Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.785
Filter
Add more filters

Publication year range
1.
Cell ; 180(5): 915-927.e16, 2020 03 05.
Article in English | MEDLINE | ID: mdl-32084333

ABSTRACT

The dichotomous model of "drivers" and "passengers" in cancer posits that only a few mutations in a tumor strongly affect its progression, with the remaining ones being inconsequential. Here, we leveraged the comprehensive variant dataset from the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) project to demonstrate that-in addition to the dichotomy of high- and low-impact variants-there is a third group of medium-impact putative passengers. Moreover, we also found that molecular impact correlates with subclonal architecture (i.e., early versus late mutations), and different signatures encode for mutations with divergent impact. Furthermore, we adapted an additive-effects model from complex-trait studies to show that the aggregated effect of putative passengers, including undetected weak drivers, provides significant additional power (∼12% additive variance) for predicting cancerous phenotypes, beyond PCAWG-identified driver mutations. Finally, this framework allowed us to estimate the frequency of potential weak-driver mutations in PCAWG samples lacking any well-characterized driver alterations.


Subject(s)
Genome, Human/genetics , Genomics/methods , Mutation/genetics , Neoplasms/genetics , DNA Mutational Analysis/methods , Disease Progression , Humans , Neoplasms/pathology , Whole Genome Sequencing
2.
Cell ; 179(7): 1551-1565.e17, 2019 12 12.
Article in English | MEDLINE | ID: mdl-31787377

ABSTRACT

The processing of RNA transcripts from mammalian genes occurs in proximity to their transcription. Here, we describe a phenomenon affecting thousands of genes that we call exon-mediated activation of transcription starts (EMATS), in which the splicing of internal exons impacts promoter choice and the expression level of the gene. We observed that evolutionary gain of internal exons is associated with gain of new transcription start sites (TSSs) nearby and increased gene expression. Inhibiting exon splicing reduced transcription from nearby promoters, and creation of new spliced exons activated transcription from cryptic promoters. The strongest effects occurred for weak promoters located proximal and upstream of efficiently spliced exons. Together, our findings support a model in which splicing recruits transcription machinery locally to influence TSS choice and identify exon gain, loss, and regulatory change as major contributors to the evolution of alternative promoters and gene expression in mammals.


Subject(s)
Exons , Promoter Regions, Genetic , Transcriptional Activation/genetics , 3T3 Cells , Animals , Evolution, Molecular , HeLa Cells , Humans , Mice , RNA Splicing , Transcription Initiation Site
3.
Proc Natl Acad Sci U S A ; 121(9): e2309624121, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38381782

ABSTRACT

We propose Multiscale Flow, a generative Normalizing Flow that creates samples and models the field-level likelihood of two-dimensional cosmological data such as weak lensing. Multiscale Flow uses hierarchical decomposition of cosmological fields via a wavelet basis and then models different wavelet components separately as Normalizing Flows. The log-likelihood of the original cosmological field can be recovered by summing over the log-likelihood of each wavelet term. This decomposition allows us to separate the information from different scales and identify distribution shifts in the data such as unknown scale-dependent systematics. The resulting likelihood analysis can not only identify these types of systematics, but can also be made optimal, in the sense that the Multiscale Flow can learn the full likelihood at the field without any dimensionality reduction. We apply Multiscale Flow to weak lensing mock datasets for cosmological inference and show that it significantly outperforms traditional summary statistics such as power spectrum and peak counts, as well as machine learning-based summary statistics such as scattering transform and convolutional neural networks. We further show that Multiscale Flow is able to identify distribution shifts not in the training data such as baryonic effects. Finally, we demonstrate that Multiscale Flow can be used to generate realistic samples of weak lensing data.

4.
Mol Cell Proteomics ; 23(4): 100732, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38336175

ABSTRACT

O-GlcNAcylation is a critical post-translational modification of proteins observed in both plants and animals and plays a key role in growth and development. While considerable knowledge exists about over 3000 substrates in animals, our understanding of this modification in plants remains limited. Unlike animals, plants possess two putative homologs: SECRET AGENT (SEC) and SPINDLY, with SPINDLY also exhibiting O-fucosylation activity. To investigate the role of SEC as a major O-GlcNAc transferase in plants, we utilized lectin-weak affinity chromatography enrichment and stable isotope labeling in Arabidopsis labeling, quantifying at both MS1 and MS2 levels. Our findings reveal a significant reduction in O-GlcNAc levels in the sec mutant, indicating the critical role of SEC in mediating O-GlcNAcylation. Through a comprehensive approach, combining higher-energy collision dissociation and electron-transfer high-energy collision dissociation fragmentation with substantial fractionations, we expanded our GlcNAc profiling, identifying 436 O-GlcNAc targets, including 227 new targets. The targets span diverse cellular processes, suggesting broad regulatory functions of O-GlcNAcylation. The expanded targets also enabled exploration of crosstalk between O-GlcNAcylation and O-fucosylation. We also examined electron-transfer high-energy collision dissociation fragmentation for site assignment. This report advances our understanding of O-GlcNAcylation in plants, facilitating further research in this field.


Subject(s)
Arabidopsis Proteins , N-Acetylglucosaminyltransferases , Acetylglucosamine/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Glycosylation , N-Acetylglucosaminyltransferases/metabolism , Protein Processing, Post-Translational/genetics
5.
Proc Natl Acad Sci U S A ; 120(28): e2211062120, 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37410864

ABSTRACT

Social networks shape and reflect economic life. Prior studies have identified long ties, which connect people who lack mutual contacts, as a correlate of individuals' success within firms and places' economic prosperity. However, we lack population-scale evidence of the individual-level link between long ties and economic prosperity, and why some people have more long ties remains obscure. Here, using a social network constructed from interactions on Facebook, we establish a robust association between long ties and economic outcomes and study disruptive life events hypothesized to cause formation of long ties. Consistent with prior aggregated results, administrative units with a higher fraction of long ties tend to have higher-income and economic mobility. Individuals with more long ties live in higher-income places and have higher values of proxies for economic prosperity (e.g., using more Internet-connected devices and making more donations). Furthermore, having stronger long ties (i.e., with higher intensity of interaction) is associated with better outcomes, consistent with an advantage from the structural diversity constituted by long ties, rather than them being weak ties per se. We then study the role of disruptive life events in the formation of long ties. Individuals who have migrated between US states, have transferred between high schools, or have attended college out-of-state have a higher fraction of long ties among their contacts many years after the event. Overall, these results suggest that long ties are robustly associated with economic prosperity and highlight roles for important life experiences in developing and maintaining long ties.


Subject(s)
Income , Social Support , Humans , Social Networking
6.
Proc Natl Acad Sci U S A ; 120(5): e2207615120, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36696446

ABSTRACT

Contraction in striated muscle is initiated by calcium binding to troponin complexes, but it is now understood that dynamic transition of myosin between resting, ordered OFF states on thick filaments and active, disordered ON states that can bind to thin filaments is critical in regulating muscle contractility. These structural OFF to ON transitions of myosin are widely assumed to correspond to transitions from the biochemically defined, energy-sparing, super-relaxed (SRX) state to the higher ATPase disordered-relaxed (DRX) state. Here we examined the effect of 2'-deoxy-ATP (dATP), a naturally occurring energy substrate for myosin, on the structural OFF to ON transitions of myosin motors in porcine cardiac muscle thick filaments. Small-angle X-ray diffraction revealed that titrating dATP in relaxation solutions progressively moves the myosin heads from ordered OFF states on the thick filament backbone to disordered ON states closer to thin filaments. Importantly, we found that the structural OFF to ON transitions are not equivalent to the biochemically defined SRX to DRX transitions and that the dATP-induced structural OFF to ON transitions of myosin motors in relaxed muscle are strongly correlated with submaximal force augmentation by dATP. These results indicate that structural OFF to ON transitions of myosin in relaxed muscle can predict the level of force attained in calcium-activated cardiac muscle. Computational modeling and stiffness measurements suggest a final step in the OFF to ON transition may involve a subset of DRX myosins that form weakly bound cross-bridges prior to becoming active force-producing cross-bridges.


Subject(s)
Calcium , Muscle, Striated , Animals , Swine , Calcium/metabolism , Myocardium/metabolism , Myosins/metabolism , Muscle, Skeletal/metabolism , Muscle, Striated/metabolism , Calcium, Dietary
7.
Proc Natl Acad Sci U S A ; 120(32): e2018437120, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37523558

ABSTRACT

Physical interpretations of the time-symmetric formulation of quantum mechanics, due to Aharonov, Bergmann, and Lebowitz are discussed in terms of weak values. The most direct, yet somewhat naive, interpretation uses the time-symmetric formulation to assign eigenvalues to unmeasured observables of a system, which results in logical paradoxes, and no clear physical picture. A top-down ontological model is introduced that treats the weak values of observables as physically real during the time between pre- and post-selection (PPS), which avoids these paradoxes. The generally delocalized rank-1 projectors of a quantum system describe its fundamental ontological elements, and the highest-rank projectors corresponding to individual localized objects describe an emergent particle model, with unusual particles, whose masses and energies may be negative or imaginary. This retrocausal top-down model leads to an intuitive particle-based ontological picture, wherein weak measurements directly probe the properties of these exotic particles, which exist whether or not they are actually measured.

8.
RNA ; 29(8): 1140-1165, 2023 08.
Article in English | MEDLINE | ID: mdl-37137667

ABSTRACT

Removal of introns during pre-mRNA splicing, which is central to gene expression, initiates by base pairing of U1 snRNA with a 5' splice site (5'SS). In mammals, many introns contain weak 5'SSs that are not efficiently recognized by the canonical U1 snRNP, suggesting alternative mechanisms exist. Here, we develop a cross-linking immunoprecipitation coupled to a high-throughput sequencing method, BCLIP-seq, to identify NRDE2 (nuclear RNAi-defective 2), and CCDC174 (coiled-coil domain-containing 174) as novel RNA-binding proteins in mouse ES cells that associate with U1 snRNA and 5'SSs. Both proteins bind directly to U1 snRNA independently of canonical U1 snRNP-specific proteins, and they are required for the selection and effective processing of weak 5'SSs. Our results reveal that mammalian cells use noncanonical splicing factors bound directly to U1 snRNA to effectively select suboptimal 5'SS sequences in hundreds of genes, promoting proper splice site choice, and accurate pre-mRNA splicing.


Subject(s)
RNA Precursors , RNA Splice Sites , Animals , Mice , RNA Splice Sites/genetics , RNA Precursors/genetics , RNA Precursors/metabolism , Ribonucleoprotein, U1 Small Nuclear/genetics , RNA Interference , RNA Splicing , RNA, Small Nuclear/genetics , RNA, Small Nuclear/metabolism , Alternative Splicing , Mammals/genetics
9.
Annu Rev Phys Chem ; 75(1): 509-534, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38941525

ABSTRACT

The ability of nanophotonic cavities to confine and store light to nanoscale dimensions has important implications for enhancing molecular, excitonic, phononic, and plasmonic optical responses. Spectroscopic signatures of processes that are ordinarily exceedingly weak such as pure absorption and Raman scattering have been brought to the single-particle limit of detection, while new emergent polaritonic states of optical matter have been realized through coupling material and photonic cavity degrees of freedom across a wide range of experimentally accessible interaction strengths. In this review, we discuss both optical and electron beam spectroscopies of cavity-coupled material systems in weak, strong, and ultrastrong coupling regimes, providing a theoretical basis for understanding the physics inherent to each while highlighting recent experimental advances and exciting future directions.

10.
EMBO Rep ; 24(10): e57128, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37661812

ABSTRACT

The polyA tail of mRNAs is important for many aspects of RNA metabolism. However, whether and how it regulates pre-mRNA splicing is still unknown. Here, we report that the polyA tail acts as a splicing enhancer for the last intron via the nuclear polyA binding protein PABPN1 in HeLa cells. PABPN1-depletion induces the retention of a group of introns with a weaker 3' splice site, and they show a strong 3'-end bias and mainly locate in nuclear speckles. The polyA tail is essential for PABPN1-enhanced last intron splicing and functions in a length-dependent manner. Tethering PABPN1 to nonpolyadenylated transcripts also promotes splicing, suggesting a direct role for PABPN1 in splicing regulation. Using TurboID-MS, we construct the PABPN1 interactome, including many spliceosomal and RNA-binding proteins. Specifically, PABPN1 can recruit RBM26&27 to promote splicing by interacting with the coiled-coil and RRM domain of RBM27. PABPN1-regulated terminal intron splicing is conserved in mice. Together, our study establishes a novel mode of post-transcriptional splicing regulation via the polyA tail and PABPN1.

