Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 342
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Plant J ; 119(5): 2423-2436, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38995679

ABSTRACT

Bacterial leaf streak (BLS), caused by Xanthomonas oryzae pv. oryzicola (Xoc), is a major bacterial disease in rice. Transcription activator-like effectors (TALEs) from Xanthomonas can induce host susceptibility (S) genes and facilitate infection. However, knowledge of the function of Xoc TALEs in promoting bacterial virulence is limited. In this study, we demonstrated the importance of Tal10a for the full virulence of Xoc. Through computational prediction and gene expression analysis, we identified the hexokinase gene OsHXK5 as a host target of Tal10a. Tal10a directly binds to the gene promoter region and activates the expression of OsHXK5. CRISPR/Cas9-mediated gene editing in the effector binding element (EBE) of OsHXK5 significantly increases rice resistance to Xoc, while OsHXK5 overexpression enhances the susceptibility of rice plants and impairs rice defense responses. Moreover, simultaneous editing of the promoters of OsSULTR3;6 and OsHXK5 confers robust resistance to Xoc in rice. Taken together, our findings highlight the role of Tal10a in targeting OsHXK5 to promote infection and suggest that OsHXK5 represents a potential target for engineering rice resistance to Xoc.


Subject(s)
Bacterial Proteins , Gene Expression Regulation, Plant , Oryza , Plant Diseases , Plant Proteins , Xanthomonas , Oryza/microbiology , Oryza/genetics , Xanthomonas/pathogenicity , Xanthomonas/physiology , Xanthomonas/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Transcription Activator-Like Effectors/genetics , Transcription Activator-Like Effectors/metabolism , Virulence/genetics , Promoter Regions, Genetic/genetics , Disease Resistance/genetics , CRISPR-Cas Systems , Gene Editing , Plants, Genetically Modified
2.
Plant J ; 118(5): 1528-1549, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38507319

ABSTRACT

Rapid alkalinization factors (RALFs), belonging to a family of small secreted peptides, have been considered as important signaling molecules in diverse biological processes, including immunity. Current studies on RALF-modulated immunity mainly focus on Arabidopsis, but little is reported in crop plants. The rice immune receptor XA21 confers immunity to the bacterial blight pathogen, Xanthomonas oryzae pv. oryzae (Xoo). Here, we pursued functional characterization of rice RALF26 (OsRALF26) up-regulated by Xoo during XA21-mediated immune response. When applied exogenously as a recombinant peptide, OsRALF26 induced a series of immune responses, including pathogenesis-related genes (PRs) induction, reactive oxygen species (ROS) production, and callose deposition in rice and/or Arabidopsis. Transgenic rice and Arabidopsis overexpressing OsRALF26 exhibited significantly enhanced resistance to Xoo and Pseudomonas syringae pv. tomato DC3000 (Pst DC3000), respectively. In yeast two-hybrid, pull-down assays, and co-immunoprecipitation analyses, rice FER-like receptor 1 (OsFLR1) was identified as a receptor of OsRALF26. Transient expression of OsFLR1 in Nicotiana benthamiana leaves displayed significantly increased ROS production and callose deposition after OsRALF26 treatment. Together, we propose that OsRALF26 induced by Xoo in an XA21-dependent manner is perceived by OsFLR1 and may play a novel role in the enforcement of XA21-mediated immunity.


Subject(s)
Arabidopsis , Gene Expression Regulation, Plant , Oryza , Plant Diseases , Plant Immunity , Plant Proteins , Plants, Genetically Modified , Reactive Oxygen Species , Xanthomonas , Oryza/genetics , Oryza/microbiology , Oryza/immunology , Oryza/metabolism , Arabidopsis/genetics , Arabidopsis/immunology , Arabidopsis/microbiology , Arabidopsis/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Xanthomonas/physiology , Xanthomonas/pathogenicity , Plant Diseases/microbiology , Plant Diseases/immunology , Reactive Oxygen Species/metabolism , Disease Resistance/genetics , Glucans/metabolism , Pseudomonas syringae/pathogenicity , Pseudomonas syringae/physiology
3.
Mol Plant Microbe Interact ; 37(2): 143-154, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38381127

ABSTRACT

Plant disease resistance (R) gene-mediated effector-triggered immunity (ETI) is usually associated with hypersensitive response (HR) and provides robust and race-specific disease resistance against pathogenic infection. The activation of ETI and HR in plants is strictly regulated, and improper activation will lead to cell death. Xa27 is an executor-type R gene in rice induced by the TAL effector AvrXa27 and confers disease resistance to Xanthomonas oryzae pv. oryzae (Xoo). Here we reported the characterization of a transgenic line with lesion mimic phenotype, designated as Spotted leaf and resistance 1 (Slr1), which was derived from rice transformation with a genomic subclone located 5,125 bp downstream of the Xa27 gene. Slr1 develops spontaneous lesions on its leaves caused by cell death and confers disease resistance to both Xoo and Xanthomonas oryzae pv. oryzicola. Further investigation revealed that the Slr1 phenotype resulted from the ectopic expression of an Xa27 paralog gene, designated as Xa27B, in the inserted DNA fragment at the Slr1 locus driven by a truncated CaMV35Sx2 promoter in reverse orientation. Disease evaluation of IRBB27, IR24, and Xa27B mutants with Xoo strains expressing dTALE-Xa27B confirmed that Xa27B is a functional executor-type R gene. The functional XA27B-GFP protein was localized to the endoplasmic reticulum and apoplast. The identification of Xa27B as a new functional executor-type R gene provides additional genetic resources for studying the mechanism of executor-type R protein-mediated ETI and developing enhanced and broad-spectrum disease resistance to Xoo through promoter engineering. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Oryza , Xanthomonas , Disease Resistance/genetics , Oryza/genetics , Ectopic Gene Expression , Genes, vpr , Xanthomonas/genetics , Plant Diseases/genetics , Gene Expression Regulation, Plant
4.
Biochem Biophys Res Commun ; 700: 149568, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38306931

ABSTRACT

Rice is a staple crop continually threatened by bacterial and fungal pathogens. OsWRKY transcription factors are involved in various disease responses. However, the functions of many OsWRKYs are still elusive. In this study, we demonstrated that OsWRKY7 enhances rice immunity against Xanthomonas oryzae pv. oryzae (Xoo). OsWRKY7 localized in the nucleus, and gene expression of OsWRKY7 was induced by Xoo inoculation. The OsWRKY7-overexpressing lines showed enhanced resistant phenotype against Xoo, and gene expressions of OsPR1a, OsPR1b, and OsPR10a were significantly increased in the transgenic lines after Xoo inoculation. Moreover, OsWRKY7 activated the OsPR promoters, and the promoter activities were synergistically upregulated by flg22. Genetic- and cell-based analysis showed OsWRKY7 is involved in pattern-triggered immunity against Xoo. These results suggest that OsWRKY7 plays a role as a positive regulator of disease resistance to Xoo through pattern-triggered immunity.


Subject(s)
Oryza , Xanthomonas , Innate Immunity Recognition , Xanthomonas/physiology , Promoter Regions, Genetic , Disease Resistance/genetics , Oryza/metabolism , Plant Diseases/genetics , Plant Diseases/microbiology
5.
BMC Plant Biol ; 24(1): 347, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684939

ABSTRACT

BACKGROUND: Two-tiered plant immune responses involve cross-talk among defense-responsive (DR) genes involved in pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI), effector-triggered immunity (ETI) and effector-triggered susceptibility (ETS). Bacterial leaf streak (BLS), caused by Xanthomonas oryzae pv. oryzicola (Xoc) is an important bacterial disease that causes serious threats to rice yield and quality. Transcriptomic profiling provides an effective approach for the comprehensive and large-scale detection of DR genes that participate in the interactions between rice and Xoc. RESULTS: In this study, we used RNA-seq to analyze the differentially expressed genes (DEGs) in susceptible rice after inoculation with two naturally pathogenic Xoc strains, a hypervirulent strain, HGA4, and a relatively hypovirulent strain, RS105. First, bacterial growth curve and biomass quantification revealed that differential growth occurred beginning at 1 day post inoculation (dpi) and became more significant at 3 dpi. Additionally, we analyzed the DEGs at 12 h and 3 days post inoculation with two strains, representing the DR genes involved in the PTI and ETI/ETS responses, respectively. Gene Ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed on the common DEGs, which included 4380 upregulated and 4019 downregulated genes and 930 upregulated and 1383 downregulated genes identified for the two strains at 12 h post inoculation (hpi) and 3 dpi, respectively. Compared to those at 12 hpi, at 3 dpi the number of common DEGs decreased, while the degree of differential expression was intensified. In addition, more disease-related GO pathways were enriched, and more transcription activator-like effector (TALE) putative target genes were upregulated in plants inoculated with HGA4 than in those inoculated with RS105 at 3 dpi. Then, four DRs were randomly selected for the BLS resistance assay. We found that CDP3.10, LOC_Os11g03820, and OsDSR2 positively regulated rice resistance to Xoc, while OsSPX3 negatively regulated rice resistance. CONCLUSIONS: By using an enrichment method for RNA-seq, we identified a group of DEGs related to the two stages of response to the Xoc strain, which included four functionally identified DR genes.


Subject(s)
Gene Expression Profiling , Oryza , Plant Diseases , Xanthomonas , Xanthomonas/pathogenicity , Xanthomonas/physiology , Xanthomonas/genetics , Oryza/microbiology , Oryza/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Transcriptome , Host-Pathogen Interactions/genetics , Plant Immunity/genetics , Gene Expression Regulation, Plant
6.
BMC Plant Biol ; 24(1): 145, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38413866

ABSTRACT

BACKGROUND: Alternative polyadenylation (APA) is an important pattern of post-transcriptional regulation of genes widely existing in eukaryotes, involving plant physiological and pathological processes. However, there is a dearth of studies investigating the role of APA profile in rice leaf blight. RESULTS: In this study, we compared the APA profile of leaf blight-susceptible varieties (CT 9737-613P-M) and resistant varieties (NSIC RC154) following bacterial blight infection. Through gene enrichment analysis, we found that the genes of two varieties typically exhibited distal poly(A) (PA) sites that play different roles in two kinds of rice, indicating differential APA regulatory mechanisms. In this process, many disease-resistance genes displayed multiple transcripts via APA. Moreover, we also found five polyadenylation factors of similar expression patterns of rice, highlighting the critical roles of these five factors in rice response to leaf blight about PA locus diversity. CONCLUSION: Notably, the present study provides the first dynamic changes of APA in rice in early response to biotic stresses and proposes a possible functional conjecture of APA in plant immune response, which lays the theoretical foundation for in-depth determination of the role of APA events in plant stress response and other life processes.


Subject(s)
Oryza , Xanthomonas , RNA-Seq , Oryza/metabolism , Polyadenylation/genetics , Disease Resistance/genetics , Stress, Physiological , Xanthomonas/physiology , Plant Diseases/microbiology , Gene Expression Regulation, Plant
7.
Plant Biotechnol J ; 22(8): 2186-2200, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38587024

ABSTRACT

The clade III subfamily of OsSWEETs includes transmembrane proteins necessary for susceptibility to bacterial blight (BB). These genes are targeted by the specific transcription activator-like effector (TALE) of Xanthomonas oryzae pv. oryzae and mediate sucrose efflux for bacterial proliferation. However, the mechanism through which OsSWEETs regulate rice immunity has not been fully elucidated. Here, we demonstrated that the cytosolic carboxyl terminus of OsSWEET11a/Xa13 is required for complementing susceptibility to PXO99 in IRBB13 (xa13/xa13). Interestingly, the C-terminus of ZmXa13, the maize homologue of OsSWEET11a/Xa13, could perfectly substitute for the C-terminus of OsSWEET11a/Xa13. Furthermore, OsSWEET11a/Xa13 interacted with the high-mobility group B1 (OsHMGB1) protein and the small heat shock-like protein OsHsp20L through the same regions in the C-terminus. Consistent with the physical interactions, knockdown or knockout of either OsHMGB1 or OsHsp20L caused an enhanced PXO99-resistant phenotype similar to that of OsSWEET11a/OsXa13. Surprisingly, the plants in which OsHMGB1 or OsHsp20L was repressed developed increased resistance to PXO86, PXO61 and YN24, which carry TALEs targeting OsSWEET14/Xa41 or OsSWEET11a/Xa13. Additionally, OsHsp20L can interact with all six members of clade III OsSWEETs, whereas OsHMGB1 can interact with five other members in addition to OsSWEET12. Overall, we revealed that OsHMGB1 and OsHsp20L mediate conserved BB susceptibility by interacting with clade III OsSWEETs, which are candidates for breeding broad-spectrum disease-resistant rice.


Subject(s)
Oryza , Plant Diseases , Plant Immunity , Plant Proteins , Xanthomonas , Oryza/genetics , Oryza/immunology , Oryza/metabolism , Oryza/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Immunity/genetics , HMGB1 Protein/metabolism , HMGB1 Protein/genetics , Gene Expression Regulation, Plant , Disease Resistance/genetics
8.
Appl Environ Microbiol ; : e0084824, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39158313

ABSTRACT

Xanthomonas species are major pathogens of plants and have been studied extensively. There is increasing recognition of the importance of non-pathogenic species within the same genus. With this came the need to understand the genomic and functional diversity of non-pathogenic Xanthomonas (NPX) at the species and strain level. This study reports isolation and investigation into the genomic diversity and variation in NPX isolates, chiefly Xanthomonas indica, a newly discovered NPX species from rice. The study establishes the relationship of X. indica strains within clade I of Xanthomonads with another NPX species, X. sontii, also associated with rice seeds. Identification of highly diverse strains, open-pan genome, and systematic hyper-variation at the lipopolysaccharide biosynthetic locus when compared to pathogenic Xanthomonas indicates the acquisition of new functions for adaptation. Furthermore, comparative genomics studies established the absence of major virulence genes such as type III secretion system and effectors, which are present in the pathogens, and the presence of a known bacterial-killing type IV secretion system (X-T4SS). The diverse non-pathogenic strains of X. indica and X. sontii were found to protect rice from bacterial leaf blight pathogen, X. oryzae pv. oryzae (Xoo). The absence of phenotype of an X-T4SS mutant suggests redundancy in the genetic basis of the mechanisms involved in the bioprotection function, which may include multiple genetic loci, such as putative bacteriocin-encoding gene clusters and involvement of other factors such as nutrient and niche competition apart from induction of innate immunity through shared microbial-associated molecular patterns. The rice-NPX community and its pathogenic counterpart can be a promising model for understanding plant-microbe-microbiome interaction studies.IMPORTANCEThe Xanthomonas group of bacteria is known for its characteristic lifestyle as a phytopathogen. However, the discovery of non-pathogenic Xanthomonas (NPX) species is a major shift in understanding this group of bacteria. Multi-strain, in-depth genomic, evolutionary and functional studies on each of these NPX species are still lacking. This study on diverse non-pathogenic strains provides novel insights into genome diversity, dynamics, and evolutionary trends of NPX species from rice microbiome apart from its relationship with other relatives that form a sub-clade. Interestingly, we also uncovered that NPX species protect rice from pathogenic Xanthomonas species. The plant protection property shows their importance as a part of a healthy plant microbiome. Furthermore, finding an open pan-genome and large-scale variation at lipopolysaccharide biosynthetic locus indicates a significant role of the NPX community in host adaptation. The findings and high-quality genomic resources of NPX species and the strains will allow further systematic molecular and host-associated microbial community studies for plant health.

9.
New Phytol ; 243(1): 362-380, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38730437

ABSTRACT

Plants typically activate distinct defense pathways against various pathogens. Heightened resistance to one pathogen often coincides with increased susceptibility to another pathogen. However, the underlying molecular basis of this antagonistic response remains unclear. Here, we demonstrate that mutants defective in the transcription factor ETHYLENE-INSENSITIVE 3-LIKE 2 (OsEIL2) exhibited enhanced resistance to the biotrophic bacterial pathogen Xanthomonas oryzae pv oryzae and to the hemibiotrophic fungal pathogen Magnaporthe oryzae, but enhanced susceptibility to the necrotrophic fungal pathogen Rhizoctonia solani. Furthermore, necrotroph-induced OsEIL2 binds to the promoter of OsWRKY67 with high affinity, leading to the upregulation of salicylic acid (SA)/jasmonic acid (JA) pathway genes and increased SA/JA levels, ultimately resulting in enhanced resistance. However, biotroph- and hemibiotroph-induced OsEIL2 targets OsERF083, resulting in the inhibition of SA/JA pathway genes and decreased SA/JA levels, ultimately leading to reduced resistance. Our findings unveil a previously uncharacterized defense mechanism wherein two distinct transcriptional regulatory modules differentially mediate immunity against pathogens with different lifestyles through the transcriptional reprogramming of phytohormone pathway genes.


Subject(s)
Cyclopentanes , Gene Expression Regulation, Plant , Oryza , Oxylipins , Plant Diseases , Plant Immunity , Plant Proteins , Rhizoctonia , Salicylic Acid , Xanthomonas , Oxylipins/metabolism , Salicylic Acid/metabolism , Cyclopentanes/metabolism , Oryza/microbiology , Oryza/genetics , Oryza/immunology , Plant Diseases/microbiology , Plant Diseases/immunology , Xanthomonas/physiology , Plant Proteins/metabolism , Plant Proteins/genetics , Rhizoctonia/physiology , Plant Immunity/drug effects , Mutation/genetics , Disease Resistance/genetics , Promoter Regions, Genetic/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Protein Binding/drug effects
10.
Plant Cell Rep ; 43(3): 72, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38376569

ABSTRACT

KEY MESSAGE: Rice CC-type NLR XinN1, specifically induced by a PRR XA21, activates defense pathways against Xoo. Plants have evolved two layers of immune systems regulated by two different types of immune receptors, cell surface located pattern recognition receptors (PRRs) and intracellular nucleotide-binding domain leucine-rich repeat-containing receptors (NLRs). Plant PRRs recognize conserved molecular patterns from diverse pathogens, resulting in pattern-triggered immunity (PTI), whereas NLRs are activated by effectors secreted by pathogens into plant cells, inducing effector-triggered immunity (ETI). Rice PRR, XA21, recognizes a tyrosine-sulfated RaxX peptide (required for activation of XA21-mediated immunity X) as a molecular pattern secreted by Xanthomonas oryzae pv. oryzae (Xoo). Here, we identified a rice NLR gene, XinN1, that is specifically induced during the XA21-mediated immune response against Xoo. Transgenic rice plants overexpressing XinN1 displayed increased resistance to infection by Xoo with reduced lesion length and bacterial growth. Overexpression of autoactive mutant of XinN1 (XinN1D543V) also displayed increased resistance to Xoo, accompanied with severe growth retardation and cell death. In rice protoplast system, overexpression of XinN1 or XinN1D543V significantly elevated reactive oxygen species (ROS) production and cytosolic-free calcium (Ca2+) accumulations. In addition, XinN1 overexpression additionally elevated the ROS burst caused by the interaction between XA21 and RaxX-sY and induced the transcription of PTI signaling components, including somatic embryogenesis receptor kinases (OsSERKs) and receptor-like cytoplasmic kinases (OsRLCKs). Our results suggest that XinN1 induced by the PRR XA21 activates defense pathways and provides enhanced resistance to Xoo in rice.


Subject(s)
Oryza , Oryza/genetics , Reactive Oxygen Species , Receptors, Pattern Recognition/genetics , Signal Transduction , Biological Transport
11.
Pestic Biochem Physiol ; 199: 105768, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38458677

ABSTRACT

Plant pathogenic bacteria can cause numerous diseases for higher plants and result in severe reduction of crop yield. Introduction of new bactericides can always effectively control these plant diseases. Benziothiazolinone (BIT) is a novel fungicide registered in China for the control of plant fungal diseases, however, its anti-bacterial activity is not well studied. The results of activity tests showed that BIT exhibited stronger inhibitory activity against bacteria, particularly for Xanthomonas oryzae pv. oryzae (Xoo) (EC50 = 0.17 µg/mL), which was superior than that of the tested fungi in vitro. BIT also exhibited excellent protective and curative activity against rice bacterial leaf blight (BLB) caused by Xoo with the control efficacies of 71.37% and 91.64% at 600 µg/mL, respectively. After treatment with BIT, Xoo cell surface became wrinkled and the cell shape was distorted with extruding cellular content. It was also found that BIT decreased DNA synthesis and affected the biofilm formation and motility of Xoo cells. However, no significant change in the protein content was observed. Moreover, the results of quantitative real-time PCR also showed that expressions of several genes related to DNA synthesis, biofilm formation and motility of Xoo cells were down- or up-regulated, which further proved the anti-bacterial activity of BIT in influencing the biological properties of Xoo. Additionally, BIT also enhanced the activity of phenylalanine ammonia lyase (PAL), a plant defense enzyme. Taken together, benziothiazolinone might be served as an alternative candidate for the control of BLB.


Subject(s)
Oryza , Xanthomonas , Anti-Bacterial Agents/pharmacology , DNA , China , Oryza/metabolism , Plant Diseases/prevention & control , Plant Diseases/microbiology
12.
Pestic Biochem Physiol ; 202: 105913, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38879317

ABSTRACT

Bacterial leaf blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), poses a significant threat to rice cultivation across diverse regions. Growing concerns about pesticide resistance and environmental impact underscore the urgent necessity for eco-friendly biopesticides. Here, the complete genome sequence of Streptomyces albidoflavus strain ML27 revealed substantial antimicrobial activity and secondary metabolite production potential through genome mining. 3,4-dimethoxyphenol (purity 97%) was successfully isolated from the fermentation broth of S. albidoflavus strain ML27, exhibiting broad and pronounced inhibitory effects on the growth of seven different fungi and five tested bacteria. The efficacy of 3,4-dimethoxyphenol in controlling rice bacterial leaf blight was evaluated through pot tests, demonstrating substantial therapeutic (69.39%) and protective (84.53%) effects. Application of 3,4-dimethoxyphenol to Xoo resulted in cells displayed notable surface depressions, wrinkles, distortions, or even ruptures compared to their typical morphology. Transcriptome analysis revealed significant inhibition of membrane structures, protein synthesis and secretion, bacterial secretion system, two-component system, flagellar assembly, as well as various metabolic and biosynthetic pathways by 3,4-dimethoxyphenol. Notably, the down-regulation of the type III secretion system (T3SS) expression was a pivotal finding. Furthermore, validation via quantitative real-time polymerase chain reaction (qRT-PCR) analysis confirmed significant downregulation of 10 genes related to T3SS upon 3,4-dimethoxyphenol treatment. Based on these results, it is promising to develop 3,4-dimethoxyphenol as a novel biopesticide targeting the T3SS of Xoo for controlling bacterial leaf blight in rice.


Subject(s)
Streptomyces , Xanthomonas , Xanthomonas/drug effects , Xanthomonas/genetics , Streptomyces/genetics , Streptomyces/metabolism , Plant Diseases/microbiology , Gene Expression Profiling , Oryza/microbiology , Anti-Bacterial Agents/pharmacology
13.
Molecules ; 29(6)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38543048

ABSTRACT

SYAUP-491 is a novel alkyl sulfonamide. In this study, in vivo and in vitro tests were performed along with a proteomic analysis to determine the effects and underlying mechanisms of the antibacterial activity of SYAUP-491 against the causative agent of bacterial leaf blight in rice. The antibacterial test results suggested that SYAUP-491 exhibited significant activities against Xanthomonas oryzae pv. oryzae (Xoo) in vitro and in vivo. The minimal EC50 values reached 6.96 µg/mL and the curative activity reached 74.1%. Detailed studies demonstrated that SYAUP-491 altered membrane permeability and caused morphological changes. Based on proteomics results, SYAUP-491 might inhibit bacterial protein synthesis. SYAUP-491 may disrupt and alter cell membrane permeability and could further act on ribosomes in the bacterial body. Given the above results, SYAUP-491 could serve as a new lead compound in the research of antibacterial control of plant pathogenic bacterial disease.


Subject(s)
Oryza , Xanthomonas , Proteomics , Anti-Bacterial Agents/pharmacology , Sulfonamides , Oryza/microbiology , Plant Diseases/prevention & control , Plant Diseases/microbiology , Microbial Sensitivity Tests
14.
Plant J ; 110(3): 646-657, 2022 05.
Article in English | MEDLINE | ID: mdl-35106860

ABSTRACT

The rice immune receptor XA21 confers resistance to Xanthomonas oryzae pv. oryzae (Xoo), and upon recognition of the RaxX21-sY peptide produced by Xoo, XA21 activates the plant immune response. Here we screened 21 000 mutant plants expressing XA21 to identify components involved in this response, and reported here the identification of a rice mutant, sxi4, which is susceptible to Xoo. The sxi4 mutant carries a 32-kb translocation from chromosome 3 onto chromosome 7 and displays an elevated level of DCL2a transcript, encoding a Dicer-like protein. Silencing of DCL2a in the sxi4 genetic background restores resistance to Xoo. RaxX21-sY peptide-treated leaves of sxi4 retain the hallmarks of XA21-mediated immune response. However, WRKY45-1, a known negative regulator of rice resistance to Xoo, is induced in the sxi4 mutant in response to RaxX21-sY peptide treatment. A CRISPR knockout of a short interfering RNA (TE-siRNA815) in the intron of WRKY45-1 restores the resistance phenotype in sxi4. These results suggest a model where DCL2a accumulation negatively regulates XA21-mediated immunity by altering the processing of TE-siRNA815.


Subject(s)
Oryza , Xanthomonas , Oryza/metabolism , Peptides/metabolism , Phenotype , Plant Diseases/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Serine-Threonine Kinases/genetics , Xanthomonas/metabolism
15.
Bioorg Chem ; 141: 106871, 2023 12.
Article in English | MEDLINE | ID: mdl-37734193

ABSTRACT

Bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae (Xoo) has a significant impact on rice yield and quality worldwide. Traditionally, bactericide application has been commonly used to control this devastating disease. However, the overuse of fungicides has led to a number of problems such as the development of resistance and environmental pollution. Therefore, the development of new methods and approaches for disease control are still urgent. In this paper, a series of cinnamic acid derivatives were designed and synthesized, and three novel T3SS inhibitors A10, A12 and A20 were discovered. Novel T3SS inhibitors A10, A12 and A20 significantly inhibited the hpa1 promoter activity without affecting Xoo growth. Further studies revealed that the title compounds A10, A12 and A20 significantly impaired hypersensitivity in non-host plant tobacco leaves, while applications on rice significantly reduced symptoms of bacterial leaf blight. RT-PCR showed that compound A20 inhibited the expression of T3SS-related genes. In summary, this work exemplifies the potential of the title compound as an inhibitor of T3SS and its efficacy in the control of bacterial leaf blight.


Subject(s)
Oryza , Xanthomonas , Type III Secretion Systems/genetics , Type III Secretion Systems/metabolism , Cinnamates/pharmacology , Cinnamates/metabolism , Xanthomonas/metabolism , Oryza/metabolism
16.
Phytopathology ; 113(2): 170-182, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36095334

ABSTRACT

Xanthomonas oryzae pv. oryzae (Xoo) is a Gram-negative bacterium that causes bacterial leaf blight in rice. In this study, we identified a putative TrpR-like protein, PXO_TrpR (PXO_00831), in Xoo. This protein contains a tryptophan (Trp) repressor domain and is highly conserved in Xanthomonas. Auxotrophic assays and RT-qPCR confirmed that PXO_TrpR acts as a Trp repressor, negatively regulating the expression of Trp biosynthesis genes. Pathogenicity tests showed that PXO_trpR knockout in Xoo significantly reduced lesion development and disease symptoms in the leaves of susceptible rice. RNA-seq analysis and phenotypic tests revealed that the PXO_trpR mutant exhibited impaired cell motility and was more sensitive to H2O2 oxidative stress than the wild-type strain. Furthermore, we found that the sigma 70 factor RpoD controlled the transcription of PXO_trpR by directly binding to its promoter region. This study demonstrates the biological function and transcriptional mechanism of PXO_TrpR as a Trp repressor in Xoo and evaluates its novel pathogenic roles by regulating flagellar motility and the oxidative stress response.


Subject(s)
Oryza , Xanthomonas , Virulence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Sigma Factor/genetics , Sigma Factor/metabolism , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/metabolism , Plant Diseases/microbiology , Xanthomonas/genetics , Oxidative Stress , Oryza/microbiology , Gene Expression Regulation, Bacterial
17.
Phytopathology ; 113(6): 953-959, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36441870

ABSTRACT

Xanthomonas oryzae pv. oryzae (Xoo) is a major rice pathogen, and its genome harbors extensive inter-strain and inter-lineage variations. The emergence of highly virulent pathotypes of Xoo that can overcome major resistance (R) genes deployed in rice breeding programs is a grave threat to rice cultivation. The present study reports on a long-read Oxford nanopore-based complete genomic investigation of Xoo isolates from 11 pathotypes that are reported based on their reaction toward 10 R genes. The investigation revealed remarkable variation in the genome structure in the strains belonging to different pathotypes. Furthermore, transcription activator-like effector (TALE) proteins secreted by the type III secretion system display marked variation in content, genomic location, classes, and DNA-binding domain. We also found the association of tal genes in the vicinity of regions with genome structural variations. Furthermore, in silico analysis of the genome-wide rice targets of TALEs allowed us to understand the emergence of pathotypes compatible with major R genes. Long-read, cost-effective sequencing technologies such as nanopore can be a game changer in the surveillance of major and emerging pathotypes. The resource and findings will be invaluable in the management of Xoo and in appropriate deployment of R genes in rice breeding programs.


Subject(s)
Oryza , Xanthomonas , Transcription Activator-Like Effectors/genetics , Transcription Activator-Like Effectors/metabolism , Plant Diseases/genetics , Plant Breeding , Xanthomonas/genetics , Oryza/genetics
18.
Lett Appl Microbiol ; 76(1)2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36688787

ABSTRACT

Among the various biotic factors that disrupt crop yield, Xanthomonas oryzae pv oryzae (Xoo) is the most ruinous microbe of rice and causes bacterial leaf blight (BLB) disease. The present study focused on the utilization of copper nanoparticles (Cu-NPs) to control BLB. The copper nanosuspension (259.7 nm) prepared using Na-CMC, CuSO4·7H2O, and NaOH showed effectively inhibited Xoo (65.0 µg/ml). The performance of Cu-NPs in vivo showed enhanced plant attributes (127.9% root length and 53.9% shoot length) compared to the control and CuSO4 treated seedling. Furthermore, Cu-NPs treated seedlings showed 23.01% disease incidence (DI) compared to CuSO4 (85.71%) treated and control plants (91.83%). In addition to enhancing the growth parameters and reducing DI, seed priming with Cu-NPs improved the total chlorophyll content to 36.0% compared to the control. The assessment of antioxidant enzymes such as superoxide dismutase (1.9 U), polyphenol oxidase, peroxidase, and phenylalanine ammonia-lyase (two- to three-fold) in roots and shoots of rice plants revealed significant enhancement in Cu-NPs treated seedlings (P < 0.05). The present study suggests that Cu-NPs can be used to control Xoo and enhance rice growth.


Subject(s)
Nanoparticles , Oryza , Xanthomonas , Oryza/microbiology , Copper/pharmacology , Seedlings/microbiology , Plant Diseases/microbiology
19.
Ecotoxicol Environ Saf ; 257: 114935, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37086623

ABSTRACT

Recently, the application of cobalt oxide nanoparticles (Co3O4NPs) has gained popularity owing to its magnetic, catalytic, optical, antimicrobial, and biomedical properties. However, studies on its use as a crop protection agent and its effect on photosynthetic apparatus are yet to be reported. Here, Co3O4NPs were first green synthesized using Hibiscus rosa-sinensis flower extract and were characterized using UV-Vis spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction (XRD), transmission/scanning electron microscopy methods. Formation of the Co3O4NPs was attested based on surface plasmon resonance at 210 nm. XRD assay showed that the samples were crystalline having a mean size of 34.9 nm. The Co3O4NPs at 200 µg/ml inhibited the growth (OD600 = 1.28) and biofilm formation (OD570 = 1.37) of Xanthomonas oryzae pv. oryzae (Xoo) respectively, by 72.87% and 79.65%. Rice plants inoculated with Xoo had disease leaf area percentage (DLA %) of 57.25% which was significantly reduced to 11.09% on infected plants treated with 200 µg/ml Co3O4NPs. Also, plants treated with 200 µg/ml Co3O4NPs only had significant increment in shoot length, root length, fresh weight, and dry weight in comparison to plants treated with double distilled water. The application of 200 µg/ml Co3O4NPs on the Arabidopsis plant significantly increased the photochemical efficacy of PSII (ΦPSII) and photochemical quenching (qP) respectively, by 149.10% and 125.00% compared to the control while the non-photochemical energy dissipation (ΦNPQ) was significantly lowered in comparison to control. In summary, it can be inferred that Co3O4NPs can be a useful agent in the management of bacterial phytopathogen diseases.


Subject(s)
Arabidopsis , Nanoparticles , Oryza , Nanoparticles/chemistry , Oxides/pharmacology , Plant Diseases/microbiology
20.
Plant Dis ; 107(11): 3623-3626, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37189043

ABSTRACT

Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial leaf blight (BLB), is one of the most destructive bacterial pathogens in rice production worldwide. Although several complete genome sequences of Xoo strains have been released in public databases, they are mainly isolated from low-altitude indica rice cultivating areas. Here, a hypervirulent strain, YNCX, isolated from the high-altitude japonica rice-growing region in Yunnan Plateau, was used to extract genomic DNA for PacBio sequencing and Illumina sequencing. After assembly, a high-quality complete genome consisting of a circular chromosome and six plasmids was generated. The genome sequence of YNCX provides a valuable resource for high-altitude races and enables the identification of new virulence TALE effectors, contributing to a better understanding of rice-Xoo interactions.


Subject(s)
Oryza , Xanthomonas , Oryza/microbiology , China , Virulence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL