Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 469
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Annu Rev Immunol ; 35: 337-370, 2017 04 26.
Article in English | MEDLINE | ID: mdl-28142321

ABSTRACT

Transcriptomics, the high-throughput characterization of RNAs, has been instrumental in defining pathogenic signatures in human autoimmunity and autoinflammation. It enabled the identification of new therapeutic targets in IFN-, IL-1- and IL-17-mediated diseases. Applied to immunomonitoring, transcriptomics is starting to unravel diagnostic and prognostic signatures that stratify patients, track molecular changes associated with disease activity, define personalized treatment strategies, and generally inform clinical practice. Herein, we review the use of transcriptomics to define mechanistic, diagnostic, and predictive signatures in human autoimmunity and autoinflammation. We discuss some of the analytical approaches applied to extract biological knowledge from high-dimensional data sets. Finally, we touch upon emerging applications of transcriptomics to study eQTLs, B and T cell repertoire diversity, and isoform usage.


Subject(s)
Autoimmune Diseases/diagnosis , Inflammation/diagnosis , Transcriptome , Autoimmune Diseases/immunology , Datasets as Topic , High-Throughput Nucleotide Sequencing , Humans , Inflammation/immunology , Information Storage and Retrieval , Molecular Targeted Therapy , Monitoring, Immunologic , Prognosis
2.
Cell ; 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38936360

ABSTRACT

Interleukin (IL)-23 and IL-17 are well-validated therapeutic targets in autoinflammatory diseases. Antibodies targeting IL-23 and IL-17 have shown clinical efficacy but are limited by high costs, safety risks, lack of sustained efficacy, and poor patient convenience as they require parenteral administration. Here, we present designed miniproteins inhibiting IL-23R and IL-17 with antibody-like, low picomolar affinities at a fraction of the molecular size. The minibinders potently block cell signaling in vitro and are extremely stable, enabling oral administration and low-cost manufacturing. The orally administered IL-23R minibinder shows efficacy better than a clinical anti-IL-23 antibody in mouse colitis and has a favorable pharmacokinetics (PK) and biodistribution profile in rats. This work demonstrates that orally administered de novo-designed minibinders can reach a therapeutic target past the gut epithelial barrier. With high potency, gut stability, and straightforward manufacturability, de novo-designed minibinders are a promising modality for oral biologics.

3.
Cell ; 184(17): 4447-4463.e20, 2021 08 19.
Article in English | MEDLINE | ID: mdl-34363755

ABSTRACT

TANK binding kinase 1 (TBK1) regulates IFN-I, NF-κB, and TNF-induced RIPK1-dependent cell death (RCD). In mice, biallelic loss of TBK1 is embryonically lethal. We discovered four humans, ages 32, 26, 7, and 8 from three unrelated consanguineous families with homozygous loss-of-function mutations in TBK1. All four patients suffer from chronic and systemic autoinflammation, but not severe viral infections. We demonstrate that TBK1 loss results in hypomorphic but sufficient IFN-I induction via RIG-I/MDA5, while the system retains near intact IL-6 induction through NF-κB. Autoinflammation is driven by TNF-induced RCD as patient-derived fibroblasts experienced higher rates of necroptosis in vitro, and CC3 was elevated in peripheral blood ex vivo. Treatment with anti-TNF dampened the baseline circulating inflammatory profile and ameliorated the clinical condition in vivo. These findings highlight the plasticity of the IFN-I response and underscore a cardinal role for TBK1 in the regulation of RCD.


Subject(s)
Inflammation/enzymology , Protein Serine-Threonine Kinases/deficiency , Tumor Necrosis Factor-alpha/pharmacology , A549 Cells , Adaptor Proteins, Signal Transducing/metabolism , Apoptosis , Autoimmunity/drug effects , Brain/diagnostic imaging , Cell Death/drug effects , Cytokines/metabolism , Deubiquitinating Enzyme CYLD/metabolism , Female , HEK293 Cells , Homozygote , Humans , I-kappa B Kinase/metabolism , Immunophenotyping , Inflammation/pathology , Interferon Type I/metabolism , Interferon-gamma/metabolism , Loss of Function Mutation/genetics , Male , Pedigree , Phosphorylation/drug effects , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptors, Pattern Recognition/metabolism , Toll-Like Receptor 3/metabolism , Transcriptome/genetics , Vesiculovirus/drug effects , Vesiculovirus/physiology
4.
Immunity ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38908373

ABSTRACT

Prolonged activation of the type I interferon (IFN-I) pathway leads to autoimmune diseases such as systemic lupus erythematosus (SLE). Metabolic regulation of cytokine signaling is critical for cellular homeostasis. Through metabolomics analyses of IFN-ß-activated macrophages and an IFN-stimulated-response-element reporter screening, we identified spermine as a metabolite brake for Janus kinase (JAK) signaling. Spermine directly bound to the FERM and SH2 domains of JAK1 to impair JAK1-cytokine receptor interaction, thus broadly suppressing JAK1 phosphorylation triggered by cytokines IFN-I, IFN-II, interleukin (IL)-2, and IL-6. Peripheral blood mononuclear cells (PBMCs) from individuals with SLE showing decreased spermine concentrations exhibited enhanced IFN-I and lupus gene signatures. Spermine treatment attenuated autoimmune pathogenesis in SLE and psoriasis mice and reduced IFN-I signaling in monocytes from individuals with SLE. We synthesized a spermine derivative (spermine derivative 1 [SD1]) and showed that it had a potent immunosuppressive function. Our findings reveal spermine as a metabolic checkpoint for cellular homeostasis and a potential immunosuppressive molecule for controlling autoimmune disease.

5.
Cell ; 172(4): 797-810.e13, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29395326

ABSTRACT

Aberrant activation of innate immune receptors can cause a spectrum of immune disorders, such as Aicardi-Goutières syndrome (AGS). One such receptor is MDA5, a viral dsRNA sensor that induces antiviral immune response. Using a newly developed RNase-protection/RNA-seq approach, we demonstrate here that constitutive activation of MDA5 in AGS results from the loss of tolerance to cellular dsRNAs formed by Alu retroelements. While wild-type MDA5 cannot efficiently recognize Alu-dsRNAs because of its limited filament formation on imperfect duplexes, AGS variants of MDA5 display reduced sensitivity to duplex structural irregularities, assembling signaling-competent filaments on Alu-dsRNAs. Moreover, we identified an unexpected role of an RNA-rich cellular environment in suppressing aberrant MDA5 oligomerization, highlighting context dependence of self versus non-self discrimination. Overall, our work demonstrates that the increased efficiency of MDA5 in recognizing dsRNA comes at a cost of self-recognition and implicates a unique role of Alu-dsRNAs as virus-like elements that shape the primate immune system.


Subject(s)
Alu Elements/immunology , Autoimmune Diseases of the Nervous System/immunology , Interferon-Induced Helicase, IFIH1/immunology , Nervous System Malformations/immunology , Protein Multimerization/immunology , RNA, Double-Stranded/immunology , Self Tolerance , A549 Cells , Autoimmune Diseases of the Nervous System/genetics , Autoimmune Diseases of the Nervous System/pathology , Humans , Inflammation/genetics , Inflammation/immunology , Inflammation/pathology , Interferon-Induced Helicase, IFIH1/genetics , Muramidase , Nervous System Malformations/genetics , Nervous System Malformations/pathology , Peptide Fragments , Protein Multimerization/genetics , RNA, Double-Stranded/genetics , THP-1 Cells
6.
Mol Cell ; 82(19): 3712-3728.e10, 2022 10 06.
Article in English | MEDLINE | ID: mdl-36150385

ABSTRACT

Recognition of pathogen-derived foreign nucleic acids is central to innate immune defense. This requires discrimination between structurally highly similar self and nonself nucleic acids to avoid aberrant inflammatory responses as in the autoinflammatory disorder Aicardi-Goutières syndrome (AGS). How vast amounts of self RNA are shielded from immune recognition to prevent autoinflammation is not fully understood. Here, we show that human SAM-domain- and HD-domain-containing protein 1 (SAMHD1), one of the AGS-causing genes, functions as a single-stranded RNA (ssRNA) 3'exonuclease, the lack of which causes cellular RNA accumulation. Increased ssRNA in cells leads to dissolution of RNA-protein condensates, which sequester immunogenic double-stranded RNA (dsRNA). Release of sequestered dsRNA from condensates triggers activation of antiviral type I interferon via retinoic-acid-inducible gene I-like receptors. Our results establish SAMHD1 as a key regulator of cellular RNA homeostasis and demonstrate that buffering of immunogenic self RNA by condensates regulates innate immune responses.


Subject(s)
Interferon Type I , RNA, Double-Stranded , Antiviral Agents , Autoimmune Diseases of the Nervous System , Exonucleases/genetics , Humans , Immunity, Innate/genetics , Interferon Type I/genetics , Nervous System Malformations , RNA, Double-Stranded/genetics , SAM Domain and HD Domain-Containing Protein 1/genetics
7.
EMBO J ; 41(6): e109760, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35156720

ABSTRACT

RNA editing by the adenosine deaminase ADAR1 prevents innate immune responses to endogenous RNAs. In ADAR1-deficient cells, unedited self RNAs form base-paired structures that resemble viral RNAs and inadvertently activate the cytosolic RIG-I-like receptor (RLR) MDA5, leading to an antiviral type I interferon (IFN) response. Mutations in ADAR1 cause Aicardi-Goutières Syndrome (AGS), an autoinflammatory syndrome characterized by chronic type I IFN production. Conversely, ADAR1 loss and the consequent type I IFN production restricts tumor growth and potentiates the activity of some chemotherapeutics. Here, we show that another RIG-I-like receptor, LGP2, also has an essential role in the induction of a type I IFN response in ADAR1-deficient human cells. This requires the canonical function of LGP2 as an RNA sensor and facilitator of MDA5-dependent signaling. Furthermore, we show that the sensitivity of tumor cells to ADAR1 loss requires LGP2 expression. Finally, type I IFN induction in tumor cells depleted of ADAR1 and treated with some chemotherapeutics fully depends on LGP2 expression. These findings highlight a central role for LGP2 in self RNA sensing with important clinical implications.


Subject(s)
Autoimmune Diseases of the Nervous System , Nervous System Malformations , RNA Helicases/metabolism , Autoimmune Diseases of the Nervous System/genetics , Humans , Nervous System Malformations/genetics , RNA Editing , RNA, Double-Stranded
8.
Immunity ; 47(5): 913-927.e6, 2017 11 21.
Article in English | MEDLINE | ID: mdl-29150239

ABSTRACT

Although apoptotic cells (ACs) contain nucleic acids that can be recognized by Toll-like receptors (TLRs), engulfment of ACs does not initiate inflammation in healthy organisms. Here we identified macrophage populations that continually engulf ACs in distinct tissues and found that these macrophages share characteristics compatible with immunologically silent clearance of ACs; such characteristics include high expression of AC recognition receptors, low expression of TLR9, and reduced TLR responsiveness to nucleic acids. Removal of the macrophages from tissues resulted in loss of many of these characteristics and the ability to generate inflammatory responses to AC-derived nucleic acids, suggesting that cues from the tissue microenvironment program macrophages for silent AC clearance. The transcription factors KLF2 and KLF4 control the expression of many genes within this AC clearance program. The coordinated expression of AC receptors with genes that limit responses to nucleic acids might ensure maintenance of homeostasis and thus represent a central feature of tissue macrophages.


Subject(s)
Apoptosis , Macrophages/immunology , Animals , Female , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/physiology , Macrophage Activation , Male , Mice , Mice, Inbred C57BL , Toll-Like Receptor 7/physiology , Toll-Like Receptor 9/physiology
9.
Immunity ; 46(4): 635-648, 2017 04 18.
Article in English | MEDLINE | ID: mdl-28410990

ABSTRACT

Mice carrying a hypomorphic point mutation in the Ptpn6 gene (Ptpn6spin mice) develop an inflammatory skin disease that resembles neutrophilic dermatosis in humans. Here, we demonstrated that interleukin-1α (IL-1α) signaling through IL-1R and MyD88 in both stromal and immune cells drive inflammation in Ptpn6spin mice. We further identified SYK as a critical kinase that phosphorylates MyD88, promoted MyD88-dependent signaling and mediates dermatosis in Ptpn6spin mice. Our studies further demonstrated that SHP1 encoded by Ptpn6 binds and suppresses SYK activation to inhibit MyD88 phosphorylation. Downstream of SHP1 and SYK-dependent counterregulation of MyD88 tyrosine phosphorylation, we have demonstrated that the scaffolding function of receptor interacting protein kinase 1 (RIPK1) and tumor growth factor-ß activated kinase 1 (TAK1)-mediating signaling were required to spur inflammatory disease. Overall, these studies identify SHP1 and SYK crosstalk as a critical regulator of MyD88 post-translational modifications and IL-1-driven inflammation.


Subject(s)
Inflammation/immunology , Interleukin-1alpha/immunology , Myeloid Differentiation Factor 88/immunology , Skin Diseases/immunology , Syk Kinase/immunology , Animals , Flow Cytometry , HEK293 Cells , Humans , Immunoblotting , Inflammation/genetics , Inflammation/metabolism , Interleukin-1alpha/genetics , Interleukin-1alpha/metabolism , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/immunology , MAP Kinase Kinase Kinases/metabolism , Mice, Knockout , Models, Immunological , Mutation , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Phosphorylation , Protein Tyrosine Phosphatase, Non-Receptor Type 6/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 6/immunology , Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/immunology , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptors, Interleukin-1/immunology , Receptors, Interleukin-1/metabolism , Signal Transduction/genetics , Signal Transduction/immunology , Skin Diseases/genetics , Skin Diseases/metabolism , Syk Kinase/genetics , Syk Kinase/metabolism
10.
EMBO J ; 40(22): e108234, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34586646

ABSTRACT

DNA methylation is a fundamental epigenetic modification, important across biological processes. The maintenance methyltransferase DNMT1 is essential for lineage differentiation during development, but its functions in tissue homeostasis are incompletely understood. We show that epidermis-specific DNMT1 deletion severely disrupts epidermal structure and homeostasis, initiating a massive innate immune response and infiltration of immune cells. Mechanistically, DNA hypomethylation in keratinocytes triggered transposon derepression, mitotic defects, and formation of micronuclei. DNA release into the cytosol of DNMT1-deficient keratinocytes activated signaling through cGAS and STING, thus triggering inflammation. Our findings show that disruption of a key epigenetic mark directly impacts immune and tissue homeostasis, and potentially impacts our understanding of autoinflammatory diseases and cancer immunotherapy.


Subject(s)
DNA Methylation , Dermatitis/genetics , Epidermis/physiopathology , Nucleotidyltransferases/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Chromosome Aberrations , Cytosol/physiology , DNA (Cytosine-5-)-Methyltransferase 1/genetics , Dermatitis/immunology , Dermatitis/pathology , Humans , Immunity, Innate/genetics , Interferon-Induced Helicase, IFIH1/metabolism , Keratinocytes/immunology , Keratinocytes/metabolism , Keratinocytes/pathology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice, Transgenic , Nucleotidyltransferases/genetics
11.
FASEB J ; 38(5): e23528, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38441434

ABSTRACT

microRNAs (miRNAs) are small non-protein-coding RNAs which are essential regulators of host genome expression at the post-transcriptional level. There is evidence of dysregulated miRNA expression patterns in a wide variety of diseases, such as autoimmune and inflammatory conditions. These miRNAs have been termed "inflammamiRs." When working with miRNAs, the method followed, the approach to treat or diagnosis, and the selected biological material are very crucial. Demonstration of the role of miRNAs in particular disease phenotypes facilitates their evaluation as potential and effective therapeutic tools. A growing number of reports suggest the significant utility of miRNAs and other small RNA drugs in clinical medicine. Most miRNAs seem promising therapeutic options, but some features associated with miRNA therapy like off-target effect, effective dosage, or differential delivery methods, mainly caused by the short target's sequence, make miRNA therapies challenging. In this review, we aim to discuss some of the inflammamiRs in diseases associated with inflammatory pathways and the challenge of identifying the most potent therapeutic candidates and provide a perspective on achieving safe and targeted delivery of miRNA therapeutics. We also discuss the status of inflammamiRs in clinical trials.


Subject(s)
MicroRNAs , MicroRNAs/genetics , Phenotype
12.
J Allergy Clin Immunol ; 153(1): 1-11, 2024 01.
Article in English | MEDLINE | ID: mdl-37871669

ABSTRACT

Autoinflammatory diseases (AIDs) are a group of rare monogenetic disorders characterized by recurrent episodes of fever and systemic inflammation. A major pathologic hallmark of AIDs is excessive inflammasome assembly and activation, often the result of gain-of-function mutations in genes encoding core inflammasome components, including pyrin and cryopyrin. Recent advances in lipidomics have revealed that dysregulated metabolism of lipids such as cholesterol and fatty acids, especially in innate immune cells, exerts complex effects on inflammasome activation and the pathogenesis of AIDs. In this review, we summarize and discuss the impact of lipids and their metabolism on inflammasome activation and the disease pathogenesis of the most common AIDs, including familial Mediterranean fever, cryopyrin-associated periodic syndromes, and mevalonate kinase deficiency. We postulate that lipids hold diagnostic value in AIDs and that dietary and pharmacologic intervention studies could represent a promising approach to attenuate inflammasome activation and AID progression.


Subject(s)
Cryopyrin-Associated Periodic Syndromes , Familial Mediterranean Fever , Humans , Inflammasomes , Familial Mediterranean Fever/genetics , Cryopyrin-Associated Periodic Syndromes/genetics , Inflammation , Lipids
13.
J Allergy Clin Immunol ; 153(1): 230-242, 2024 01.
Article in English | MEDLINE | ID: mdl-37769878

ABSTRACT

BACKGROUND: Pathogenic variants of phospholipase C gamma 2 (PLCG2) cause 2 related forms of autosomal-dominant immune dysregulation (ID), PLCγ2-associated antibody deficiency and immune dysregulation (PLAID) and autoinflammatory PLAID (APLAID). Since describing these conditions, many PLCG2 variants of uncertain significance have been identified by clinical sequencing of patients with diverse features of ID. OBJECTIVE: We sought to functionally classify PLCG2 variants and explore known and novel genotype-function-phenotype relationships. METHODS: Clinical data from patients with PLCG2 variants were obtained via standardized questionnaire. PLCG2 variants were generated by mutagenesis of enhanced green fluorescent protein (EGFP)-PLCG2 plasmid, which was overexpressed in Plcg2-deficient DT-40 B cells. B-cell receptor-induced calcium flux and extracellular signal-regulated kinase phosphorylation were assayed by flow cytometry. In some cases, stimulation-induced calcium flux was also measured in primary patient cells. RESULTS: Three-fourths of PLCG2 variants produced functional alteration of B-cell activation, in vitro. Thirteen variants led to gain of function (GOF); however, most functional variants defined a new class of PLCG2 mutation, monoallelic loss of function (LOF). Susceptibility to infection and autoinflammation were common with both GOF and LOF variants, whereas a new phenotypic cluster consisting of humoral immune deficiency, autoinflammation, susceptibility to herpesvirus infection, and natural killer cell dysfunction was observed in association with multiple heterozygous LOF variants detected in both familial and sporadic cases. In some cases, PLCG2 variants produced greater effects in natural killer cells than in B cells. CONCLUSIONS: This work expands the genotypic and phenotypic associations with functional variation in PLCG2, including a novel form of ID in carriers of heterozygous loss of PLCG2 function. It also demonstrates the need for more diverse assays for assessing the impact of PLCG2 variants on human disease.


Subject(s)
Immunologic Deficiency Syndromes , Phospholipase C gamma , Humans , Autoimmune Diseases , Calcium/metabolism , Immunologic Deficiency Syndromes/genetics , Mutation , Phospholipase C gamma/genetics
14.
J Biol Chem ; 299(7): 104866, 2023 07.
Article in English | MEDLINE | ID: mdl-37247757

ABSTRACT

Stimulator of interferon genes (STING) is a sensor of cyclic dinucleotides including cyclic GMP-AMP, which is produced by cyclic GMP-AMP synthase (cGAS) in response to cytosolic DNA. The cGAS-STING signaling pathway regulates both innate and adaptive immune responses, as well as fundamental cellular functions such as autophagy, senescence, and apoptosis. Mutations leading to constitutive activation of STING cause devastating human diseases. Thus, the cGAS-STING pathway is of great interest because of its role in diverse cellular processes and because of the potential therapeutic implications of targeting cGAS and STING. Here, we review molecular and cellular mechanisms of STING signaling, and we propose a framework for understanding the immunological and other cellular functions of STING in the context of disease.


Subject(s)
Nucleotidyltransferases , Signal Transduction , Humans , Signal Transduction/physiology , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Inflammation/metabolism , DNA/metabolism , Cytosol/metabolism , Immunity, Innate
15.
Immunology ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39054787

ABSTRACT

Rheumatoid arthritis (RA) is a systemic autoimmune disease driven by highly active autoantibody-producing B cells. Activation of B cells is maintained within ectopic germinal centres found in affected joints. Fibroblast-like synoviocytes (FLS) present in inflamed joints support B-cell survival, activation, and differentiation. CD27+ memory B cells and naive B cells show very different responses to activation, particularly by CD40 ligand (CD40L). We show that FLS-dependent activation of human B cells is dependent on interleukin-6 (IL-6) and CD40L. FLS have been shown to activate both naive and memory B cells. Whether the activating potential of FLS is different for naive and memory B cells has not been investigated. Our results suggest that FLS-induced activation of B cells is dependent on IL-6 and CD40L. While FLS are able to induce plasma cell differentiation, isotype switching, and antibody production in memory B cells, the ability of FLS to activate naive B cells is significantly lower.

16.
Curr Issues Mol Biol ; 46(2): 1177-1191, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38392193

ABSTRACT

Adult-onset Still's disease (AOSD) is a complex systemic inflammatory disorder, categorized as an 'IL-1 driven' inflammasomapathy. Despite this, the interaction between T and B cells remains poorly understood. We conducted a study, enrolling 7 patients with relapsing AOSD and 15 healthy control subjects, utilizing deep flow cytometry analysis to examine peripheral blood T- and B-cell subsets. T-cell and B-cell subsets were significantly altered in patients with AOSD. Within CD4+ T cells, Th2 cells were decreased. Additionally, Th17 cell and follicular Th cell subsets were altered within CD45RA-CD62L+ and CD45RA-CD62L- Th cells in patients with AOSD compared to healthy controls. We identified changes in CD8+ T cell maturation and 'polarization' in AOSD patients, with an elevated presence of the TEMRA CD8+ T cell subset. Furthermore, the percentage of Tc1 cells was decreased, while the frequency of CCR6-CXCR3- Tc2 cells was elevated. Finally, we determined that the frequency of CD5+CD27- B cells was dramatically decreased in patients with AOSD compared to healthy controls. Further investigations on a large group of patients with AOSD are required to evaluate these adaptive immunity cells in the disease pathogenesis.

17.
Clin Immunol ; 263: 110231, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692449

ABSTRACT

Moderate-to-severe systemic lupus erythematosus (SLE) is characterized by extensive autoantibody deposition and persistent autoinflammation. As the existing animal models are limited in accurately reproducing the pathological characteristics of human SLE, we introduced a novel animal model simulating multi-organ autoinflammation through intra-organ injections. The model closely mimicked key features of SLE, including IgG deposition, inflammation, and tissue damage. The model could be used to assess the roles of IgG, immune cells, cytokines, and Fc gamma receptor (FcγR) in the pathogenesis of autoinflammation. The results obtained from this model could be confirmed by lupus MRL/lpr mice. The review suggested that the diagnostic criteria should be reconsidered to incorporate IgG deposition in tissues and highlighted the limitations of current T-cell and B-cell-focused treatments. To summarize, the IgG deposition model can be used to investigate the pathogenesis and treatment of multi-organ tissue damage associated with SLE.


Subject(s)
Disease Models, Animal , Immunoglobulin G , Lupus Erythematosus, Systemic , Animals , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/pathology , Mice , Immunoglobulin G/immunology , Humans , Mice, Inbred MRL lpr , Inflammation/immunology , Receptors, IgG/immunology , Receptors, IgG/metabolism , B-Lymphocytes/immunology
18.
Clin Immunol ; 265: 110292, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38914362

ABSTRACT

OTULIN encodes an eponymous linear deubiquitinase (DUB) essential for controlling inflammation as a negative regulator of the canonical NF-κB signaling pathway via the regulation of M1-Ub dynamics. Biallelic loss-of-function (LOF) mutations in OTULIN cause an autosomal recessive condition named Otulin-Related Autoinflammatory Syndrome (ORAS), also known as Otulipenia or AutoInflammation, Panniculitis, and Dermatosis Syndrome (AIPDS). Monoallelic OTULIN LOF, also known as OTULIN Haploinsufficiency (OHI) or Immunodeficiency 107 (IMD107), has been linked to an incompletely penetrant, dominantly inherited susceptibility to invasive Staphylococcal infections. At the same time, a recent novel ORAS-like inflammatory syndrome was described in association with a heterozygous missense mutation that appears to exert dominant negative (DN) effects. In this manuscript, we report the identification of a novel homozygous missense mutation, c.595 T > A; p.(Trp199Arg), in a Moroccan infant with an ORAS phenotype and provide experimental evidence for its pathogenicity. We go on to systematically review the literature for OTULIN-associated conditions by using the GenIA database (www.geniadb.net) to collect, extract and harmonize all clinical, laboratory and functional data for published patients and variants. Our comprehensive synthesis of genotypic, phenotypic, and mechanistic data enables a more in-depth view of the diverse mechanisms and pathways by which the OTULIN pathogenic variants may lead to human immune disease. This review may help variant classification activities and inform future variant evaluation, as well as the development of diagnostic and management guidelines. It also identifies current knowledge gaps and raises additional questions warranting future investigation.


