Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
J Environ Manage ; 364: 121432, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38878573

ABSTRACT

The physical and chemical characteristics of fly ash has changed significantly under ultra-low emission system and the current leaching system is no longer suitable for high alkalinity fly ash. This work investigated the pH values and evolution of physical and chemical characteristics of fly ash from 24 typical municipal solid waste incineration plants in China. The pH value of the leaching solution obtained by HJ/T 300-2007 presented two different acid and alkali characteristics, where high and low alkalinity fly ash accounted for 54.17% and 45.83%, respectively. The alkali content in fly ash increased significantly after ultra-low emission standard, increasing by 18.24% compared with before the implementation of GB 18485-2014. The leaching behavior of high alkalinity fly ash showed the illusion that they could enter the landfill only by the addition of a small amount of chelating agent or even without stabilization treatment, and its long-term landfill risk is significant. The phase change of high alkalinity fly ash and pH value change of the leaching solution after carbonation were the key factors for the leaching concentration change of heavy metals. Therefore, it is recommended to improve the existing leaching system or conduct accelerated carbonization experiments to scientifically evaluate the long-term leaching characteristics of high alkalinity fly ash, and to reduce the risk of heavy metal release from high alkalinity FA after entering the landfill site.


Subject(s)
Coal Ash , Incineration , Solid Waste , Coal Ash/analysis , Coal Ash/chemistry , Solid Waste/analysis , China , Metals, Heavy/analysis , Hydrogen-Ion Concentration , Refuse Disposal
2.
Environ Res ; 217: 114805, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36375507

ABSTRACT

The carbonation of alkaline wastes is an interesting research field that may offer opportunities for CO2 reduction. However, the literature is mainly devoted to studying different waste sequestration capabilities, with lame attention to the reliability of the data about CO2 reduction, or to the possibilities to increase the amount of absorbed CO2. In this work, for the first time, the limitation of some methods used in literature to quantify the amount of sequestered CO2 is presented, and the advantages of using suitable XRD strategies to evaluate the crystalline calcium carbonate phases are demonstrated. In addition, a zero-waste approach, aiming to stabilize the waste by coupling the use of by-products and the possibility to obtain CO2 sequestration, was considered. In particular, for the first time, the paper investigates the differences in natural and accelerated carbonation (NC and AC) mechanisms, occurring when municipal solid waste incineration (MSWI) fly ash is stabilized by using the bottom ash with the same origin, and other by-products. The stabilization mechanism was attributed to pozzolanic reactions with the formation of calcium silicate hydrates or calcium aluminate hydrate phases that can react with CO2 to produce calcium carbonate phases. The work shows that during the AC, crystalline calcium carbonate was quickly formed by the reaction of Ca(OH)2 and CaClOH with CO2. On the contrary, in NC, carbonation occurred due to reactions also with the amorphous Ca. The sequestration capability of this technology, involving the mixing of waste and by-products, is up to 165 gCO2/Kg MSWI FA, which is higher than the literature data.


Subject(s)
Metals, Heavy , Refuse Disposal , Coal Ash , Incineration , Solid Waste/analysis , Carbon Dioxide/analysis , Metals, Heavy/analysis , Reproducibility of Results , Carbonates/analysis , Carbonates/chemistry , Calcium Carbonate/chemistry , Refuse Disposal/methods , Particulate Matter/chemistry
3.
J Environ Manage ; 167: 185-95, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26686071

ABSTRACT

A factorial study was conducted on basic oxygen furnace slag from a steelmaking industry with the aim of systematically identifying the individual and joint effects of the operating parameters (total pressure, CO2 concentration in the gas phase and temperature) on the CO2 sequestration yield of a direct aqueous carbonation process. Each operating parameter was varied over a range of three levels according to a 3(3) factorial design, resulting in 27 carbonation experiments. The carbonation performance and the changes in particle size and mineralogical characteristics of the slag were investigated in detail. The analysis of the experimental results indicated large effects of the operating factors on CO2 uptake, which was observed to span the range 6.7-53.6 g CO2/100 g slag. The best carbonation performance achieved was particularly significant compared to previous studies, even more considering the relative mild operating conditions adopted (P = 5 bar, C = 40% vol. CO2, T = 50 °C, t = 4 h). The analysis of the solid and liquid phases at the end of the carbonation treatment evidenced significant changes in the physical, chemical and mineralogical composition of the material. In particular, evidence was gained of other elements (Mg, Fe, Mn, Zn) in addition to Ca being intensively involved in the carbonation reactions, with a variety of carbonate phases being produced in addition to calcium carbonate forms.


Subject(s)
Carbon Dioxide , Carbon Sequestration , Metallurgy , Calcium Carbonate/chemistry , Carbon Dioxide/analysis , Carbon Dioxide/chemistry , Carbonates/chemistry , Industrial Waste/analysis , Particle Size , Steel/chemistry , Temperature , Water/analysis
4.
Waste Manag Res ; 34(3): 184-94, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26644396

ABSTRACT

The possibility of producing calcium sulphoaluminate cement (CSA) by adding municipal solid waste incinerator (MSWI) fly ash to raw meal was investigated. After subjecting MSWI fly ash to accelerated carbonation and washing with water (ACW), various amounts (i.e., 5, 10 and 15 wt%) of the treated ash were added to raw meal composed of a mixture of bauxite, limestone and gypsum. The mixtures were sintered in a laboratory-scale muffle furnace at temperatures of 1250°, 1300°, 1325° and 1350 °C for various durations. The influence of different quantities of MSWI fly ash on the mineralogy, major phase composition and strength development of the resulting clinker was studied, as was the effect of ash treatments on leaching and volatilization of trace elements. The ACW treatment reduced the volatilization ratio of trace elements during the clinkerization process. Volatilization ratios for lead, cadmium and zinc were 21.5%, 33.6% and 16.3%, respectively, from the ACW fly ash treatment, compared with ratios of 97.5%, 93.1% and 85.2% from untreated fly ash. The volatilization ratios of trace elements were ordered as follows: untreated fly ash > carbonated fly ash > carbonated and water-washed fly ash. The ACW process also reduced the chloride content in the MSWI fly ash by 90 wt% and prevented high concentrations of trace elements in the effluents.


Subject(s)
Aluminum Compounds/analysis , Calcium Compounds/analysis , Coal Ash/chemistry , Construction Materials/analysis , Incineration/methods , Solid Waste/analysis , Sulfur Compounds/analysis , Trace Elements/analysis , Carbonates/chemistry
5.
Materials (Basel) ; 17(18)2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39336202

ABSTRACT

Lime mortars are considered the most compatible material for monuments and historic buildings, and they are widely used in restoration works. A key factor determining the mechanical and physical properties of lime mortars is carbonation, which provides strength and hardness. This paper indicates the properties gained in lime mortars produced by Ca(OH)2 and CaO reinforced with different bio-fibers (hemp and lavender) when exposed to the natural environment and in accelerated carbonation. At 90 and 180 days of manufacture, the mechanical and physical properties of the produced composites have been tested. The results show that the carbonation reaction works faster in the case of hot lime mortars, increasing their compressive strength by up to 3.5 times. Hemp-reinforced mortars led to an enhancement in strength by up to 30%, highlighting the significance of bio-fibers in facilitating CO2 diffusion. This was also verified by the thermogravimetric analysis and the determination of the carbon content of the samples. Optimal mechanical properties were observed in mixtures containing quicklime and hemp fibers when conditioned with 3% CO2 at the tested ages.

6.
Materials (Basel) ; 17(18)2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39336314

ABSTRACT

Carbon emission reduction and steel slag (SS) treatment are challenges in the steel industry. The accelerated carbonation of SS and carbonated steel slag (CSS) as a supplementary cementitious material (SCM) in cement can achieve both large-scale utilization of SS and CO2 emission reduction, which is conducive to low-carbon sustainable development. This paper presents the utilization status of CSS. The accelerated carbonation route and its effects on the properties of CSS are described. The carbonation reaction of SS leads to a decrease in the average density, an increase in the specific surface area, a refinement of the pore structure, and the precipitation of different forms of calcium carbonate on the CSS surface. Carbonation can increase the specific surface area of CSS by about 24-80%. The literature review revealed that the CO2 uptake of CSS is 2-27 g/100 g SS. The effects of using CSS as an SCM in cement on the mechanical properties, workability, volume stability, durability, environmental performance, hydration kinetics, and microstructure of the materials are also analyzed and evaluated. Under certain conditions, CSS has a positive effect on cement hydration, which can improve the mechanical properties, workability, bulk stability, and sulfate resistance of SS cement mortar. Meanwhile, SS carbonation inhibits the leaching of heavy metal ions from the solid matrix. The application of CSS mainly focuses on material strength, with less attention being given to durability and environmental performance. The challenges and prospects for the large-scale utilization of CSS in the cement and concrete industry are described.

7.
Materials (Basel) ; 17(14)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39063859

ABSTRACT

The increasing demand for concrete reduces natural resources, such as sand and gravel, and also leads to a sharp increase in the amount of waste concrete produced. Due to the fact that the physical and mechanical properties of waste concrete made of recycled aggregates (RAs) differ greatly, it is difficult to use directly as a raw material for reinforced concrete (RC) components, which greatly restricts the popularization and application of RAs in actual projects. Utilizing the alkali aggregate properties of RAs to capture CO2 from industrial waste gases is an innovative way of enhancing their properties and promoting their application in real projects. However, the extent of the influence of original concrete strength (OCS) and coarse aggregate size (CAS) on the accelerated carbonation modification of RA is not clear, and a quantitative description is still required. For this purpose, accelerated carbonation tests on recycled coarse aggregate (RCA) samples under completely dry condition were carried out, and the variation laws for the physical property indicators of RCA samples before and after accelerated carbonation versus the OCS and CAS were revealed. Moreover, the influence degrees of the two factors, OCS and CAS, on the property enhancement of RCAs after accelerated carbonation were clarified, and the results of OCS and CAS corresponding to the best accelerated carbonation effects of RCAs were determined. By analyzing the micromorphology of RCA before and after accelerated carbonation, the reasons for property enhancement of RCAs with various OCSs and CASs under the best carbonation modifications were clarified. The findings will contribute to the development of basic theoretical research on accelerated carbonation modification of RA and have important scientific value.

8.
Materials (Basel) ; 17(17)2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39274584

ABSTRACT

The poor properties of recycled coarse aggregate (RCA) and recycled coarse aggregate concrete (RCAC) are considered key constraints hindering the reuse of this waste resource in marine engineering. The CO2-based accelerated carbonation method, which utilizes the alkali aggregate properties of RCA to achieve CO2 uptake and sequestration while significantly enhancing its properties, has attracted widespread attention. However, the degree of improvement in the properties of RCA under different initial moisture conditions (IMCs) and aggregate particle sizes (APSs) after CO2-accelerated carbonation remains unclear. Moreover, the quantitative effect of carbonated recycled coarse aggregate (CRCA), which is obtained from RCA samples with the optimal initial moisture conditions, on the improvement of RCAC under optimal accelerated carbonation modification conditions still needs to be studied in depth. For this investigation, a CO2-accelerated carbonation experiment was carried out on RCA samples with different IMCs and APSs, and the variations in the properties of RCA with respect to its IMC and APS were assessed. The degree of accelerated carbonation modification of RCA under different IMCs and APSs was quantified, and the optimal initial moisture conditions for enhancing the properties of the RCA were confirmed. By preparing concrete specimens based on the natural coarse aggregate, RCA, and CRCA with the best initial moisture conditions (considering the same concrete-water proportion), the effect of CRCA on the workability, mechanical properties, and durability of the corresponding concrete specimen was determined. The findings of this study can be used to effectively promote the sustainable development of marine science and engineering in the future and contribute to global dual-carbon goals, which are of great practical significance and scientific value.

9.
Materials (Basel) ; 16(23)2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38068088

ABSTRACT

In the field of construction materials, the development of fundamental technologies to reduce energy consumption and CO2 emissions, such as manufacturing process improvement and the expanded use of alternative materials, is required. Technologies for effectively reducing energy consumption and improving CO2 absorption and reduction that can meet domestic greenhouse gas reduction targets are also required. In this study, calcium-aluminate-ferrite (CAF), a ternary system of CaO·Al2O3·Fe2O3, was sintered at a low temperature (1100 °C) to examine the possibility of CO2 adsorption, and excellent CO2 absorption performance was confirmed, as the calcite content was found to be 11.01% after 3 h of the reaction between synthetic CAF (SCAF) and CO2. In addition, the physical and carbonation characteristics were investigated with respect to the SCAF substitution rate for cement (10%, 30%, 50%, 70%, and 100%). It was found that SCAF 10% developed a compressive strength similar to that of ordinary Portland cement (OPC 100%), but the compressive strength tended to decrease as the SCAF substitution rate increased. An increase in the SCAF substitution rate led to the rapid penetration of CO2, and carbonation was observed in all the specimens after 7 days. As carbonation time increased, the CO2 diffusion coefficient tended to decrease. This is because the diffusion of CO2 in the cement matrix follows the semi-infinite model of Fick's second law. SCAF can contribute to reduced energy consumption and CO2 emissions because of the low-temperature sintering and can absorb and fix CO2 when a certain amount is substituted.

10.
Environ Sci Pollut Res Int ; 30(17): 50610-50619, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36797391

ABSTRACT

Cement-based materials manufactured from rocks and soils will release radon which is a carcinogen and affects indoor air quality. The alkaline cement-based material neutralizes with the acidic gas carbon dioxide in the air, reducing its pH value, known as carbonation. Carbonation of cement-based materials is an important environmental factor that can change the pore structure and effect radon release. In this study, test blocks of concrete, fly ash concrete, cement mortar, and cement paste were subjected to carbonation at 20 vol% CO2, 70% relative humidity, and a temperature of 20 ± 2 ℃ for 28 days to explore the effect of material characteristics and carbonation age on the radon exhalation rate. Carbonation had a significant influence on the radon exhalation rate, but this effect showed positive (promoting/increasing) and negative (inhibiting/decreasing) fluctuations with carbonation age. Among the material characteristics, aggregate content had the most significant influence, followed by fly ash and cement variety. The radon exhalation rate was ordered as cement mortar > concrete > cement paste before carbonation, but was concrete > cement mortar > cement paste after carbonation. The radon exhalation rate of cement paste blocks without aggregate was ~ 1 mBq/(m2·s) lower than that of cement mortar. The inhibition of radon emission by concrete was mainly observed in the early carbonation period (< 7 days), while that by fly ash concrete was observed after 7 days. The content of fly ash did not have a significant influence on the radon exhalation rate of materials. Radon inhibition by composite Portland cement concrete was mainly observed in the middle stage of carbonation (~ 14 days), while inhibition by ordinary Portland cement concrete was mainly observed in the early (3-7 days) and late (i.e., ~ 28 days) stages. The water/binder ratio did not significantly affect the radon exhalation; concrete with a low water/binder ratio showed weak radon inhibition only when the carbonation age was long. These results will help to evaluate radon pollution in indoor or underground environments under long-term use.


Subject(s)
Radon , Radon/analysis , Coal Ash/analysis , Exhalation , Construction Materials , Water
11.
Materials (Basel) ; 16(8)2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37109831

ABSTRACT

This research studied the effect of accelerated carbonation in the physical, mechanical and chemical properties of a non-structural vibro-compacted porous concrete made with natural aggregates and two types of recycled aggregates from construction and demolition waste (CDW). Natural aggregates were replaced by recycled aggregates using a volumetric substitution method and the CO2 capture capacity was also calculated. Two hardening environments were used: a carbonation chamber with 5% CO2 and a normal climatic chamber with atmospheric CO2 concentration. The effect of curing times of 1, 3, 7, 14 and 28 days on concrete properties was also analysed. The accelerated carbonation increased the dry bulk density, decreased the accessible porosity water, improved the compressive strength and decreased the setting time to reach a higher mechanical strength. The maximum CO2 capture ratio was achieved with the use of recycled concrete aggregate (52.52 kg/t). Accelerate carbonation conditions led to an increase in carbon capture of 525% compared to curing under atmospheric conditions. Accelerated carbonation of cement-based products containing recycled aggregates from construction and demolition waste is a promising technology for CO2 capture and utilisation and a way to mitigate the effects of climate change, as well as promote the new circular economy paradigm.

12.
Materials (Basel) ; 16(8)2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37109923

ABSTRACT

This paper presents a literature review on the effects of accelerated carbonation on alkali-activated materials. It attempts to provide a greater understanding of the influence of CO2 curing on the chemical and physical properties of various types of alkali-activated binders used in pastes, mortars, and concrete. Several aspects related to changes in chemistry and mineralogy have been carefully identified and discussed, including depth of CO2 interaction, sequestration, reactions with calcium-based phases (e.g., calcium hydroxide and calcium silicate hydrates and calcium aluminosilicate hydrates), as well as other aspects related to the chemical composition of alkali-activated materials. Emphasis has also been given to physical alterations such as volumetric changes, density, porosity, and other microstructural properties caused by induced carbonation. Moreover, this paper reviews the influence of the accelerated carbonation curing method on the strength development of alkali-activated materials, which has been awarded little attention considering its potential. This curing technique was found to contribute to the strength development mainly through decalcification of the Ca phases existing in the alkali-activated precursor, leading to the formation of CaCO3, which leads to microstructural densification. Interestingly, this curing method seems to have much to offer in terms of mechanical performance, making it an attractive curing solution that can compensate for the loss in performance caused by less efficient alkali-activated binders replacing Portland cement. Optimising the application of such CO2-based curing methods for each of the potential alkali-activated binders is recommended for future studies for maximum microstructural improvement, and thus mechanical enhancement, to make some of the "low-performing binders" adequate Portland cement substitutes.

13.
Waste Manag ; 172: 235-244, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37924599

ABSTRACT

Recycling of construction and demolition wastes contributes to achieve carbon summit and carbon neutrality early in the construction industry. Accelerated carbonation is a promising new technology for enhancing the properties of recycled concrete aggregates (RCAs) as well as mitigating global warming. This study performed a comparative life cycle assessment on RCAs modified by accelerated carbonation treatment and traditional methods. The effect of different treatment methods on environmental impacts of concrete was evaluated. The key contributors of environmental impacts for concrete incorporating carbonated RCAs were identified. Moreover, a sensitivity analysis on the transport distance of concrete incorporating carbonated RCAs was conducted. Results demonstrated that incorporating carbonated RCAs could significantly reduce the energy demand, environmental impacts and environmental cost compared with natural aggregate concrete. Accelerated carbonation treatment exhibited greater potential than the normal two-stage crushing and heating treatment in mitigating environmental burden, especially for the global warming potential. Cement production and transportation were the primary contributors to environmental impacts of concrete incorporating carbonated RCAs. Sensitivity analysis indicated incorporating carbonated RCAs as alternatives of natural aggregates contributes to lower the environmental impacts of concrete when the natural aggregates are far from urban areas while the recycling center is near the city.


Subject(s)
Waste Management , Animals , Waste Management/methods , Construction Materials , Industrial Waste/analysis , Carbonates , Carbon , Life Cycle Stages
14.
Materials (Basel) ; 16(19)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37834573

ABSTRACT

This paper investigates the fracture mechanical properties of concrete, using crushed concrete aggregates (CCA) and granulated blast furnace slag (GGBS) for partial cement replacement. CCAs made from prefabricated concrete replace 100% of the fine and coarse fractions in concrete recipes with w/c ratios of 0.42 and 0.48. Two pre-treatment methods, mechanical pre-processing (MPCCA) and accelerated carbonation (CO2CCA), are investigated for quality improvements in CCA. The resulting aggregates show an increased density, contributing to an increase in the concrete's compressive strength. The novelty of this paper is the superposition of the effects of the composite parts of concrete, the aggregate and the cement mortar, and their contributions to concrete fracture. Investigations are directed toward the influence of fine aggregates on mortar samples and the influence of the combination of coarse and fine aggregates on concrete samples. The physical and mechanical properties of the aggregates are correlated with mortar and concrete fracture properties. The results show that CCA concrete achieves 70% of the fracture energy values of concrete containing natural aggregates, and this value increases to 80% for GGBS mixes. At lower w/c ratios, MPCCA and CO2CCA concretes show similar fracture energies. CO2CCA fine aggregates are the most effective at strengthening the mortar phase, showing ductile concrete behavior at a w/c ratio of 0.48. MPCCA aggregates contribute to higher compressive strengths for w/c ratios of 0.42 and 0.48. Thus, mechanical pre-processing can be improved to produce CCA, which contributes to more ductile concrete behavior.

15.
Materials (Basel) ; 15(18)2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36143512

ABSTRACT

Engineered cementitious composites (ECCs) belong to a broad class of fibre-reinforced concrete. They incorporate synthetic polyvinyl alcohol (PVA) fibres, cement, fly ash and fine aggregates, and are designed to have a tensile strain capacity typically beyond 3%. This paper presents an investigation on the carbonation behaviour of engineered cementitious composites (ECCs) under coupled sustained flexural load and accelerated carbonation. The carbonation depth under a sustained stress level of 0, 0.075, 0.15, 0.3 and 0.6 relative to flexural strength was measured after 7, 14 and 28 days of accelerated carbonation. Thermogravimetric analysis, mercury intrusion porosimetry and microhardness measurements were carried out to show the coupled influence of sustained flexural load and accelerated carbonation on the changes of the mineral phases, porosity, pore size distribution and microhardness along the carbonation profile. A modified carbonation depth model that can be used to consider the coupled effect of flexural tensile stress and carbonation time was proposed. The results show that an exponential relationship can be observed between stress influence coefficient and flexural tensile stress level in the carbonation depth model of ECC, which is different when using plain concrete. Areas with a higher carbonation degree have greater microhardness, even under a large sustained load level, as the carbonation process refines the pore structure and the fibre bridges the crack effectively.

16.
Materials (Basel) ; 15(14)2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35888343

ABSTRACT

The increased concern about climate change is revolutionising the building materials sector, making sustainability and environmental friendliness increasingly important. This study evaluates the feasibility of incorporating recycled masonry aggregate (construction and demolition waste) in porous cement-based materials using carbonated water in mixing followed (or not) by curing in a CO2 atmosphere. The use of carbonated water can be very revolutionary in cement-based materials, as it allows hydration and carbonation to occur simultaneously. Calcite and portlandite in the recycled masonry aggregate and act as a buffer for the low-pH carbonated water. Carbonated water produced better mechanical properties and increased accessible water porosity and dry bulk density. The same behaviour was observed with natural aggregates. Carbonated water results in an interlaced shape of carbonate ettringite (needles) and fills the microcracks in the recycled masonry aggregate. Curing in CO2 together with the use of carbonated water (concomitantly) is not beneficial. This study provides innovative solutions for a circular economy in the construction sector using carbonated water in mixing (adsorbing CO2), which is very revolutionary as it allows carbonation to be applied to in-situ products.

17.
Sci Total Environ ; 803: 150135, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-34525728

ABSTRACT

Carbonation treatment (CT) by alkaline fly ash (FA) affects the stability of potentially toxic elements (PTEs). This study investigated the leachability and environmental risk of six PTEs contained in FA during natural and accelerated carbonation (NC, AC) using two typical leaching scenarios with distilled water (DW) and acetic acid (AA). The leaching of Pb/Cu/Cr/Ni in solidified/stabilized FA decreased due to CT in DW leaching, but the leaching of Pb/Zn/Cu/Cd increased due to CT in AA leaching. The leaching of the six PTEs (especially Pb/Cd) in AA leaching was significantly higher than that in DW leaching. CT was a promoting factor to increase the environmental risk level of PTEs in FA leachate, especially in AA leaching with H+ input. In the early stage of NC, under DW leaching tests, the environmental risk level of PTEs in FA leachate can be weakened due to the formation of carbonate minerals in the FA matrix. However, excessive NC increases the environmental risk of leached PTEs due to the decalcification of carbonate minerals. Both NC and AC increased the potential environmental risk of PTEs contained in the carbonated FA matrix. The nucleation and dissolution of carbonate minerals were interdependent with the immobilization and leaching of PTEs, which played a dominant role in the CT and leaching tests respectively. They jointly affected the occurrence behavior of PTEs in the FA matrix in CT tests and the leachability of PTEs in leaching tests. This study demonstrates that it is more scientific to evaluate the leachability of PTEs in carbonated FA according to the actual disposal scenarios.


Subject(s)
Metals, Heavy , Refuse Disposal , Carbon , Carbonates , Coal Ash , Incineration , Metals, Heavy/analysis , Particulate Matter , Solid Waste/analysis
18.
Polymers (Basel) ; 14(9)2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35566967

ABSTRACT

The physical and mechanical properties of hemp-fibre-reinforced alkali-activated (AA) mortars under accelerated carbonation were evaluated. Two matrices of different physical and chemical properties, i.e., a low Ca-containing and less dense one with fly ash (FA) and a high Ca-containing and denser one with FA and granulated blast furnace slag (GBFS), were reinforced with fibres (10 mm, 0.5 vol% and 1.0 vol%). Under accelerated carbonation, due to the pore refinement resulting from alkali and alkaline earth salt precipitation, AA hemp fibre mortars markedly (20%) decreased their water absorption. FA-based hemp mortars increased significantly their compressive and flexural strength (40% and 34%, respectively), whereas in the denser FA/GBFS matrix (due to the hindered CO2 penetration, i.e., lower chemical reaction between CO2 and pore solution and gel products), only a slight variation (±10%) occurred. Under accelerated carbonation, embrittlement of the fibre/matrix interface and of the whole composite occurred, accompanied by increased stiffness, decreased deformation capacity and loss of the energy absorption capacity under flexure. FA-based matrices exhibited more pronounced embrittlement than the denser FA/GBFS matrices. A combination of FA/GBFS-based mortar reinforced with 0.5 vol% fibre dosage ensured an optimal fibre/matrix interface and stress transfer, mitigating the embrittlement of the material under accelerated carbonation.

19.
Environ Sci Pollut Res Int ; 28(12): 14969-14982, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33222071

ABSTRACT

The application of three simple and cost-effective technologies for ex situ remediation of the sediment of Begej River in Serbia is presented in this paper. In the first step, conventional electrokinetic treatment (EK) was carried out to reduce the amount of contaminated sediment and enhance the accumulation of metals. Subsequently, stabilization/solidification (S/S) treatment was applied to the remaining portion of polluted sediment to immobilize the accumulated metals. At the same time, the influence of accelerated carbonation on the effectiveness of the treatment was evaluated. The immobilizing agents used in this study included bio ash produced by combustion of wheat and soy straw mixture and bio ash derived from molasses incineration. After the treatments, the risk assessment was performed by using the sequential extraction procedure (SEP) and TCLP and DIN 3841-4 S4 leaching tests. The results obtained after the EK treatment revealed a reduction in the amount of polluted sediment to a half. Leaching tests and SEP performed on S/S mixtures after a 28-day maturation period indicated that accelerated carbonation decreased the mobility of critical metals, especially in wheat and soy straw mixtures. Moreover, based on the leaching tests, all prepared mixtures were categorized as non-hazardous and safe for disposal according to the relevant Serbian regulations. The newly developed method that combines EK and S/S treatments with the addition of accelerated carbonation produced reduced volumes of stabilized sediment which is safe for disposal.


Subject(s)
Carbonates , Metals, Heavy , Coal Ash , Incineration , Metals , Metals, Heavy/analysis , Rivers , Serbia
20.
Sci Total Environ ; 746: 141182, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32768782

ABSTRACT

Drinking water treatment sludge (DWTS) can be recycled into low-strength concrete blocks for construction use. The sodium sulfate resistance and leaching behaviours of the DWTS-derived blocks are investigated in this study. The experimental results show that the addition of DWTS degrades the sodium sulfate resistance of the concrete blocks, however CO2 curing compensates for such property, especially in the case of blocks incorporating 30% DWTS. The improvement can be attributed to the formation of crystalline CaCO3 during CO2 curing for microstructure refinement evidenced by X-ray Computed Tomography and Scanning Electron Microscopy. Leaching analyses show that Cu and Al concentrations increased with increasing DWTS content, and CO2 curing adversely increased the leachability of metals due to the decrease of pH, especially at early leaching stage. Nevertheless, the total leaching concentrations of Cu and Al after 60-day test is far below the prescribed limitations, regardless of samples subject to air curing or CO2 curing. In summary, sludge-derived blocks exposed to CO2 curing are safe and behave well in aggressive environments. Therefore, this study showcases a green technology that successfully recycling DWTS into value-added and durable concrete blocks with low environmental impacts.

SELECTION OF CITATIONS
SEARCH DETAIL