Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.375
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Eur J Clin Microbiol Infect Dis ; 43(3): 489-499, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38195783

ABSTRACT

INTRODUCTION: Dead space management following debridement surgery in chronic osteomyelitis or septic non-unions is one of the most crucial and discussed steps for the success of the surgical treatment of these conditions. In this retrospective clinical study, we described the efficacy and safety profile of surgical debridement and local application of S53P4 bioactive glass (S53P4 BAG) in the treatment of bone infections. METHODS: A consecutive single-center series of 38 patients with chronic osteomyelitis (24) and septic non-unions (14), treated with bioactive glass S53P4 as dead space management following surgical debridement between May 2015 and November 2020, were identified and evaluated retrospectively. RESULTS: Infection eradication was reached in 22 out of 24 patients (91.7%) with chronic osteomyelitis. Eleven out of 14 patients (78.6%) with septic non-union achieved both fracture healing and infection healing in 9.1 ± 4.9 months. Three patients (7.9%) developed prolonged serous discharge with wound dehiscence but healed within 2 months with no further surgical intervention. Average patient follow-up time was 19.8 months ± 7.6 months. CONCLUSION: S53P4 bioactive glass is an effective and safe therapeutic option in the treatment of chronic osteomyelitis and septic non-unions because of its unique antibacterial properties, but also for its ability to generate a growth response in the remaining healthy bone at the bone-glass interface.


Subject(s)
Bone Substitutes , Osteomyelitis , Humans , Retrospective Studies , Bone Substitutes/therapeutic use , Anti-Bacterial Agents/therapeutic use , Persistent Infection , Osteomyelitis/drug therapy , Osteomyelitis/surgery , Osteomyelitis/microbiology
2.
Methods ; 212: 39-57, 2023 04.
Article in English | MEDLINE | ID: mdl-36934614

ABSTRACT

Nanocomposites and low-viscous materials lack translation in additive manufacturing technologies due to deficiency in rheological requirements and heterogeneity of their preparation. This work proposes the chemical crosslinking between composing phases as a universal approach for mitigating such issues. The model system is composed of amine-functionalized bioactive glass nanoparticles (BGNP) and light-responsive methacrylated bovine serum albumin (BSAMA) which further allows post-print photocrosslinking. The interfacial interaction was conducted by 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide crosslinking agent and N-Hydroxysuccinimide between BGNP-grafted amines and BSAMA's carboxylic groups. Different chemical crosslinking amounts and percentages of BGNP in the nanocomposites were tested. The improved interface interactions increased the elastic and viscous modulus of all formulations. More pronounced increases were found with the highest crosslinking agent amounts (4 % w/v) and BGNP concentrations (10 % w/w). This formulation also displayed the highest Young's modulus of the double-crosslinked construct. All composite formulations could effectively immobilize the BGNP and turn an extremely low viscous material into an appropriate inks for 3d printing technologies, attesting for the systems' tunability. Thus, we describe a versatile methodology which can successfully render tunable and light-responsive nanocomposite inks with homogeneously distributed bioactive fillers. This system can further reproducibly recapitulate phases of other natures, broadening applicability.


Subject(s)
Ink , Nanoparticles , Tissue Engineering/methods , Printing, Three-Dimensional , Rheology
3.
J Nanobiotechnology ; 22(1): 94, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38449005

ABSTRACT

BACKGROUND: Impaired osteo-/angiogenesis, excessive inflammation, and imbalance of the osteoimmune homeostasis are involved in the pathogenesis of the alveolar bone defect caused by periodontitis. Unfortunately, there is still a lack of ideal therapeutic strategies for periodontitis that can regenerate the alveolar bone while remodeling the osteoimmune microenvironment. Quercetin, as a monomeric flavonoid, has multiple pharmacological activities, such as pro-regenerative, anti-inflammatory, and immunomodulatory effects. Despite its vast spectrum of pharmacological activities, quercetin's clinical application is limited due to its poor water solubility and low bioavailability. RESULTS: In this study, we fabricated a quercetin-loaded mesoporous bioactive glass (Quercetin/MBG) nano-delivery system with the function of continuously releasing quercetin, which could better promote the bone regeneration and regulate the immune microenvironment in the alveolar bone defect with periodontitis compared to pure MBG treatment. In particular, this nano-delivery system effectively decreased injection frequency of quercetin while yielding favorable therapeutic results. In view of the above excellent therapeutic effects achieved by the sustained release of quercetin, we further investigated its therapeutic mechanisms. Our findings indicated that under the periodontitis microenvironment, the intervention of quercetin could restore the osteo-/angiogenic capacity of periodontal ligament stem cells (PDLSCs), induce immune regulation of macrophages and exert an osteoimmunomodulatory effect. Furthermore, we also found that the above osteoimmunomodulatory effects of quercetin via macrophages could be partially blocked by the overexpression of a key microRNA--miR-21a-5p, which worked through inhibiting the expression of PDCD4 and activating the NF-κB signaling pathway. CONCLUSION: In summary, our study shows that quercetin-loaded mesoporous nano-delivery system has the potential to be a therapeutic approach for reconstructing alveolar bone defects in periodontitis. Furthermore, it also offers a new perspective for treating alveolar bone defects in periodontitis by inhibiting the expression of miR-21a-5p in macrophages and thereby creating a favorable osteoimmune microenvironment.


Subject(s)
NF-kappa B , Periodontitis , Humans , Quercetin/pharmacology , Periodontitis/drug therapy , Flavonoids , Inflammation , RNA-Binding Proteins , Apoptosis Regulatory Proteins
4.
J Nanobiotechnology ; 22(1): 80, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38418972

ABSTRACT

The advancement of biomaterials with antimicrobial and wound healing properties continues to present challenges. Macrophages are recognized for their significant role in the repair of infection-related wounds. However, the interaction between biomaterials and macrophages remains complex and requires further investigation. In this research, we propose a new sequential immunomodulation method to enhance and expedite wound healing by leveraging the immune properties of bacteria-related wounds, utilizing a novel mixed hydrogel dressing. The hydrogel matrix is derived from porcine acellular dermal matrix (PADM) and is loaded with a new type of bioactive glass nanoparticles (MBG) doped with magnesium (Mg-MBG) and loaded with Curcumin (Cur). This hybrid hydrogel demonstrates controlled release of Cur, effectively eradicating bacterial infection in the early stage of wound infection, and the subsequent release of Mg ions (Mg2+) synergistically inhibits the activation of inflammation-related pathways (such as MAPK pathway, NF-κB pathway, TNF-α pathway, etc.), suppressing the inflammatory response caused by infection. Therefore, this innovative hydrogel can safely and effectively expedite wound healing during infection. Our design strategy explores novel immunomodulatory biomaterials, offering a fresh approach to tackle current clinical challenges associated with wound infection treatment.


Subject(s)
Anti-Infective Agents , Curcumin , Wound Infection , Animals , Swine , Hydrogels/pharmacology , Wound Healing , Biomimetics , Bandages , Anti-Bacterial Agents/therapeutic use , Biocompatible Materials , Immunotherapy , Wound Infection/drug therapy
5.
Neurosurg Rev ; 47(1): 80, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38355838

ABSTRACT

Retrospective observational study. To determine the efficacy and safety of bioactive glass ceramics mixed with autograft in the treatment of spondylodiscitis. Thirty-four patients with spondylodiscitis underwent surgery using autologous bone graft augmented by antibiotic loaded bioactive glass ceramic granules. Twenty-five patients aging 6 to 77, completed 1-year follow-up. The lumbosacral junction was affected in 3, lumbar spine in 13, one each in the dorso-lumbar junction and sacrum, and 7 dorsal spines. The organism isolated was Mycobacterium tuberculosis in 15, Methicillin sensitive Staphylococcus aureus (MSSA) in 4, Pseudomonas aeruginosa in 4, Klebsiella pneumoniae in one, Burkholderia pseudomallei in 1, and mixed infections in 2. All patients had appropriate antibiotic therapy based on culture and sensitivity. Clinical and radiological evaluation of all the patients was done at 6 weeks, 3 months, 6 months, and 12 months after the surgery. Twenty-three patients improved clinically and showed radiographic fusion between 6 and 9 months. The patient with Burkholderia infection died due to fulminant septicemia with multi organ failure while another patient died at 9 months due to an unrelated cardiac event. The mean Visual Analogue Score (VAS) at the end of 1-year was 2 with radiological evidence of fusion in all patients. There were no re-infections or discharging wounds, and the 30-day re-admission rate was 0. Bioactive glass ceramics is a safe and effective graft expander in cases of spondylodiscitis. The absorption of antibiotics into the ceramic appears to help the elimination of infection.


Subject(s)
Discitis , Spinal Fusion , Humans , Ceramics/adverse effects , Ceramics/therapeutic use , Discitis/surgery , Discitis/microbiology , Lumbar Vertebrae/surgery , Pilot Projects , Radiography , Retrospective Studies , Treatment Outcome , Child , Aged
6.
Int Endod J ; 57(5): 586-600, 2024 May.
Article in English | MEDLINE | ID: mdl-38323923

ABSTRACT

AIM: To evaluate the influence of an experimental solution of cobalt-doped F18 bioactive glass (F18Co) on tissue repair following regenerative endodontic procedure (REP) in rat molars. METHODOLOGY: The F18Co solution was prepared at a ratio of 1:5 F18Co powder to distilled water. The right or left upper first molars of 12 Wistar rats were used, where the pulps were exposed, removed, and irrigated with 2.5% sodium hypochlorite (NaOCl), followed by 17% ethylenediaminetetraacetic acid (EDTA) (5 min each). Subsequently, the molars were divided into two groups (n = 6): REP-SS and REP-F18Co, where they received a final irrigation (5 min) with saline solution (SS) or F18Co solution, respectively. Then, intracanal bleeding was induced, and the tooth was sealed. Untreated molars were used as controls (n = 3). At 21 days, the rats were euthanized, and the specimens were processed for analysis of mineralized tissue and soft tissue formation inside the root canal using haematoxylin-eosin. The presence and maturation of collagen were evaluated by Masson's trichrome and picrosirius red staining. Immunolabelling analyses of proliferating cell nuclear antigen (PCNA) and osteocalcin (OCN) were performed. The data were submitted to the Mann-Whitney U-test (p < .05). RESULTS: There was a similar formation of mineralized tissue in thickness and length in REP-SS and REP-F18Co groups (p > .05). Regarding the presence of newly formed soft tissue, most specimens of the REP-F18Co had tissue formation up to the cervical third of the canal, whilst the REP-SS specimens showed formation up to the middle third (p < .05), and there was higher maturation of collagen in REP-F18Co (p < .05). The number of PCNA-positive cells found in the apical third of the root canal was significantly higher in the F18Co group, as well as the OCN immunolabelling, which was severe in most specimens of REP-F18Co, and low in most specimens of REP-SS. CONCLUSION: The final irrigation with F18Co bioactive glass solution in REP did not influence mineralized tissue formation but induced soft tissue formation inside the root canals, with higher collagen maturation, and an increase in PCNA-positive cells and OCN immunolabelling.


Subject(s)
Ceramics , Dental Pulp Cavity , Regenerative Endodontics , Animals , Rats , Root Canal Preparation/methods , Osteocalcin , Proliferating Cell Nuclear Antigen , Rats, Wistar , Edetic Acid , Collagen , Cell Proliferation , Root Canal Irrigants/pharmacology , Sodium Hypochlorite/pharmacology
7.
Int Endod J ; 57(6): 727-744, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38436622

ABSTRACT

AIMS: This study aimed to investigate the anti-inflammatory and odontoblastic effects of cerium-containing mesoporous bioactive glass nanoparticles (Ce-MBGNs) on dental pulp cells as novel pulp-capping agents. METHODOLOGY: Ce-MBGNs were synthesized using a post-impregnation strategy based on the antioxidant properties of Ce ions and proposed the first use of Ce-MBGNs for pulp-capping application. The biocompatibility of Ce-MBGNs was analysed using the CCK-8 assay and apoptosis detection. Additionally, the reactive oxygen species (ROS) scavenging ability of Ce-MBGNs was measured using the 2,7-Dichlorofuorescin Diacetate (DCFH-DA) probe. The anti-inflammatory effect of Ce-MBGNs on THP-1 cells was further investigated using flow cytometry and quantitative real-time polymerase chain reaction (RT-qPCR). Moreover, the effect of Ce-MBGNs on the odontoblastic differentiation of the dental pulp cells (DPCs) was assessed by combined scratch assays, RT-qPCR, western blotting, immunocytochemistry, Alizarin Red S staining and tissue-nonspecific alkaline phosphatase staining. Analytically, the secretions of tumour necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) were detected with enzyme-linked immunosorbent assay (ELISA). RESULTS: Ce-MBGNs were confirmed to effectively scavenge ROS in THP-1-derived macrophages and DPCs. Flow cytometry and RT-qPCR assays revealed that Ce-MBGNs significantly inhibited the M1 polarization of macrophages (Mφ). Furthermore, the protein levels of TNF-α and IL-1ß were downregulated in THP-1-derived macrophages after stimulation with Ce-MBGNs. With a step-forward virtue of promoting the odontoblastic differentiation of DPCs, we further confirmed that Ce-MBGNs could regulate the formation of a conductive immune microenvironment with respect to tissue repair in DPCs, which was mediated by macrophages. CONCLUSIONS: Ce-MBGNs protected cells from self-produced oxidative damage and exhibited excellent immunomodulatory and odontoblastic differentiation effects on DPCs. As a pulp-capping agent, this novel biomaterial can exert anti-inflammatory effects and promote restorative dentine regeneration in clinical treatment. We believe that this study will stimulate further correlative research on the development of advanced pulp-capping agents.


Subject(s)
Anti-Inflammatory Agents , Cerium , Dental Pulp , Nanoparticles , Dental Pulp/cytology , Dental Pulp/drug effects , Cerium/pharmacology , Humans , Anti-Inflammatory Agents/pharmacology , Reactive Oxygen Species/metabolism , Tumor Necrosis Factor-alpha/metabolism , Ceramics/pharmacology , Cell Differentiation/drug effects , Glass , Odontoblasts/drug effects , Regeneration/drug effects , THP-1 Cells , Pulp Capping and Pulpectomy Agents/pharmacology , Interleukin-1beta/metabolism , Apoptosis/drug effects , Porosity , Cells, Cultured
8.
Eur Arch Otorhinolaryngol ; 281(4): 1789-1798, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37906365

ABSTRACT

PURPOSE: The study aimed to evaluate the long-term clinical, radiological, and functional results for subtotal petrosectomy and cochlear implant surgery with closure of the external auditory canal and fat obliteration. METHODS: We retrospectively included all consecutive cases of simultaneous subtotal petrosectomy and cochlear implant surgery performed at a tertiary referral center between 2009 and 2016 using the same surgical technique. All patients underwent postoperative high-resolution computed tomography (HRCT) and annual audiological assessments. A 5-year minimum clinical, radiological, and audiological follow-up was performed. The early and late postoperative results were compared. The main outcome measures were complications, postauricular retraction, fat graft reabsorption, and audiological outcomes. RESULTS: Twenty-nine procedures performed in 23 patients (six bilateral) met the inclusion criteria. The mean age of the patients was 67 ± 13.4 years and mean follow-up duration was 7.5 ± 2 years. At follow-up, postauricular retraction was detected in 24 cases (82.8%), including five cases (17.1%) with subcutaneous protrusion of implant and array. Fat graft volume was significantly reduced at late-HRCT in terms of maximum diameter (2.24 ± 1.0 cm vs 3.69 ± 0.7 cm; p < 0.0005) and surface area (1.88 ± 1.2 vs 4.24 ± 1.6 cm2, p < 0.0005). Six patients had extracochlear electrodes at late-HRCT (3/6 had an increased number of extracochlear electrodes), with a lowering of this group's performance of - 15% (p < 0.005) in the follow-up speech comprehension test. CONCLUSIONS: Subtotal petrosectomy with cochlear implantation is an effective long-term technique in selected cases. Fat grafts showed significant reabsorption at long-term follow-up with reaeration of the middle ear spaces. Prolonged clinical and radiological follow-up is recommended for monitoring implant performances and late complications.


Subject(s)
Cochlear Implantation , Cochlear Implants , Humans , Middle Aged , Aged , Aged, 80 and over , Cochlear Implantation/methods , Retrospective Studies , Ear, Middle/surgery , Tomography, X-Ray Computed , Mastoid/surgery , Treatment Outcome
9.
Clin Oral Investig ; 28(1): 106, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38244108

ABSTRACT

OBJECTIVES: To evaluate the effect of bromelain associated with Biosilicate on the bond strength (BS) of a universal adhesive system to sound (SD) and caries-affected dentin (CAD), and on the proteolytic activity. MATERIALS AND METHODS: Cavities were prepared in 360 molars, half submitted to cariogenic challenge. Teeth were separated into groups (n=20): Control-No treatment; CHX-0.12% chlorhexidine; NaOCl-5% sodium hypochlorite; Br5%-5% bromelain; Br10%-10% bromelain; Bio-10% Biosilicate; NaOClBio-NaOCl+Bio; Br5%Bio-Br5%+Bio; Br10%Bio-Br10%+Bio. Following treatments, the adhesive system was applied, and cavities were restored. Samples were sectioned into sticks and stored at 37 °C for 24 h, 6 months, and 1 year. Microtensile BS (2-way ANOVA, Bonferroni's test, α=0.05), fracture patterns (SEM), and adhesive interfaces (TEM) were evaluated. Bacterial collagenase assay and in situ zymography were performed. RESULTS: In CAD, Br10% presented higher BS (p=0.0208) than Br5%Bio. Br5% presented higher BS (p=0.0033) after 6 months than after 24 h; and association of treatments, higher BS (p<0.05) after aging than after 24 h. Mixed fractures were the most prevalent. Association of treatments promoted a more uniform hybrid layer with embedded Bio particles. Experimental groups presented lower (p<0.0001) relative fluorescence units than Control. Bromelain, associated or not with Bio, showed collagenolytic degradation. CONCLUSIONS: Bromelain associated with Biosilicate did not affect the BS to SD. In CAD, Br5%Bio decreased immediate BS but had no long-term influence. This association decreased the proteolytic activity. CLINICAL RELEVANCE: Bromelain and Biosilicate may enhance the longevity of adhesive restorations by inhibiting endogenous proteases.


Subject(s)
Dental Bonding , Dental Caries , Humans , Dental Cements/chemistry , Dentin-Bonding Agents/chemistry , Bromelains/pharmacology , Bromelains/analysis , Materials Testing , Dentin , Ceramics , Tensile Strength , Resin Cements/pharmacology
10.
Clin Oral Investig ; 28(8): 430, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012388

ABSTRACT

OBJECTIVES: This in vitro study examined the marginal integrity of experimental composite materials doped with bioactive glass (BG). MATERIALS AND METHODS: Class-II MOD cavities were prepared and restored with one of the following composite materials: a commercial composite material as a reference (Filtek Supreme XTE), an experimental composite doped with BG 45S5 (C-20), and an experimental composite doped with a fluoride-containing BG (F-20). Six experimental groups (n = 8) were used, as each of the three composites was applied with (+) or without (-) a universal adhesive (Adper Scotchbond Multipurpose). All specimens were subjected to thermocycling (10,000 x, 5-55 °C) and then additionally stored in artificial saliva for eight weeks. Scanning electron micrographs of the mesial and the distal box were taken at three time points (initial, after thermocycling, and after eight weeks of storage in artificial saliva). The margins were classified as "continuous" and "non-continuous" and the percentage of continuous margins (PCM) was statistically analyzed (α = 0.05). RESULTS: In most experimental groups, thermocycling led to a significant decrease in PCM, while the additional 8-week aging had no significant effect. F-20 + performed significantly better (p = 0.005) after 8 weeks storage in artificial saliva than the reference material with adhesive, while no statistically significant differences were observed at the other two time points. C-20 + exhibited significantly better PCM than the reference material with adhesive after thermocycling (p = 0.026) and after 8 weeks (p = 0.003). CONCLUSIONS: Overall, the experimental composites with BG showed at least as good marginal adaptation as the commercial reference, with an indication of possible re-sealing of marginal gaps. CLINICAL RELEVANCE: Maintaining or improving the marginal integrity of composite restorations is important to prevent microleakage and its likely consequences such as pulp irritation and secondary caries.


Subject(s)
Composite Resins , Dental Marginal Adaptation , Dental Restoration, Permanent , Glass , Materials Testing , Microscopy, Electron, Scanning , Saliva, Artificial , Surface Properties , Composite Resins/chemistry , In Vitro Techniques , Glass/chemistry , Dental Restoration, Permanent/methods , Saliva, Artificial/chemistry , Humans , Dental Cavity Preparation , Ceramics/chemistry , Resin Cements/chemistry , Fluorides/chemistry
11.
Cell Tissue Bank ; 25(1): 389-400, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38159136

ABSTRACT

Exosomes, the naturally secreted nanocarriers of cells, have recently been demonstrated to have therapeutic benefits in a variety of disease models where parent cells are not present. However, the use of exosomes in bone defect regeneration has been unusual, and little is documented about the underlying processes. In recent study we produced and characterized exosomes derived human endometrial mesenchymal stem stromal cells and 58S bioactive glass scaffolds; in following, in this research exosome loaded scaffolds synthetized and release of exosome, porosity and bioactivity of them were assessed. More over the effect of scaffolds on repair of critical-size bone defects in rat's calvaria was evaluated by histological examination and micro computed tomography (µ CT). The findings confirmed that constructed porous scaffolds consistently release exosomes; additionally, in vivo findings including Hematoxilin & Eosin staining, Immunohistochemistry, Masson's trichrome, histomorphometric analysis, and µ CT clarified that our implant has osteogenic properties. We discovered that Exo-treated scaffolds might promote osteogenesis especially compared to pure scaffolds, indicating that produced scaffolds containing exosomes could be a potential replacement in bone tissue engineering.


Subject(s)
Exosomes , Glass , Tissue Scaffolds , Rats , Humans , Animals , Tissue Scaffolds/chemistry , X-Ray Microtomography , Cell Differentiation , Bone Regeneration , Osteogenesis , Skull , Porosity
12.
Int J Mol Sci ; 25(2)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38256225

ABSTRACT

Diabetes affected 537 million adults in 2021, costing a total of USD 966 billion dollars in healthcare. One of the most common complications associated with diabetes corresponds to the development of diabetic foot ulcers (DFUs). DFUs affect around 15% of diabetic patients; these ulcers have impaired healing due to neuropathy, arterial disease, infection, and aberrant extracellular matrix (ECM) degradation, among other factors. The bioactive-glass-based materials discussed in this systematic review show promising results in accelerating diabetic wound healing. It can be concluded that the addition of BG is extremely valuable with regard to the wound healing rate and wound healing quality, since BG activates fibroblasts, enhances M1-to-M2 phenotype switching, induces angiogenesis, and initiates the formation of granulation tissue and re-epithelization of the wound. In addition, a higher density and deposition and better organization of collagen type III are seen. This systematic review was made using the PRISMA guideline and intends to contribute to the advancement of diabetic wound healing therapeutic strategies development by providing an overview of the materials currently being developed and their effect in diabetic wound healing in vitro and in vivo.


Subject(s)
Diabetes Mellitus , Diabetic Foot , Adult , Humans , Wound Healing , Diabetic Foot/therapy , Granulation Tissue , Collagen Type III , Fibroblasts
13.
J Esthet Restor Dent ; 36(5): 746-760, 2024 May.
Article in English | MEDLINE | ID: mdl-38130045

ABSTRACT

OBJECTIVE: This scoping review aims to assess the influence of air abrasion with aluminum oxide and bioactive glass on dentin bond strength. MATERIALS AND METHODS: An electronic search was conducted in three databases (PubMed, Cochrane Library, and Embase), on March 3rd, 2023, with previously identified MeSH Terms. A total of 1023 records were screened. Exclusion criteria include primary teeth, air abrasion of a substrate other than sound dentin, use of particles apart from aluminum oxide or bioactive glass, and studies in which bond strength was not assessed. RESULTS: Out of the 1023 records, title and abstract screening resulted in the exclusion of 895 and 67 studies, respectively, while full-text analysis excluded another 25 articles. In addition, 5 records were not included, as full texts could not be obtained after requesting the authors. Two cross-references were added. Thus, 33 studies were included in this review. It is important to emphasize the absence of standardization of air abrasion parameters. According to 63.6% of the studies, air abrasion does not influence dentin bond strength. Moreover, 30.3% suggest improving bonding performance, and 6.1% advocate a decrease. CONCLUSIONS: Air abrasion with aluminum oxide does not enhance or impair dentin bond strength. The available data on bioactive glass are limited, which hinders conclusive insights. CLINICAL SIGNIFICANCE: Dentin air abrasion is a widely applied technique nowadays, with numerous clinical applications. Despite the widespread adoption of this procedure, its potential impact on bonding performance requires a thorough analysis of the existing literature.


Subject(s)
Dental Bonding , Dentin , Surface Properties , Dentin/drug effects , Dental Bonding/methods , Humans , Air Abrasion, Dental/methods , Aluminum Oxide/chemistry
14.
J Esthet Restor Dent ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867494

ABSTRACT

OBJECTIVE: To evaluate the influence of air-abrasion of enamel with three different desensitizing powders on the whitening effect of a bleaching gel containing 40% H2O2, which was used for in-office tooth bleaching. MATERIALS AND METHODS: Forty human incisors, extracted and prepared, were acquired for this study and subsequently randomized into four groups (n = 10). The control group specimens underwent no pretreatment prior to the bleaching procedure, whereas the remaining three groups underwent air abrasion using distinct desensitizing powders; (a) Sylc, which contains bioglass 45S5; (b) BioMinF, which contains calcium phospho-fluoro-silicate glass; and (c) MI Pearls, which contains nano-hydroxyapatite, 1 h preceding the Opalescence Boost PF 40% bleaching procedure. Color measurements were conducted using a double-beam UV-Vis spectrophotometer at four distinct time points (prior to bleaching, 24 h, 15 days, and 30 days post-bleaching). RESULTS: Tooth color change outcomes revealed that there were no statistically significant results with respect to the interaction of the two criteria (treatments and time) (p = 0.990). Additionally, there were no statistically significant results with respect to the main effects of treatments (p = 0.385), while there were statistically significant effects with respect to the time criterion (p = 0.013). CONCLUSIONS: The use of the tested desensitizing powders prior the bleaching procedure did not affect the tooth color change induced by the tested bleaching agent. CLINICAL SIGNIFICANCE: Tooth color change and whiteness are not affected by air-abrasion desensitizing treatments when applied prior to in-office bleaching procedures.

15.
Int J Mol Sci ; 25(15)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39125634

ABSTRACT

Mesoporous bioactive glass nanoparticles (MBGNs) doped with therapeutical ions present multifunctional systems that enable a synergistic outcome through the dual delivery of drugs and ions. The aim of this study was to evaluate influence of co-doping with strontium and magnesium ions (SrMg-MBGNs) on the properties of MBGNs. A modified microemulsion-assisted sol-gel synthesis was used to obtain particles, and their physicochemical properties, bioactivity, and drug-loading/release ability were evaluated. Indirect biological assays using 2D and 3D cell culture models on human bone marrow-derived mesenchymal stem cells (hBM-MSCs) and endothelial EA.hy926 cells, respectively, were used to determine biocompatibility of MBGNs, their influence on alkaline phosphatase (ALP) production, calcium deposition, and cytoskeletal organization. Results showed that Sr,Mg-doping increased pore volume and solubility, and changed the mesoporous structure from worm-like to radial-dendritic, which led to a slightly accelerated drug release compared to pristine MBGNs. Biological assays confirmed that particles are biocompatible, and have ability to slightly induce ALP production and calcium deposition of hBM-MSCs, as well as to significantly improve the proliferation of EA.hy926 compared to biochemical stimulation via vascular endothelial growth factor (VEGF) administration or regular media. Fluorescence staining revealed that SrMg-MBGNs had a similar effect on EA.hy926 cytoskeletal organization to the VEGF group. In conclusion, Sr,Mg-MBGNs might be considered promising biomaterial for biomedical applications.


Subject(s)
Bone Regeneration , Drug Delivery Systems , Glass , Magnesium , Mesenchymal Stem Cells , Nanoparticles , Strontium , Humans , Bone Regeneration/drug effects , Nanoparticles/chemistry , Strontium/chemistry , Strontium/pharmacology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Porosity , Magnesium/chemistry , Glass/chemistry , Drug Delivery Systems/methods , Drug Liberation , Cell Line , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Cell Proliferation/drug effects
16.
BMC Oral Health ; 24(1): 445, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38609921

ABSTRACT

BACKGROUND: Considering the extensive use of bleaching agents and the occurrence of side effects such as enamel demineralization, this study aimed to assess the enamel changes of bleached teeth following the experimental application of chitosan-bioactive glass (CH-BG). METHODS: In this in vitro study, CH-BG (containing 66% BG) was synthesized and characterized by Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). Thirty sound human premolars were bleached with 40% hydrogen peroxide, and the weight% of calcium and phosphorus elements of the buccal enamel surface was quantified before and after bleaching by scanning electron microscopy/ energy-dispersive X-ray spectroscopy (SEM, EDX). Depending on the surface treatment of the enamel surface, the specimens were divided into three groups (n = 10): control (no treatment), MI Paste (MI), and CH-BG. Then the specimens were stored in artificial saliva for 14 days. The SEM/EDX analyses were performed again on the enamel surface. Data were analyzed by one-way ANOVA and Tukey's test and a p-value of < 0.05 was considered statistically significant. RESULTS: In all groups, the weight% of calcium and phosphorus elements of enamel decreased after bleaching; this reduction was significant for phosphorus (p < 0.05) and insignificant for calcium (p > 0.05). After 14 days of remineralization, the weight% of both calcium and phosphorus elements was significantly higher compared to their bleached counterparts in both MI and CH-BG groups (p < 0.05). Following the remineralization process, the difference between MI and CH-BG groups was not significant (p > 0.05) but both had a significant difference with the control group in this regard (p < 0.05). CONCLUSIONS: The synthesized CH-BG compound showed an efficacy comparable to that of MI Paste for enamel remineralization of bleached teeth.


Subject(s)
Chitosan , Tooth Bleaching , Humans , Calcium , Chitosan/adverse effects , Tooth Bleaching/adverse effects , Dental Enamel , Phosphorus
17.
BMC Oral Health ; 24(1): 650, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824555

ABSTRACT

BACKGROUND: The formation of white spots, which represent early carious lesions, is a major issue with fixed orthodontics. The addition of remineralizing agents to orthodontic adhesives may prevent the formation of white spots. The aim of this study was to produce a composite orthodontic adhesive combined with nano-bioactive glass-silver (nBG@Ag) for bracket bonding to enamel and to investigate its cytotoxicity, antimicrobial activity, remineralization capability, and bond strength. METHODS: nBG@Ag was synthesized using the sol-gel method, and characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy with an attenuated total reflectance attachment (ATR-FTIR). The cytotoxicity test (MTT) and antimicrobial activity of adhesives containing 1%, 3%, and 5% (wt/wt) nBG@Ag were evaluated, and the shear bond strength of the adhesives was measured using a universal testing machine. Remineralization was assessed through microhardness testing with a Vickers microhardness tester and scanning electron microscopy (SEM). Statistical analyses were conducted using the Shapiro-Wilk test, Levene test, one-way ANOVA, Robust-Welch test, Tukey HSD method, and two-way ANOVA. RESULTS: The biocompatibility of the adhesives was found to be high, as confirmed by the lack of significant differences in the cytotoxicity between the sample and control groups. Discs made from composites containing nBG@Ag exhibited a significant reduction in the growth of Streptococcus mutans (p < 0.05), and the antibacterial activity increased with higher percentages of nBG@Ag. The shear bond strength of the adhesives decreased significantly (p < 0.001) after the addition of nanoparticles, but it remained above the recommended value. The addition of nBG@Ag showed improvement in the microhardness of the teeth, although the differences in microhardness between the study groups were not statistically significant. The formation of hydroxyapatite deposits on the tooth surface was confirmed through SEM and energy-dispersive X-ray spectroscopy (EDX). CONCLUSION: Adding nBG@Ag to orthodontic adhesives can be an effective approach to enhance antimicrobial activity and reduce enamel demineralization around the orthodontic brackets, without compromising biocompatibility and bond strength.


Subject(s)
Anti-Bacterial Agents , Dental Cements , Orthodontic Brackets , Silver , Tooth Remineralization , Anti-Bacterial Agents/pharmacology , Silver/pharmacology , Tooth Remineralization/methods , Dental Cements/pharmacology , Materials Testing , Nanostructures/therapeutic use , Streptococcus mutans/drug effects , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction , Glass/chemistry , Microscopy, Electron, Transmission , Ceramics , Humans , Composite Resins/pharmacology , Composite Resins/chemistry , Shear Strength , Hardness , Dental Bonding/methods , Dental Enamel/drug effects
18.
BMC Oral Health ; 24(1): 484, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649931

ABSTRACT

BACKGROUND: Root caries is preventable and can be arrested at any stage of disease development. The aim of this study was to investigate the potential mineral exchange and fluorapatite formation within artificial root carious lesions (ARCLs) using different toothpastes containing 5,000 ppm F, 1,450 ppm F or bioactive glass (BG) with 540 ppm F. MATERIALS AND METHODS: The crowns of each extracted sound tooth were removed. The remaining roots were divided into four parts (n = 12). Each sample was randomly allocated into one of four groups: Group 1 (Deionised water); Group 2 (BG with 540 ppm F); Group 3 (1,450 ppm F) and Group 4 (5,000 ppm F). ARCLs were developed using demineralisation solution (pH 4.8). The samples were then pH-cycled in 13 days using demineralisation solution (6 h) and remineralisation solution (pH 7) (16 h). Standard tooth brushing was carried out twice a day with the assigned toothpaste. X-ray Microtomography (XMT) was performed for each sample at baseline, following ARCL formation and after 13-day pH-cycling. Scanning Electron Microscope (SEM) and 19F Magic angle spinning nuclear magnetic resonance (19F-MAS-NMR) were also performed. RESULTS: XMT results showed that the highest mineral content increase (mean ± SD) was Group 4 (0.09 ± 0.05), whilst the mineral content decreased in Group 1 (-0.08 ± 0.06) after 13-day pH-cycling, however there was evidence of mineral loss within the subsurface for Groups 1, 3 and 4 (p < 0.05). SEM scans showed that mineral contents within the surface of dentine tubules were high in comparison to the subsurface in all toothpaste groups. There was evidence of dentine tubules being either partially or completely occluded in toothpaste groups. 19F-MAS-NMR showed peaks between - 103 and - 104ppm corresponding to fluorapatite formation in Groups 3 and 4. CONCLUSION: Within the limitation of this laboratory-based study, all toothpastes were potentially effective to increase the mineral density of artificial root caries on the surface, however there was evidence of mineral loss within the subsurface for Groups 1, 3 and 4.


Subject(s)
Root Caries , Toothpastes , X-Ray Microtomography , Pilot Projects , Toothpastes/therapeutic use , Humans , Apatites/therapeutic use , Apatites/analysis , Hydrogen-Ion Concentration , Fluorides/therapeutic use , Tooth Remineralization/methods , Cariostatic Agents/therapeutic use , In Vitro Techniques , Microscopy, Electron, Scanning
19.
BMC Oral Health ; 24(1): 423, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580948

ABSTRACT

BACKGROUND: To evaluate the physical properties of bioactive glass-modified universal multimode adhesive and its micro-tensile bond strength (µTBS) to artificially induced caries-affected dentin. METHODS: All bond universal adhesive was used in the study. Specimens were divided into 2 main groups: control unmodified adhesive and 5 wt% BAG modified adhesive. The degree of conversion, pH, bioactivity, and viscosity of the adhesives were tested with n = 5 for each test. Micro-tensile bond strength evaluation was done in etch & rinse (ER) and selective-etch (SE) modes, where 24 human molar teeth were used (n = 3), 12 teeth for immediate bond strength, and the other 12 were tested after 6 months of storage in simulated body fluid (SBF). RESULTS: No significant difference was found between the control and the 5wt% BAG groups regarding the degree of conversion (61.01 ± 0.43 and 60.44 ± 0.61 respectively) and the viscosity (109.77 ± 22.3 and 124.3 ± 9.92 respectively). The control group revealed significantly lower pH values than the 5wt% BAG group (3.16 ± 0.5 and 4.26 ± 0.09 respectively). Immediate bond strength results revealed that the 5wt% BAG in the ER mode had the highest bond strength followed by the control group in the ER mode (44.16 ± 7.53 and 44.00 ± 7.96 respectively). SE groups showed that the immediate strength of the 5wt% BAG group was higher than the control group (42.09 ± 6.02 and 39.29 ± 6.64 respectively). After 6 months of storage, bond strength results revealed a decrease in bond strength values for the control groups but not for the 5wt% BAG in both application modes. CONCLUSIONS: The incorporation of BAG (5wt%) improved the universal adhesive micro-tensile bond strength and bond durability for both adhesive application modes without affecting its degree of conversion or viscosity.


Subject(s)
Dental Bonding , Dental Caries , Humans , Dental Cements , Dentin-Bonding Agents/chemistry , Resin Cements/chemistry , Dental Caries Susceptibility , Materials Testing , Tensile Strength , Dentin
20.
Mol Pharm ; 20(12): 5954-5980, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-37962352

ABSTRACT

Bioactive glasses (BGs) are widely used in orthopedic and dental applications for their ability to stimulate endogenous bone formation and regeneration. BG applications more recently broadened to include soft tissue conditions, based on their ability to stimulate angiogenesis, soft tissue regeneration, and wound healing. Sol-gel synthesis has helped facilitate this expansion, allowing formulators to tailor the morphological characteristics of the BG matrix. The effectiveness of BGs in skin wound healing is viewed as a gateway for their use as both a therapeutic and drug delivery platform in other soft tissue applications, notably gastrointestinal (GI) applications, which form the focus of this review. Recent changes in international guidelines for GI conditions shifted clinical objectives from symptom management to mucosal wound healing. The additional scrutiny of proton pump inhibitor (PPI) safety, increasing burden of disease, and financial costs associated with gastroesophageal reflux disease (GERD), peptic ulcer disease (PUD), and inflammatory bowel disease (IBD) open new clinical possibilities for BG. This narrative literature review intersects materials engineering, formulation science, and clinical practice, setting it apart from prior literature. Broadly, current evidence for BG applications in GI conditions is sparse and under-developed, which this review directly addresses. It explores and synthesizes evidence that supports the potential use of sol-gel-derived BG for the efficacious treatment of soft tissue applications, with specific reference to GI conditions. An overview with comparative analysis of current BG synthesis techniques and associated challenges is presented, and influences of composition, biologically active ions, and morphological characteristics in soft tissue applications are explored. To contextualize this, sol-gel-derived BGs are proposed as a dual, tailorable therapeutic and drug delivery platform for upper and lower GI conditions. Future directions for this largely untapped area of translational research are also proposed, based on extant literature.


Subject(s)
Osteogenesis , Wound Healing , Glass , Biocompatible Materials
SELECTION OF CITATIONS
SEARCH DETAIL