Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Biomed Eng Online ; 23(1): 65, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987764

ABSTRACT

BACKGROUND: Cochlear implants (CI) are implantable medical devices that enable the perception of sounds and the understanding of speech by electrically stimulating the auditory nerve in case of inner ear damage. The stimulation takes place via an array of electrodes surgically inserted in the cochlea. After CI implantation, cone beam computed tomography (CBCT) is used to evaluate the position of the electrodes. Moreover, CBCT is used in research studies to investigate the relationship between the position of the electrodes and the hearing outcome of CI user. In clinical routine, the estimation of the position of the CI electrodes is done manually, which is very time-consuming. RESULTS: The aim of this study was to optimize procedures of automatic electrode localization from CBCT data following CI implantation. For this, we analyzed the performance of automatic electrode localization for 150 CBCT data sets of 10 different types of electrode arrays. Our own implementation of the method by Noble and Dawant (Lecture notes in computer science (Including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), Springer, pp 152-159, 2015. https://doi.org/10.1007/978-3-319-24571-3_19 ) for automated electrode localization served as a benchmark for evaluation. Differences in the detection rate and the localization accuracy across types of electrode arrays were evaluated and errors were classified. Based on this analysis, we developed a strategy to optimize procedures of automatic electrode localization. It was shown that particularly distantly spaced electrodes in combination with a deep insertion can lead to apical-basal confusions in the localization procedure. This confusion prevents electrodes from being detected or assigned correctly, leading to a deterioration in localization accuracy. CONCLUSIONS: We propose an extended cost function for automatic electrode localization methods that prevents double detection of electrodes to avoid apical-basal confusions. This significantly increased the detection rate by 11.15 percent points and improved the overall localization accuracy by 0.53 mm (1.75 voxels). In comparison to other methods, our proposed cost function does not require any prior knowledge about the individual cochlea anatomy.


Subject(s)
Automation , Cochlear Implants , Cone-Beam Computed Tomography , Electrodes, Implanted , Image Processing, Computer-Assisted , Humans , Image Processing, Computer-Assisted/methods , Cochlear Implantation/instrumentation , Cochlea/diagnostic imaging
2.
J Xray Sci Technol ; 29(1): 75-90, 2021.
Article in English | MEDLINE | ID: mdl-33136086

ABSTRACT

BACKGROUND: Thyroid ultrasonography is widely used to diagnose thyroid nodules in clinics. Automatic localization of nodules can promote the development of intelligent thyroid diagnosis and reduce workload of radiologists. However, besides the ultrasound image has low contrast and high noise, the thyroid nodules are diverse in shape and vary greatly in size. Thus, thyroid nodule detection in ultrasound images is still a challenging task. OBJECTIVE: This study proposes an automatic detection algorithm to locate nodules in B ultrasound images and Doppler ultrasound images. This method can be used to screen thyroid nodules and provide a basis for subsequent automatic segmentation and intelligent diagnosis. METHODS: We develop and optimize an improved YOLOV3 model for detecting thyroid nodules in ultrasound images with B-mode and Doppler mode. Improvements include (1) using the high-resolution network (HRNet) as the basic network for gradually extracting high-level semantic features to reduce the missed detection and misdetection, (2) optimizing the loss function for single target detection like nodules, and (3) obtaining the anchor boxes by clustering the candidate frames of real nodules in the dataset. RESULTS: The experimental results of applying to 8000 clinical ultrasound images show that the new method developed and tested in this study can effectively detect thyroid nodules. The method achieves 94.53% mean precision and 95.00% mean recall. CONCLUTIONS: The study demonstrates a new automated method that enables to achieve high detection accuracy and effectively locate thyroid nodules in various ultrasound images without any user interaction, which indicates its potential clinical application value for the thyroid nodule screening.


Subject(s)
Thyroid Nodule , Algorithms , Cluster Analysis , Humans , Neuroimaging , Thyroid Nodule/diagnostic imaging , Ultrasonography
3.
Biomed Eng Online ; 16(1): 132, 2017 Nov 21.
Article in English | MEDLINE | ID: mdl-29157240

ABSTRACT

BACKGROUND: Ocular images play an essential role in ophthalmological diagnoses. Having an imbalanced dataset is an inevitable issue in automated ocular diseases diagnosis; the scarcity of positive samples always tends to result in the misdiagnosis of severe patients during the classification task. Exploring an effective computer-aided diagnostic method to deal with imbalanced ophthalmological dataset is crucial. METHODS: In this paper, we develop an effective cost-sensitive deep residual convolutional neural network (CS-ResCNN) classifier to diagnose ophthalmic diseases using retro-illumination images. First, the regions of interest (crystalline lens) are automatically identified via twice-applied Canny detection and Hough transformation. Then, the localized zones are fed into the CS-ResCNN to extract high-level features for subsequent use in automatic diagnosis. Second, the impacts of cost factors on the CS-ResCNN are further analyzed using a grid-search procedure to verify that our proposed system is robust and efficient. RESULTS: Qualitative analyses and quantitative experimental results demonstrate that our proposed method outperforms other conventional approaches and offers exceptional mean accuracy (92.24%), specificity (93.19%), sensitivity (89.66%) and AUC (97.11%) results. Moreover, the sensitivity of the CS-ResCNN is enhanced by over 13.6% compared to the native CNN method. CONCLUSION: Our study provides a practical strategy for addressing imbalanced ophthalmological datasets and has the potential to be applied to other medical images. The developed and deployed CS-ResCNN could serve as computer-aided diagnosis software for ophthalmologists in clinical application.


Subject(s)
Cost-Benefit Analysis , Diagnosis, Computer-Assisted/economics , Diagnostic Imaging , Eye Diseases/diagnostic imaging , Image Processing, Computer-Assisted/methods , Neural Networks, Computer , Automation , Software
4.
Sensors (Basel) ; 17(5)2017 May 11.
Article in English | MEDLINE | ID: mdl-28492489

ABSTRACT

Human visual mechanisms (HVMs) can quickly localize the most salient object in natural images, but it is ineffective at localizing tumors in ultrasound breast images. In this paper, we research the characteristics of tumors, develop a classic HVM and propose a novel auto-localization method. Comparing to surrounding areas, tumors have higher global and local contrast. In this method, intensity, blackness ratio and superpixel contrast features are combined to compute a saliency map, in which a Winner Take All algorithm is used to localize the most salient region, which is represented by a circle. The results show that the proposed method can successfully avoid the interference caused by background areas of low echo and high intensity. The method has been tested on 400 ultrasound breast images, among which 376 images succeed in localization. This means this method has a high accuracy of 94.00%, indicating its good performance in real-life applications.


Subject(s)
Breast Neoplasms , Algorithms , Humans
5.
Brain Sci ; 11(7)2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34208999

ABSTRACT

Localization of features and structures in images is an important task in medical image-processing. Characteristic structures and features are used in diagnostics and surgery planning for spatial adjustments of the volumetric data, including image registration or localization of bone-anchors and fiducials. Since this task is highly recurrent, a fast, reliable and automated approach without human interaction and parameter adjustment is of high interest. In this paper we propose and compare four image processing pipelines, including algorithms for automatic detection and localization of spherical features within 3D MRI data. We developed a convolution based method as well as algorithms based on connected-components labeling and analysis and the circular Hough-transform. A blob detection related approach, analyzing the Hessian determinant, was examined. Furthermore, we introduce a novel spherical MRI-marker design. In combination with the proposed algorithms and pipelines, this allows the detection and spatial localization, including the direction, of fiducials and bone-anchors.

6.
Med Biol Eng Comput ; 56(6): 1053-1062, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29147835

ABSTRACT

In this paper, we develop and validate an open source, fully automatic algorithm to localize the left ventricular (LV) blood pool centroid in short axis cardiac cine MR images, enabling follow-on automated LV segmentation algorithms. The algorithm comprises four steps: (i) quantify motion to determine an initial region of interest surrounding the heart, (ii) identify potential 2D objects of interest using an intensity-based segmentation, (iii) assess contraction/expansion, circularity, and proximity to lung tissue to score all objects of interest in terms of their likelihood of constituting part of the LV, and (iv) aggregate the objects into connected groups and construct the final LV blood pool volume and centroid. This algorithm was tested against 1140 datasets from the Kaggle Second Annual Data Science Bowl, as well as 45 datasets from the STACOM 2009 Cardiac MR Left Ventricle Segmentation Challenge. Correct LV localization was confirmed in 97.3% of the datasets. The mean absolute error between the gold standard and localization centroids was 2.8 to 4.7 mm, or 12 to 22% of the average endocardial radius. Graphical abstract Fully automated localization of the left ventricular blood pool in short axis cardiac cine MR images.


Subject(s)
Heart Ventricles/diagnostic imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging, Cine/methods , Algorithms , Databases, Factual , Humans , Reproducibility of Results , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL