion only moderately impairs end-ligation, the expression of kinase-dead DNA-PKcs completely abrogates NHEJ. Active DNA-PK phosphorylates DNA-PKcs at two clusters-PQR around S2056 (S2053 in mouse) and ABCDE around T2609. Alanine substitution at the S2056 cluster moderately compromises end-ligation on plasmid-based assays. But, mice carrying alanine substitution at all five serine residues within the S2056 cluster (DNA-PKcsPQR/PQR) display no defect in lymphocyte development, leaving the physiological significance of S2056 cluster phosphorylation elusive. Xlf is a nonessential NHEJ factor. Xlf -/- mice have substantial peripheral lymphocytes that are completely abolished by the loss of DNA-PKcs, the related ATM kinases, other chromatin-associated DNA damage response factors (e.g., 53BP1, MDC1, H2AX, and MRI), or RAG2-C-terminal regions, suggesting functional redundancy. While ATM inhibition does not further compromise end-ligation, here we show that in XLF-deficient background, DNA-PKcs S2056 cluster phosphorylation is critical for normal lymphocyte development. Chromosomal V(D)J recombination from DNA-PKcsPQR/PQRXlf -/- B cells is efficient but often has large deletions that jeopardize lymphocyte development. Class-switch recombination junctions from DNA-PKcsPQR/PQRXlf -/- mice are less efficient and the residual junctions display decreased fidelity and increased deletion. These findings establish a role for DNA-PKcs S2056 cluster phosphorylation in physiological chromosomal NHEJ, implying that S2056 cluster phosphorylation contributes to the synergy between XLF and DNA-PKcs in end-ligation.


Subject(s)
Protein Kinases , Protein Processing, Post-Translational , Animals , Mice , Phosphorylation , Alanine , B-Lymphocytes , DNA-Activated Protein Kinase , Mammals , DNA-Binding Proteins
9.
Proc Natl Acad Sci U S A ; 120(26): e2306564120, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37339228

ABSTRACT

Immunoglobulin heavy chain variable region exons are assembled in progenitor-B cells, from VH, D, and JH gene segments located in separate clusters across the Igh locus. RAG endonuclease initiates V(D)J recombination from a JH-based recombination center (RC). Cohesin-mediated extrusion of upstream chromatin past RC-bound RAG presents Ds for joining to JHs to form a DJH-RC. Igh has a provocative number and organization of CTCF-binding elements (CBEs) that can impede loop extrusion. Thus, Igh has two divergently oriented CBEs (CBE1 and CBE2) in the IGCR1 element between the VH and D/JH domains, over 100 CBEs across the VH domain convergent to CBE1, and 10 clustered 3'Igh-CBEs convergent to CBE2 and VH CBEs. IGCR1 CBEs segregate D/JH and VH domains by impeding loop extrusion-mediated RAG-scanning. Downregulation of WAPL, a cohesin unloader, in progenitor-B cells neutralizes CBEs, allowing DJH-RC-bound RAG to scan the VH domain and perform VH-to-DJH rearrangements. To elucidate potential roles of IGCR1-based CBEs and 3'Igh-CBEs in regulating RAG-scanning and elucidate the mechanism of the ordered transition from D-to-JH to VH-to-DJH recombination, we tested effects of inverting and/or deleting IGCR1 or 3'Igh-CBEs in mice and/or progenitor-B cell lines. These studies revealed that normal IGCR1 CBE orientation augments RAG-scanning impediment activity and suggest that 3'Igh-CBEs reinforce ability of the RC to function as a dynamic loop extrusion impediment to promote optimal RAG scanning activity. Finally, our findings indicate that ordered V(D)J recombination can be explained by a gradual WAPL downregulation mechanism in progenitor-B cells as opposed to a strict developmental switch.


Subject(s)
Regulatory Sequences, Nucleic Acid , V(D)J Recombination , Animals , Mice , V(D)J Recombination/genetics , Immunoglobulin Variable Region/genetics , Immunoglobulin Variable Region/metabolism , Precursor Cells, B-Lymphoid/metabolism , Chromatin/metabolism
10.
Immunol Rev ; 305(1): 29-42, 2022 01.
Article in English | MEDLINE | ID: mdl-34927255

ABSTRACT

B lymphocytes develop from uncommitted precursors into immunoglobulin (antibody)-producing B cells, a major arm of adaptive immunity. Progression of early progenitors to antibody-expressing cells in the bone marrow is orchestrated by the temporal regulation of different gene programs at discrete developmental stages. A major question concerns how B cells control the accessibility of these genes to transcription factors. Research has implicated nucleosome remodeling ATPases as mediators of chromatin accessibility. Here, we describe studies of chromodomain helicase DNA-binding 4 (CHD4; also known as Mi-2ß) in early B cell development. CHD4 comprises multiple domains that function in nucleosome mobilization and histone binding. CHD4 is a key component of Nucleosome Remodeling and Deacetylase, or NuRD (Mi-2) complexes, which assemble with other proteins that mediate transcriptional repression. We review data demonstrating that CHD4 is necessary for B lineage identity: early B lineage progression, proliferation in response to interleukin-7, responses to DNA damage, and cell survival in vivo. CHD4-NuRD is also required for the Ig heavy-chain repertoire by promoting utilization of distal variable (VH ) gene segments in V(D)J recombination. In conclusion, the regulation of chromatin accessibility by CHD4 is essential for production of antibodies by B cells, which in turn mediate humoral immune responses to pathogens and disease.


Subject(s)
Mi-2 Nucleosome Remodeling and Deacetylase Complex , V(D)J Recombination , B-Lymphocytes/metabolism , DNA , DNA Helicases/genetics , DNA Helicases/metabolism , Humans , Mi-2 Nucleosome Remodeling and Deacetylase Complex/genetics , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism
11.
Mol Biol Evol ; 40(11)2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37850912

ABSTRACT

A series of "molecular domestication" events are thought to have converted an invertebrate RAG-like (RAGL) transposase into the RAG1-RAG2 (RAG) recombinase, a critical enzyme for adaptive immunity in jawed vertebrates. The timing and order of these events are not well understood, in part because of a dearth of information regarding the invertebrate RAGL-A transposon family. In contrast to the abundant and divergent RAGL-B transposon family, RAGL-A most closely resembles RAG and is represented by a single orphan RAG1-like (RAG1L) gene in the genome of the hemichordate Ptychodera flava (PflRAG1L-A). Here, we provide evidence for the existence of complete RAGL-A transposons in the genomes of P. flava and several echinoderms. The predicted RAG1L-A and RAG2L-A proteins encoded by these transposons intermingle sequence features of jawed vertebrate RAG and RAGL-B transposases, leading to a prediction of DNA binding, catalytic, and transposition activities that are a hybrid of RAG and RAGL-B. Similarly, the terminal inverted repeats (TIRs) of the RAGL-A transposons combine features of both RAGL-B transposon TIRs and RAG recombination signal sequences. Unlike all previously described RAG2L proteins, RAG2L-A proteins contain an acidic hinge region, which we demonstrate is capable of efficiently inhibiting RAG-mediated transposition. Our findings provide evidence for a critical intermediate in RAG evolution and argue that certain adaptations thought to be specific to jawed vertebrates (e.g. the RAG2 acidic hinge) actually arose in invertebrates, thereby focusing attention on other adaptations as the pivotal steps in the completion of RAG domestication in jawed vertebrates.