11.
Nano Lett ; 24(28): 8602-8608, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38954477

ABSTRACT

Currently, the construction of anti-ambipolar transistors (AATs) is primarily based on asymmetric heterostructures, which are challenging to fabricate. AATs used for photodetection are accompanied by dark currents that prove difficult to suppress, resulting in reduced sensitivity. This work presents light-triggered AATs based on an in-plane lateral WSe2 homojunction without van der Waals heterostructures. In this device, the WSe2 channel is partially electrically controlled by the back gate due to the screening effect of the bottom electrode, resulting in a homojunction that is dynamically modulated with gate voltage, exhibiting electrostatically reconfigurable and light-triggered anti-ambipolar behaviors. It exhibits high responsivity (188 A/W) and detectivity (8.94 × 1014 Jones) under 635 nm illumination with a low power density of 0.23 µW/cm2, promising a new approach to low-power, high-performance photodetectors. Moreover, the device demonstrates efficient self-driven photodetection. Furthermore, ternary inverters are realized using monolithic WSe2, simplifying the manufacturing of multivalued logic devices.

12.
Nano Lett ; 24(30): 9406-9414, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39036992

ABSTRACT

Extremely small iron oxide nanoparticle (ESIONP)-based stimuli-responsive switchable MRI contrast agents (CAs) show great promise for accurate detection of tumors due to their outstanding advantages of high specificity and low background signal. However, currently developed ESIONP-based switchable CAs often suffer single-biomarker-induced responses, which lack absolute specificity to pathological tissues, potentially diminishing diagnostic accuracy. In this study, weak acidity and hypoxia, two of the most remarkable characteristics of tumors, are introduced as dual biomarker stimuli to construct an ESIONP-based switchable MRI CA (DKL-CA), with its signal switch controlled by a "dual-key-and-lock" strategy. Only when DKL-CA is exposed to a coexisting weakly acidic and hypoxic environment can monodispersed ESIONPs form nanoclusters, thereby realizing a switch from the T1 to T2 contrast. Moreover, DKL-CA exhibits favorable biosafety and the capacity for precise tumor diagnosis in tumor-bearing mice. Overall, DKL-CA paves the way for designing highly accurate ESIONP-based MRI CAs for tumor diagnosis.


Subject(s)
Contrast Media , Magnetic Resonance Imaging , Neoplasms , Contrast Media/chemistry , Magnetic Resonance Imaging/methods , Animals , Mice , Humans , Neoplasms/diagnostic imaging , Neoplasms/diagnosis , Magnetic Iron Oxide Nanoparticles/chemistry , Cell Line, Tumor
13.
Genet Epidemiol ; 47(4): 314-331, 2023 06.
Article in English | MEDLINE | ID: mdl-37036286

ABSTRACT

Inverse-variance weighted two-sample Mendelian randomization (IVW-MR) is the most widely used approach that utilizes genome-wide association studies (GWAS) summary statistics to infer the existence and the strength of the causal effect between an exposure and an outcome. Estimates from this approach can be subject to different biases due to the use of weak instruments and winner's curse, which can change as a function of the overlap between the exposure and outcome samples. We developed a method (MRlap) that simultaneously considers weak instrument bias and winner's curse while accounting for potential sample overlap. Assuming spike-and-slab genomic architecture and leveraging linkage disequilibrium score regression and other techniques, we could analytically derive, reliably estimate, and hence correct for the bias of IVW-MR using association summary statistics only. We tested our approach using simulated data for a wide range of realistic settings. In all the explored scenarios, our correction reduced the bias, in some situations by as much as 30-fold. In addition, our results are consistent with the fact that the strength of the biases will decrease as the sample size increases and we also showed that the overall bias is also dependent on the genetic architecture of the exposure, and traits with low heritability and/or high polygenicity are more strongly affected. Applying MRlap to obesity-related exposures revealed statistically significant differences between IVW-based and corrected effects, both for nonoverlapping and fully overlapping samples. Our method not only reduces bias in causal effect estimation but also enables the use of much larger GWAS sample sizes, by allowing for potentially overlapping samples.


Subject(s)
Genome-Wide Association Study , Mendelian Randomization Analysis , Humans , Mendelian Randomization Analysis/methods , Polymorphism, Single Nucleotide , Phenotype , Bias
14.
Drug Metab Rev ; : 1-20, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700278

ABSTRACT

pH-mediated drug-drug interactions (DDI) is a prevalent DDI in drug development, especially for weak base compounds with highly pH-dependent solubility. FDA has released a guidance on the evaluation of pH-mediated DDI assessments using in vitro testing and clinical studies. Currently, there is no common practice of ways of testing across the academia and industry. The development of biopredictive method and physiologically-based biopharmaceutics modeling (PBBM) approaches to assess acid-reducing agent (ARA)-DDI have been proven with accurate prediction and could decrease drug development burden, inform clinical design and potentially waive clinical studies. Formulation strategies and careful clinical design could help mitigate the pH-mediated DDI to avoid more clinical studies and label restrictions, ultimately benefiting the patient. In this review paper, a detailed introduction on biorelevant dissolution testing, preclinical and clinical study requirement and PBPK modeling approaches to assess ARA-DDI are described. An improved decision tree for pH-mediated DDI is proposed. Potential mitigations including clinical or formulation strategies are discussed.

15.
Small ; 20(11): e2306939, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37929662

ABSTRACT

The performance of zinc-ion batteries is severely hindered by the uncontrolled growth of dendrites and the severe side reactions on the zinc anode interface. To address these challenges, a weak-water-coordination electrolyte is realized in a peptone-ZnSO4 -based electrolyte to simultaneously regulate the solvation structure and the interfacial environment. The peptone molecules have stronger interaction with Zn2+ ions than with water molecules, making them more prone to coordinate with Zn2+ ions and then reducing the active water in the solvated sheath. Meantime, the peptone molecules selectively adsorb on the Zn metal surface, and then are reduced to form a stable solid-electrolyte interface layer that can facilitate uniform and dense Zn deposition to inhabit the dendritic growth. Consequently, the Zn||Zn symmetric cell can exhibit exceptional cycling performance over 3200 h at 1.0 mA cm-2 /1.0 mAh cm-2 in the peptone-ZnSO4 -based electrolyte. Moreover, when coupled with a Na2 V6 O16 ·3H2 O cathode, the cell exhibits a long lifespan of 3000 cycles and maintains a high capacity retention rate of 84.3% at 5.0 A g-1 . This study presents an effective approach for enabling simultaneous regulation of the solvation structure and interfacial environment to design a highly reversible Zn anode.

16.
Small ; : e2405820, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39319503

ABSTRACT

Photovoltaic photodiodes often face challenges in effectively harvesting electrical signals, especially when detecting faint light. In contrast, photomultiplication type photodetectors (PM-PDs) are renowned for their exceptional sensitivity to weak signals. Here, an advanced PM-PD is introduced based on quasi 2D Ruddlesden-Popper (Q-2D RP) perovskites, optimized for weak light detection at minimal operating voltages. The abundant traps at the Q-2D RP surface capture charge carriers, inducing a trap-assisted tunneling mechanism that leads to the photomultiplication (PM) effect. Deep-lying trap states within the Q-2D RP bulk accelerate charge carrier recombination, resulting in an outstanding rise/fall time of 1.14/1.72 µs for the PM-PDs. The PM-PD achieves a remarkable response level of up to 45.89 A W-1 and an extraordinary external quantum efficiency of 14400% at -1 V under an illumination of 1 µW cm- 2. The intrinsic high resistance of the Q-2D perovskite results in a low dark current, enabling an impressive detectivity of 4.23 × 1012 Jones based on noise current at -1 V. Furthermore, the practical application of PM-PDs has been demonstrated in weak-light, high-rate communication systems. These findings confirm the significant potential of PM-PDs based on Q-2D perovskites for weak light detection and suggest new directions for developing low-power, high-performance PM-PDs for future applications.

17.
Small ; 20(30): e2311416, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38412384

ABSTRACT

Inkjet-printing of graphene, iGr, provides an alternative route for the fabrication of highly conductive and flexible graphene films for use in devices. However, the contribution of quantum phenomena associated with 2D single layer graphene, SLG, to the charge transport in iGr is yet to be explored. Here, the first magneto-transport study of iGr in high magnetic fields up to 60 T is presented. The observed quantum phenomena, such as weak localization and negative magnetoresistance, are strongly affected by the thickness of the iGr film and can be explained by a combination of intra- and inter-flake classical and quantum charge transport. The quantum nature of carrier transport in iGr is revealed using temperature, electric field, and magnetic field dependences of the iGr conductivity. These results are relevant for the exploitation of inkjet deposition of graphene, which is of particular interest for additive manufacturing and 3D printing of flexible and wearable electronics. It is shown that printed nanostructures enable ensemble averaging of quantum interference phenomena within a single device, thereby facilitating comparison between experiment and underlying statistical models of electron transport.

18.
Small ; 20(23): e2311599, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38214434

ABSTRACT

Zero thermal coefficients of resistivity (ZTCR) materials exhibit minimal changes in resistance with temperature variations, making them essential in modern advanced technologies. The current ZTCR materials, which are based on the resistivity saturation effect of heavy metals, tend to function at elevated temperatures because the mean free path approaches the lower limit of the semiclassical Boltzmann theory when the temperature is sufficiently high. ZTCR materials working at low-temperatures are difficult to achieve due to electron-phonon scattering, which results in increased resistivity according to Bloch's theory. In this work, the ZTCR behavior at low-temperatures is realized in pre-microstrained Mn3NiN. The delicate balance between the resistivity contribution from electron-phonon scattering and spin-wave mediated weak localization is well revealed. A remarkable temperature coefficient of resistivity (TCR) value as low as 1.9 ppm K-1 (50 K ≤ T ≤ 200 K) is obtained, which is significantly superior to the threshold value of ZTCR behavior and the application standard of commercial ZTCR materials. The demonstration provides a unique paradigm in the design of ZTCR materials through the contraction effects of two opposite conductance mechanisms with positive and negative thermal coefficients of resistivity.

19.
Biochem Soc Trans ; 52(3): 1293-1304, 2024 06 26.
Article in English | MEDLINE | ID: mdl-38716884

ABSTRACT

ATP has recently been reconsidered as a molecule with functional properties which go beyond its recognized role of the energetic driver of the cell. ATP has been described as an allosteric modulator as well as a biological hydrotrope with anti-aggregation properties in the crowded cellular environment. The role of ATP as a modulator of the homeostasis of the neurotrophins (NTs), a growth factor protein family whose most known member is the nerve growth factor (NGF), has been investigated. The modulation of NTs by small endogenous ligands is still a scarcely described area, with few papers reporting on the topic, and very few reports on the molecular determinants of these interactions. However, a detailed atomistic description of the NTs interaction landscape is of urgent need, aiming at the identification of novel molecules as potential therapeutics and considering the wide range of potential pharmacological applications for NGF and its family members. This mini-review will focus on the unique cartography casting the interactions of the endogenous ligand ATP, in the interaction with NGF as well as with its precursor proNGF. These interactions revealed interesting features of the ATP binding and distinct differences in the binding mode between the highly structured mature NGF and its precursor, proNGF, which is characterized by an intrinsically unstructured domain. The overview on the recent available data will be presented, together with the future perspectives on the field.


Subject(s)
Adenosine Triphosphate , Nerve Growth Factor , Protein Binding , Nerve Growth Factor/metabolism , Adenosine Triphosphate/metabolism , Humans , Animals , Protein Precursors/metabolism , Nerve Growth Factors/metabolism , Nerve Growth Factors/chemistry , Ligands , Binding Sites
20.
Electrophoresis ; 45(15-16): 1450-1454, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38332570

ABSTRACT

Oligomerization is an important feature of proteins, which gives a defined quaternary structure to complete the biological functions. Although frequently observed in membrane proteins, characterizing the oligomerization state remains complicated and time-consuming. In this study, 0.05% (w/v) sarkosyl-polyacrylamide gel electrophoresis (05SAR-PAGE) was used to identify the oligomer states of the membrane proteins CpxA, EnvZ, and Ma-Mscl with high sensitivity. Furthermore, two-dimensional electrophoresis (05SAR/sodium dodecyl sulfate-PAGE) combined with western blotting and liquid chromatography-tandem mass spectrometry was successfully applied to study the complex of CpxA/OmpA in cell lysate. The results indicated that 05SAR-PAGE is an efficient, economical, and practical gel method that can be widely used for the identification of membrane protein oligomerization and the analysis of weak protein interactions.


Subject(s)
Electrophoresis, Gel, Two-Dimensional , Electrophoresis, Polyacrylamide Gel , Membrane Proteins , Protein Multimerization , Membrane Proteins/chemistry , Membrane Proteins/analysis , Electrophoresis, Polyacrylamide Gel/methods , Electrophoresis, Gel, Two-Dimensional/methods , Tandem Mass Spectrometry/methods , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/analysis , Chromatography, Liquid/methods , Blotting, Western/methods
SELECTION OF CITATIONS
SEARCH DETAIL