Subject(s)
Mutation, Missense , Humans , Mutation, Missense/genetics , Infant , Male , Female , Endopeptidases
19.
J Clin Immunol ; 44(3): 81, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38485795

ABSTRACT

Myocarditis can be caused by viral infection, drug reaction or general inflammatory condition. To provide understanding on inflammatory myocarditis, we describe clinical, genetic, and immunological properties of a young male patient who suffered from recurrent myocarditis episodes since the age of four years. Electrocardiography, troponin I/T, echocardiography, myocardial magnetic resonance imaging and histological findings were consistent with recurrent myocarditis episodes. Homozygous c.245 A > G p.Tyr82Cys pathogenic variant in Hepatitis A Virus Cellular Receptor 2 (HAVCR2) gene encoding T cell immunoglobulin and mucin domain-containing protein 3 (TIM-3) receptor was found. Peripheral blood mononuclear cells were collected when the patient was asymptomatic; CD4+ and CD8+ T lymphoblasts, CD56+ natural killer cells and CD14+ monocytes were negative for surface TIM-3 expression. In vitro, TLR4 mediated interleukin-1ß (IL-1ß) response was high after LPS/ATP stimulation. Clinical symptoms responded to IL-1 receptor antagonist anakinra. TIM-3 p.Tyr82Cys CD4+ and CD8+ T cell proliferation in vitro was unrestrained. Findings on IL-2, interferon gamma, regulatory T cells, signal transducer and activator of transcription (STAT) 1, 3 and 4 phosphorylation, and PD-1 and LAG-3 checkpoint inhibitor receptor analyses were comparable to controls. We conclude that TIM-3 deficiency due to homozygous HAVCR2 c.245 A > G p.Tyr82Cys pathogenic variant in the patient described here is associated with autoinflammatory symptoms limited to early onset recurrent febrile myocarditis. Excessive IL-1ß production and defective regulation of T cell proliferation may contribute to this clinical condition responsive to anakinra treatment.


Subject(s)
Hepatitis A Virus Cellular Receptor 2 , Myocarditis , Humans , Male , Child, Preschool , Hepatitis A Virus Cellular Receptor 2/genetics , Myocarditis/diagnosis , Myocarditis/drug therapy , Myocarditis/etiology , Leukocytes, Mononuclear , Interleukin 1 Receptor Antagonist Protein , Interleukin-1beta , Germ Cells
20.
J Clin Immunol ; 44(4): 99, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38619739

ABSTRACT

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that is characterized by its large heterogeneity in terms of clinical presentation and severity. The pathophysiology of SLE involves an aberrant autoimmune response against various tissues, an excess of apoptotic bodies, and an overproduction of type-I interferon. The genetic contribution to the disease is supported by studies of monozygotic twins, familial clustering, and genome-wide association studies (GWAS) that have identified numerous risk loci. In the early 70s, complement deficiencies led to the description of familial forms of SLE caused by a single gene defect. High-throughput sequencing has recently identified an increasing number of monogenic defects associated with lupus, shaping the concept of monogenic lupus and enhancing our insights into immune tolerance mechanisms. Monogenic lupus (moSLE) should be suspected in patients with either early-onset lupus or syndromic lupus, in male, or in familial cases of lupus. This review discusses the genetic basis of monogenic SLE and proposes its classification based on disrupted pathways. These pathways include defects in the clearance of apoptotic cells or immune complexes, interferonopathies, JAK-STATopathies, TLRopathies, and T and B cell dysregulations.


Subject(s)
Autoimmunity , Lupus Erythematosus, Systemic , Humans , Male , Antigen-Antibody Complex , Autoimmunity/genetics , Genome-Wide Association Study , Lupus Erythematosus, Systemic/genetics , Phenotype , Female , Twin Studies as Topic
SELECTION OF CITATIONS
SEARCH DETAIL