Subject(s)
DNA Transposable Elements , Homeodomain Proteins , Animals , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Vertebrates/genetics , Vertebrates/metabolism , Adaptive Immunity/genetics
12.
EMBO J ; 39(21): e105857, 2020 11 02.
Article in English | MEDLINE | ID: mdl-32945578

ABSTRACT

Jawed vertebrate adaptive immunity relies on the RAG1/RAG2 (RAG) recombinase, a domesticated transposase, for assembly of antigen receptor genes. Using an integration-activated form of RAG1 with methionine at residue 848 and cryo-electron microscopy, we determined structures that capture RAG engaged with transposon ends and U-shaped target DNA prior to integration (the target capture complex) and two forms of the RAG strand transfer complex that differ based on whether target site DNA is annealed or dynamic. Target site DNA base unstacking, flipping, and melting by RAG1 methionine 848 explain how this residue activates transposition, how RAG can stabilize sharp bends in target DNA, and why replacement of residue 848 by arginine during RAG domestication led to suppression of transposition activity. RAG2 extends a jawed vertebrate-specific loop to interact with target site DNA, and functional assays demonstrate that this loop represents another evolutionary adaptation acquired during RAG domestication to inhibit transposition. Our findings identify mechanistic principles of the final step in cut-and-paste transposition and the molecular and structural logic underlying the transformation of RAG from transposase to recombinase.


Subject(s)
DNA-Binding Proteins/chemistry , Evolution, Molecular , Homeodomain Proteins/chemistry , Recombinases/chemistry , Animals , Cryoelectron Microscopy , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , HMGB1 Protein/chemistry , HMGB1 Protein/genetics , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Models, Molecular , Nuclear Proteins , Protein Conformation , Recombinases/genetics , Recombination, Genetic , Transposases/chemistry , Transposases/genetics , Transposases/metabolism , Vertebrates
13.
Eur J Immunol ; 53(12): e2350577, 2023 12.
Article in English | MEDLINE | ID: mdl-37593947

ABSTRACT

Comparative phylogenetic analyses are of potential value to establish the essential components of genetic networks underlying physiological traits. For species that naturally lack particular lymphocyte lineages, we show here that this strategy readily distinguishes trait-specific actors from pleiotropic components of the genetic network governing lymphocyte differentiation. Previously, three of the four members of the DNA polymerase X family have been implicated in the junctional diversification process during the somatic assembly of antigen receptors. Our phylogenetic analysis indicates that the presence of terminal deoxynucleotidyl transferase is strictly associated with the facility of V(D)J recombination, whereas PolL and PolM genes are retained even in species lacking Rag-mediated somatic diversification of antigen receptor genes.


Subject(s)
Gene Regulatory Networks , Lymphocytes , Animals , Phylogeny , V(D)J Recombination
14.
Trends Immunol ; 42(4): 350-365, 2021 04.
Article in English | MEDLINE | ID: mdl-33663955

ABSTRACT

ATM is often dubbed the master regulator of the DNA double stranded break (DSB) response. Since proper induction and repair of DNA DSBs forms the core of immunological diversity, it is surprising that patients with ataxia telangiectasia generally have a mild immunodeficiency in contrast to other DSB repair syndromes. In this review, we address this discrepancy by delving into the functions of ATM in DSB repair and cell cycle control and translate these to adaptive immunity. We conclude that ATM, despite its myriad functions, is not an absolute requirement for acquiring sufficient levels of immunological diversity to prevent severe viral and opportunistic infections. There is, however, a more clinically pronounced antibody deficiency in ataxia telangiectasia due to disturbed class switch recombination.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair , Adaptive Immunity , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , DNA Damage , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Humans , Immunoglobulin Class Switching
15.
Fish Shellfish Immunol ; 154: 109909, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39284538

ABSTRACT

V(D)J recombination is crucial for generating a diverse repertoire of immunoglobulins. Although the V(D)J recombination process has been well characterized in mammals, this process remains largely unexplored in teleosts. In this study, we comprehensively analyzed the IgH locus of a marine fish species large yellow croaker (Larimichthys crocea), and identified 28 V, 19 D, and 8 J gene segments, following a pattern of V-Dζ-Jζ-Cζ-Dµ-Jµ-Cµ1-Cµ2. The V, D, and J gene segments are flanked by consensus recombination signal sequences, with spacer lengths similar to those observed in mammals. The V gene segments are categorized into three distinct families, and exhibited a higher sequence identity compared to those in mammals. Additionally, we designed a set of primers for the examination of the V(D)J recombination in large yellow croaker. RNA-seq analysis showed increased expression of genes related to immunoglobulin production and lymphocyte chemotaxis in IgM + B cells upon Pseudomonas plecoglossicida infection, accompanied by altered expression of V gene segments, suggesting their involvement in the response to P. plecoglossicida infection. Taken together, we identified the IgH locus and V(D)J recombination process of large yellow croaker, which contribute to the understanding of immunoglobulin production and B cell immunity in teleosts, and may provide insights into vaccine development in large yellow croaker.

16.
Biochem J ; 480(24): 2061-2077, 2023 12 20.
Article in English | MEDLINE | ID: mdl-38084601

ABSTRACT

The stringent regulation of RAGs (Recombination activating genes), the site-specific endonuclease responsible for V(D)J recombination, is important to prevent genomic rearrangements and chromosomal translocations in lymphoid cells. In the present study, we identify a microRNA, miR-501, which can regulate the expression of RAG1 in lymphoid cells. Overexpression of the pre-miRNA construct led to the generation of mature miRNAs and a concomitant reduction in RAG1 expression, whereas inhibition using anti-miRs resulted in its enhanced expression. The direct interaction of the 3'UTR of miR-501 with RAG1 was confirmed by the reporter assay. Importantly, overexpression of miRNAs led to inhibition of V(D)J recombination in B cells, revealing their impact on the physiological function of RAGs. Of interest is the inverse correlation observed for miR-501 with RAG1 in various leukemia patients and lymphoid cell lines, suggesting its possible use in cancer therapy. Thus, our results reveal the regulation of RAG1 by miR-501-3p in B cells and thus V(D)J recombination and its possible implications on immunoglobulin leukemogenesis.


Subject(s)
MicroRNAs , V(D)J Recombination , Humans , V(D)J Recombination/genetics , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , MicroRNAs/genetics , B-Lymphocytes
17.
Adv Exp Med Biol ; 1445: 73-88, 2024.
Article in English | MEDLINE | ID: mdl-38967751

ABSTRACT

Immunoglobulin (Ig) has been widely acknowledged to be produced solely by B-lineage cells. However, growing evidence has demonstrated the expression of Ig in an array of cancer cells, as well as normal cells including epithelial cells, epidermal cells, mesangial cells, monocytes, and neutrophils. Ig has even been found to be expressed in non-B cells at immune-privileged sites such as neurons and spermatogenic cells. Despite these non-B cell-derived Igs (non-B-Igs) sharing the same symmetric structures with conventional Igs (B-Igs), further studies have revealed unique characteristics of non-B-Ig, such as restricted variable region and aberrant glycosylation. Moreover, non-B-Ig exhibits properties of promoting malignant behaviours of cancer cells, therefore it could be utilised in the clinic as a potential therapeutic biomarker or target. The elucidation of the generation and regulation of non-B-Ig will certainly broaden our understanding of immunology.


Subject(s)
Immunoglobulins , Humans , Animals , Immunoglobulins/genetics , Immunoglobulins/metabolism , Immunoglobulins/immunology , Glycosylation , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Neoplasms/immunology , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/metabolism
18.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Article in English | MEDLINE | ID: mdl-34551975

ABSTRACT

T cells play an important role in adaptive immunity. An enormous clonal diversity of T cells with a different specificity, encoded by the T cell receptor (TCR), protect the body against infection. Most TCRß chains are generated from a V, D, and J segment during recombination in the thymus. Although complete absence of the D segment is not easily detectable from sequencing data, we find convincing evidence for a substantial proportion of TCRß rearrangements lacking a D segment. Additionally, sequences without a D segment are more likely to be abundant within individuals and/or shared between individuals. Our analysis indicates that such sequences are preferentially generated during fetal development and persist within the elderly. Summarizing, TCRß rearrangements without a D segment are not uncommon, and tend to allow for TCRß chains with a high abundance in the naive repertoire.


Subject(s)
Adaptive Immunity , Gene Rearrangement, beta-Chain T-Cell Antigen Receptor , Receptors, Antigen, T-Cell, alpha-beta/genetics , T-Lymphocytes/immunology , Complementarity Determining Regions/genetics , Complementarity Determining Regions/metabolism , Glycine/deficiency , Humans
19.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Article in English | MEDLINE | ID: mdl-34006647

ABSTRACT

Classical nonhomologous end joining (C-NHEJ) repairs DNA double-strand breaks (DSBs) throughout interphase but predominates in G1 phase when homologous recombination is unavailable. Complexes containing the Ku70/80 ("Ku") and XRCC4/ligase IV (Lig4) core C-NHEJ factors are required, respectively, for sensing and joining DSBs. While XRCC4/Lig4 are absolutely required for joining RAG1/2 endonuclease ("RAG")-initiated DSBs during V(D)J recombination in G1-phase progenitor lymphocytes, cycling cells deficient for XRCC4/Lig4 also can join chromosomal DSBs by alternative end-joining (A-EJ) pathways. Restriction of V(D)J recombination by XRCC4/Lig4-mediated joining has been attributed to RAG shepherding V(D)J DSBs exclusively into the C-NHEJ pathway. Here, we report that A-EJ of DSB ends generated by RAG1/2, Cas9:gRNA, and Zinc finger endonucleases in Lig4-deficient G1-arrested progenitor B cell lines is suppressed by Ku. Thus, while diverse DSBs remain largely as free broken ends in Lig4-deficient G1-arrested progenitor B cells, deletion of Ku70 increases DSB rejoining and translocation levels to those observed in Ku70-deficient counterparts. Correspondingly, while RAG-initiated V(D)J DSB joining is abrogated in Lig4-deficient G1-arrested progenitor B cell lines, joining of RAG-generated DSBs in Ku70-deficient and Ku70/Lig4 double-deficient lines occurs through a translocation-like A-EJ mechanism. Thus, in G1-arrested, Lig4-deficient progenitor B cells are functionally end-joining suppressed due to Ku-dependent blockage of A-EJ, potentially in association with G1-phase down-regulation of Lig1. Finally, we suggest that differential impacts of Ku deficiency versus Lig4 deficiency on V(D)J recombination, neuronal apoptosis, and embryonic development results from Ku-mediated inhibition of A-EJ in the G1 cell cycle phase in Lig4-deficient developing lymphocyte and neuronal cells.


Subject(s)
DNA Breaks, Double-Stranded , DNA End-Joining Repair , Ku Autoantigen/genetics , Precursor Cells, B-Lymphoid/metabolism , V(D)J Recombination , Animals , DNA Ligase ATP/genetics , DNA Ligase ATP/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , G1 Phase/genetics , Gene Expression Regulation , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Ku Autoantigen/metabolism , Mice , Mice, Transgenic , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Precursor Cells, B-Lymphoid/cytology
20.
Genes Dev ; 30(8): 873-5, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-27083993

ABSTRACT

Generation of a diverse repertoire of antigen receptor specificities via DNA recombination underpins adaptive immunity. In this issue ofGenes&Development, Carmona and colleagues (pp. 909-917) provide novel insights into the origin and function of recombination-activating gene 1 (RAG1) and RAG2, the lymphocyte-specific components of the recombinase involved in the process.


Subject(s)
Adaptive Immunity/physiology , Adaptive Immunity/genetics , Adaptive Immunity/immunology , Animals , DNA-Binding Proteins/immunology , Homeodomain Proteins/immunology , Humans , VDJ Recombinases/genetics , VDJ Recombinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL