Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.195
Filter
Add more filters

Publication year range
1.
Cell ; 187(9): 2129-2142.e17, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38670071

ABSTRACT

Interspecies blastocyst complementation (IBC) provides a unique platform to study development and holds the potential to overcome worldwide organ shortages. Despite recent successes, brain tissue has not been achieved through IBC. Here, we developed an optimized IBC strategy based on C-CRISPR, which facilitated rapid screening of candidate genes and identified that Hesx1 deficiency supported the generation of rat forebrain tissue in mice via IBC. Xenogeneic rat forebrain tissues in adult mice were structurally and functionally intact. Cross-species comparative analyses revealed that rat forebrain tissues developed at the same pace as the mouse host but maintained rat-like transcriptome profiles. The chimeric rate of rat cells gradually decreased as development progressed, suggesting xenogeneic barriers during mid-to-late pre-natal development. Interspecies forebrain complementation opens the door for studying evolutionarily conserved and divergent mechanisms underlying brain development and cognitive function. The C-CRISPR-based IBC strategy holds great potential to broaden the study and application of interspecies organogenesis.


Subject(s)
Prosencephalon , Animals , Prosencephalon/metabolism , Prosencephalon/embryology , Mice , Rats , Blastocyst/metabolism , Female , CRISPR-Cas Systems/genetics , Transcriptome , Organogenesis , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Male , Mice, Inbred C57BL
2.
Cell ; 187(9): 2143-2157.e15, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38670072

ABSTRACT

A central question for regenerative neuroscience is whether synthetic neural circuits, such as those built from two species, can function in an intact brain. Here, we apply blastocyst complementation to selectively build and test interspecies neural circuits. Despite approximately 10-20 million years of evolution, and prominent species differences in brain size, rat pluripotent stem cells injected into mouse blastocysts develop and persist throughout the mouse brain. Unexpectedly, the mouse niche reprograms the birth dates of rat neurons in the cortex and hippocampus, supporting rat-mouse synaptic activity. When mouse olfactory neurons are genetically silenced or killed, rat neurons restore information flow to odor processing circuits. Moreover, they rescue the primal behavior of food seeking, although less well than mouse neurons. By revealing that a mouse can sense the world using neurons from another species, we establish neural blastocyst complementation as a powerful tool to identify conserved mechanisms of brain development, plasticity, and repair.


Subject(s)
Neurons , Animals , Mice , Rats , Neurons/metabolism , Neurons/cytology , Neurons/physiology , Blastocyst/metabolism , Blastocyst/cytology , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Brain/cytology , Brain/physiology , Female , Hippocampus/cytology , Hippocampus/physiology , Species Specificity , Mice, Inbred C57BL , Male
3.
Cell ; 187(13): 3284-3302.e23, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38843832

ABSTRACT

The cleavage of zygotes generates totipotent blastomeres. In human 8-cell blastomeres, zygotic genome activation (ZGA) occurs to initiate the ontogenesis program. However, capturing and maintaining totipotency in human cells pose significant challenges. Here, we realize culturing human totipotent blastomere-like cells (hTBLCs). We find that splicing inhibition can transiently reprogram human pluripotent stem cells into ZGA-like cells (ZLCs), which subsequently transition into stable hTBLCs after long-term passaging. Distinct from reported 8-cell-like cells (8CLCs), both ZLCs and hTBLCs widely silence pluripotent genes. Interestingly, ZLCs activate a particular group of ZGA-specific genes, and hTBLCs are enriched with pre-ZGA-specific genes. During spontaneous differentiation, hTBLCs re-enter the intermediate ZLC stage and further generate epiblast (EPI)-, primitive endoderm (PrE)-, and trophectoderm (TE)-like lineages, effectively recapitulating human pre-implantation development. Possessing both embryonic and extraembryonic developmental potency, hTBLCs can autonomously generate blastocyst-like structures in vitro without external cell signaling. In summary, our study provides key criteria and insights into human cell totipotency.


Subject(s)
Cell Differentiation , Spliceosomes , Animals , Humans , Mice , Blastocyst/metabolism , Blastocyst/cytology , Blastomeres/metabolism , Blastomeres/cytology , Cellular Reprogramming , Embryonic Development/genetics , Germ Layers/metabolism , Germ Layers/cytology , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/cytology , RNA Splicing , Spliceosomes/metabolism , Totipotent Stem Cells/metabolism , Totipotent Stem Cells/cytology , Zygote/metabolism , Cells, Cultured , Models, Molecular , Protein Structure, Tertiary , Genome, Human , Single-Cell Analysis , Growth Differentiation Factor 15/chemistry , Growth Differentiation Factor 15/genetics , Growth Differentiation Factor 15/metabolism , Epigenomics , Cell Lineage
4.
Cell ; 187(13): 3194-3219, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38906095

ABSTRACT

Developing functional organs from stem cells remains a challenging goal in regenerative medicine. Existing methodologies, such as tissue engineering, bioprinting, and organoids, only offer partial solutions. This perspective focuses on two promising approaches emerging for engineering human organs from stem cells: stem cell-based embryo models and interspecies organogenesis. Both approaches exploit the premise of guiding stem cells to mimic natural development. We begin by summarizing what is known about early human development as a blueprint for recapitulating organogenesis in both embryo models and interspecies chimeras. The latest advances in both fields are discussed before highlighting the technological and knowledge gaps to be addressed before the goal of developing human organs could be achieved using the two approaches. We conclude by discussing challenges facing embryo modeling and interspecies organogenesis and outlining future prospects for advancing both fields toward the generation of human tissues and organs for basic research and translational applications.


Subject(s)
Chimera , Organogenesis , Animals , Humans , Chimera/embryology , Embryo Implantation , Embryo, Mammalian/cytology , Embryonic Development , Embryonic Stem Cells , Models, Biological , Organoids , Regenerative Medicine , Tissue Engineering/methods
5.
Cell ; 179(3): 687-702.e18, 2019 Oct 17.
Article in English | MEDLINE | ID: mdl-31626770

ABSTRACT

A single mouse blastomere from an embryo until the 8-cell stage can generate an entire blastocyst. Whether laboratory-cultured cells retain a similar generative capacity remains unknown. Starting from a single stem cell type, extended pluripotent stem (EPS) cells, we established a 3D differentiation system that enabled the generation of blastocyst-like structures (EPS-blastoids) through lineage segregation and self-organization. EPS-blastoids resembled blastocysts in morphology and cell-lineage allocation and recapitulated key morphogenetic events during preimplantation and early postimplantation development in vitro. Upon transfer, some EPS-blastoids underwent implantation, induced decidualization, and generated live, albeit disorganized, tissues in utero. Single-cell and bulk RNA-sequencing analysis revealed that EPS-blastoids contained all three blastocyst cell lineages and shared transcriptional similarity with natural blastocysts. We also provide proof of concept that EPS-blastoids can be generated from adult cells via cellular reprogramming. EPS-blastoids provide a unique platform for studying early embryogenesis and pave the way to creating viable synthetic embryos by using cultured cells.


Subject(s)
Blastocyst/cytology , Cell Lineage , Embryo Implantation , Induced Pluripotent Stem Cells/cytology , Mouse Embryonic Stem Cells/cytology , Research Embryo Creation/methods , Animals , Blastocyst/metabolism , Cell Differentiation , Cell Line , Cells, Cultured , Cellular Reprogramming Techniques/methods , Female , Humans , Induced Pluripotent Stem Cells/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Mouse Embryonic Stem Cells/metabolism , Transcriptome
6.
Cell ; 173(3): 776-791.e17, 2018 04 19.
Article in English | MEDLINE | ID: mdl-29576449

ABSTRACT

Transformation from morula to blastocyst is a defining event of preimplantation embryo development. During this transition, the embryo must establish a paracellular permeability barrier to enable expansion of the blastocyst cavity. Here, using live imaging of mouse embryos, we reveal an actin-zippering mechanism driving this embryo sealing. Preceding blastocyst stage, a cortical F-actin ring assembles at the apical pole of the embryo's outer cells. The ring structure forms when cortical actin flows encounter a network of polar microtubules that exclude F-actin. Unlike stereotypical actin rings, the actin rings of the mouse embryo are not contractile, but instead, they expand to the cell-cell junctions. Here, they couple to the junctions by recruiting and stabilizing adherens and tight junction components. Coupling of the actin rings triggers localized myosin II accumulation, and it initiates a tension-dependent zippering mechanism along the junctions that is required to seal the embryo for blastocyst formation.


Subject(s)
Actins/chemistry , Blastocyst/metabolism , Microtubules/metabolism , Myosin Type II/chemistry , Animals , Cell Communication , Cytoskeletal Proteins/chemistry , Embryo, Mammalian , Embryonic Development , Female , Green Fluorescent Proteins , Imaging, Three-Dimensional , Mice , Mice, Inbred C57BL , Morula , RNA, Small Interfering/metabolism , Tight Junctions
7.
Cell ; 168(3): 473-486.e15, 2017 01 26.
Article in English | MEDLINE | ID: mdl-28129541

ABSTRACT

Interspecies blastocyst complementation enables organ-specific enrichment of xenogenic pluripotent stem cell (PSC) derivatives. Here, we establish a versatile blastocyst complementation platform based on CRISPR-Cas9-mediated zygote genome editing and show enrichment of rat PSC-derivatives in several tissues of gene-edited organogenesis-disabled mice. Besides gaining insights into species evolution, embryogenesis, and human disease, interspecies blastocyst complementation might allow human organ generation in animals whose organ size, anatomy, and physiology are closer to humans. To date, however, whether human PSCs (hPSCs) can contribute to chimera formation in non-rodent species remains unknown. We systematically evaluate the chimeric competency of several types of hPSCs using a more diversified clade of mammals, the ungulates. We find that naïve hPSCs robustly engraft in both pig and cattle pre-implantation blastocysts but show limited contribution to post-implantation pig embryos. Instead, an intermediate hPSC type exhibits higher degree of chimerism and is able to generate differentiated progenies in post-implantation pig embryos.


Subject(s)
Chimerism , Gene Editing , Mammals/embryology , Animals , Blastocyst , CRISPR-Cas Systems , Cattle , Embryo, Mammalian/cytology , Female , Humans , Male , Mammals/classification , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Pluripotent Stem Cells , Rats , Rats, Sprague-Dawley , Sus scrofa
8.
Genes Dev ; 38(3-4): 168-188, 2024 03 22.
Article in English | MEDLINE | ID: mdl-38479840

ABSTRACT

CTCF is crucial for chromatin structure and transcription regulation in early embryonic development. However, the kinetics of CTCF chromatin occupation in preimplantation embryos have remained unclear. In this study, we used CUT&RUN technology to investigate CTCF occupancy in mouse preimplantation development. Our findings revealed that CTCF begins binding to the genome prior to zygotic genome activation (ZGA), with a preference for CTCF-anchored chromatin loops. Although the majority of CTCF occupancy is consistently maintained, we identified a specific set of binding sites enriched in the mouse-specific short interspersed element (SINE) family B2 that are restricted to the cleavage stages. Notably, we discovered that the neuroprotective protein ADNP counteracts the stable association of CTCF at SINE B2-derived CTCF-binding sites. Knockout of Adnp in the zygote led to impaired CTCF binding signal recovery, failed deposition of H3K9me3, and transcriptional derepression of SINE B2 during the morula-to-blastocyst transition, which further led to unfaithful cell differentiation in embryos around implantation. Our analysis highlights an ADNP-dependent restriction of CTCF binding during cell differentiation in preimplantation embryos. Furthermore, our findings shed light on the functional importance of transposable elements (TEs) in promoting genetic innovation and actively shaping the early embryo developmental process specific to mammals.


Subject(s)
Chromatin , Embryonic Development , Animals , Mice , Binding Sites , Blastocyst/metabolism , Chromatin/metabolism , Embryonic Development/genetics , Gene Expression Regulation, Developmental , Homeodomain Proteins/metabolism , Mammals , Mice, Knockout , Nerve Tissue Proteins/metabolism , Zygote/metabolism
9.
Development ; 151(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38563517

ABSTRACT

The lineage decision that generates the epiblast and primitive endoderm from the inner cell mass (ICM) is a paradigm for cell fate specification. Recent mathematics has formalized Waddington's landscape metaphor and proven that lineage decisions in detailed gene network models must conform to a small list of low-dimensional stereotypic changes called bifurcations. The most plausible bifurcation for the ICM is the so-called heteroclinic flip that we define and elaborate here. Our re-analysis of recent data suggests that there is sufficient cell movement in the ICM so the FGF signal, which drives the lineage decision, can be treated as spatially uniform. We thus extend the bifurcation model for a single cell to the entire ICM by means of a self-consistently defined time-dependent FGF signal. This model is consistent with available data and we propose additional dynamic experiments to test it further. This demonstrates that simplified, quantitative and intuitively transparent descriptions are possible when attention is shifted from specific genes to lineages. The flip bifurcation is a very plausible model for any situation where the embryo needs control over the relative proportions of two fates by a morphogen feedback.


Subject(s)
Blastocyst , Cell Differentiation , Cell Lineage , Models, Biological , Animals , Mice , Blastocyst/metabolism , Blastocyst/cytology , Signal Transduction , Fibroblast Growth Factors/metabolism , Gene Expression Regulation, Developmental , Endoderm/cytology , Endoderm/metabolism , Germ Layers/cytology , Germ Layers/metabolism
10.
Development ; 150(10)2023 05 15.
Article in English | MEDLINE | ID: mdl-37102672

ABSTRACT

Successful human pregnancy depends upon rapid establishment of three founder lineages: the trophectoderm, epiblast and hypoblast, which together form the blastocyst. Each plays an essential role in preparing the embryo for implantation and subsequent development. Several models have been proposed to define the lineage segregation. One suggests that all lineages specify simultaneously; another favours the differentiation of the trophectoderm before separation of the epiblast and hypoblast, either via differentiation of the hypoblast from the established epiblast, or production of both tissues from the inner cell mass precursor. To begin to resolve this discrepancy and thereby understand the sequential process for production of viable human embryos, we investigated the expression order of genes associated with emergence of hypoblast. Based upon published data and immunofluorescence analysis for candidate genes, we present a basic blueprint for human hypoblast differentiation, lending support to the proposed model of sequential segregation of the founder lineages of the human blastocyst. The first characterised marker, specific initially to the early inner cell mass, and subsequently identifying presumptive hypoblast, is PDGFRA, followed by SOX17, FOXA2 and GATA4 in sequence as the hypoblast becomes committed.


Subject(s)
Blastocyst , Germ Layers , Pregnancy , Female , Humans , Transcriptional Activation , Blastocyst/metabolism , Germ Layers/metabolism , Embryo, Mammalian/metabolism , Cell Differentiation , Embryonic Development
11.
Annu Rev Genet ; 52: 185-201, 2018 11 23.
Article in English | MEDLINE | ID: mdl-30183407

ABSTRACT

Establishing the different lineages of the early mammalian embryo takes place over several days and several rounds of cell divisions from the fertilized egg. The resulting blastocyst contains the pluripotent cells of the epiblast, from which embryonic stem cells can be derived, as well as the extraembryonic lineages required for a mammalian embryo to survive in the uterine environment. The dynamics of the cellular and genetic interactions controlling the initiation and maintenance of these lineages in the mouse embryo are increasingly well understood through application of the tools of single-cell genomics, gene editing, and in vivo imaging. Exploring the similarities and differences between mouse and human development will be essential for translation of these findings into new insights into human biology, derivation of stem cells, and improvements in fertility treatments.


Subject(s)
Cell Lineage/genetics , Embryonic Development/genetics , Embryonic Stem Cells/cytology , Germ Layers/growth & development , Animals , Embryo, Mammalian , Gene Editing , Germ Layers/cytology , Humans , Mice , Pluripotent Stem Cells/cytology
12.
Proc Natl Acad Sci U S A ; 120(28): e2216564120, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37379351

ABSTRACT

Patients with permanent hypoparathyroidism require lifelong replacement therapy to avoid life-threatening complications, The benefits of conventional treatment are limited, however. Transplanting a functional parathyroid gland (PTG) would yield better results. Parathyroid gland cells generated from pluripotent stem cells in vitro to date cannot mimic the physiological responses to extracellular calcium that are essential for calcium homeostasis. We thus hypothesized that blastocyst complementation (BC) could be a better strategy for generating functional PTG cells and compensating loss of parathyroid function. We here describe generation of fully functional PTGs from mouse embryonic stem cells (mESCs) with single-step BC. Using CRISPR-Cas9 knockout of Glial cells missing2 (Gcm2), we efficiently produced aparathyroid embryos for BC. In these embryos, mESCs differentiated into endocrinologically mature PTGs that rescued Gcm2-/- mice from neonatal death. The mESC-derived PTGs responded to extracellular calcium, restoring calcium homeostasis on transplantation into mice surgically rendered hypoparathyroid. We also successfully generated functional interspecies PTGs in Gcm2-/- rat neonates, an accomplishment with potential for future human PTG therapy using xenogeneic animal BC. Our results demonstrate that BC can produce functional endocrine organs and constitute a concept in treatment of hypoparathyroidism.


Subject(s)
Hypoparathyroidism , Parathyroid Glands , Humans , Animals , Mice , Rats , Calcium , Hypoparathyroidism/genetics , Hypoparathyroidism/therapy , Calcium, Dietary , Blastocyst
13.
Dev Biol ; 509: 51-58, 2024 May.
Article in English | MEDLINE | ID: mdl-38342400

ABSTRACT

Glucose and fatty acids (FA) metabolism disturbances during oocyte in vitro maturation (IVM) affect their metabolism and surrounding cumulus cells, but only inhibition of glucose metabolism decreases embryo culture efficiency. Therefore, the present experiment aimed to reveal if glucose or FA metabolism inhibition leads to the disruption of embryo developmental potential, and to characterize the metabolic landscape of embryos reaching the blastocyst stage. Inhibitors of glucose (IO + DHEA) or FA (ETOMOXIR) metabolism were applied during IVM, and the control group was matured under standard conditions. Blastocysts obtained from experimental and control groups were analyzed with regard to lipidome and metabolome (mass spectrometry), transcriptome (RNA-Seq) and fluorescence lipid droplets staining (BODIPY). We showed that inhibition of glucose and fatty acid metabolism leads to cellular stress response compromising the quality of preimplantation embryos. The inhibition of energy metabolism affects membrane fluidity as well as downregulates fatty acids biosynthesis and gene expression of trophectoderm cell line markers. Therefore, we conclude that oocyte maturation environment exerts a substantial effect on preimplantation development programming at cellular and molecular levels.


Subject(s)
Cumulus Cells , Oocytes , Female , Cattle , Animals , Oocytes/metabolism , Cumulus Cells/metabolism , Embryonic Development , Energy Metabolism , Blastocyst/metabolism , Glucose/metabolism , Fatty Acids/metabolism
14.
Development ; 149(21)2022 11 01.
Article in English | MEDLINE | ID: mdl-36255229

ABSTRACT

Nonsense-mediated RNA decay (NMD) is a highly conserved RNA turnover pathway that degrades RNAs harboring in-frame stop codons in specific contexts. Loss of NMD factors leads to embryonic lethality in organisms spanning the phylogenetic scale, but the mechanism remains unknown. Here, we report that the core NMD factor, UPF2, is required for expansion of epiblast cells within the inner cell mass of mice in vivo. We identify NMD target mRNAs in mouse blastocysts - both canonical and alternatively processed mRNAs - including those encoding cell cycle arrest and apoptosis factors, raising the possibility that NMD is essential for embryonic cell proliferation and survival. In support, the inner cell mass of Upf2-null blastocysts rapidly regresses with outgrowth and is incompetent for embryonic stem cell derivation in vitro. In addition, we uncovered concordant temporal- and lineage-specific regulation of NMD factors and mRNA targets, indicative of a shift in NMD magnitude during peri-implantation development. Together, our results reveal developmental and molecular functions of the NMD pathway in the early embryo.


Subject(s)
Nonsense Mediated mRNA Decay , RNA , Mice , Animals , RNA/metabolism , Phylogeny , Nonsense Mediated mRNA Decay/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Germ Layers/metabolism , RNA-Binding Proteins/metabolism
15.
Development ; 149(7)2022 04 01.
Article in English | MEDLINE | ID: mdl-35297991

ABSTRACT

Exponential proliferation of trophoblast stem cells (TSC) is crucial in Ruminantia to maximize numerical access to caruncles, the restricted uterine sites that permit implantation. When translating systems biology of the undifferentiated bovine trophectoderm, we uncovered that inhibition of RhoA/Rock promoted self-renewing proliferation and substantially increased blastocyst size. Analysis of transcripts suppressed by Rock inhibition revealed transforming growth factor ß1 (TGFß1) as a primary upstream effector. TGFß1 treatment induced changes consistent with differentiation in bTSCs, a response that could be replicated by induced expression of the bovine ROCK2 transgene. Rocki could partially antagonize TGFß1 effects, and TGFß receptor inhibition promoted proliferation identical to Rocki, indicating an all-encompassing upstream regulation. Morphological differentiation included formation of binucleate cells and infrequent multinucleate syncytia, features we also localize in the in vivo bovine placenta. Collectively, we demonstrate a central role for TGFß1, RhoA and Rock in inducing bTSC differentiation, attenuation of which is sufficient to sustain self-renewal and proliferation linked to blastocyst size and preimplantation development. Unraveling these mechanisms augments evolutionary/comparative physiology of the trophoblast cell lineage and placental development in eutherians.


Subject(s)
Cell Self Renewal , Trophoblasts , Animals , Blastocyst , Cattle , Cell Differentiation , Female , Placenta , Pregnancy
16.
Hum Genomics ; 18(1): 32, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38532526

ABSTRACT

BACKGROUND: Advanced paternal age (APA) is associated with adverse outcomes to offspring health, including increased risk for neurodevelopmental disorders. The aim of this study was to investigate the methylome and transcriptome of the first two early embryonic tissue lineages, the inner cell mass (ICM) and the trophectoderm (TE), from human blastocysts in association with paternal age and disease risk. High quality human blastocysts were donated with patient consent from donor oocyte IVF cycles from either APA (≥ 50 years) or young fathers. Blastocysts were mechanically separated into ICM and TE lineage samples for both methylome and transcriptome analyses. RESULTS: Significant differential methylation and transcription was observed concurrently in ICM and TE lineages of APA-derived blastocysts compared to those from young fathers. The methylome revealed significant enrichment for neuronal signaling pathways, as well as an association with neurodevelopmental disorders and imprinted genes, largely overlapping within both the ICM and TE lineages. Significant enrichment of neurodevelopmental signaling pathways was also observed for differentially expressed genes, but only in the ICM. In stark contrast, no significant signaling pathways or gene ontology terms were identified in the trophectoderm. Despite normal semen parameters in aged fathers, these significant molecular alterations can adversely contribute to downstream impacts on offspring health, in particular neurodevelopmental disorders like autism spectrum disorder and schizophrenia. CONCLUSIONS: An increased risk for neurodevelopmental disorders is well described in children conceived by aged fathers. Using blastocysts derived from donor oocyte IVF cycles to strategically control for maternal age, our data reveals evidence of methylation dysregulation in both tissue lineages, as well as transcription dysregulation in neurodevelopmental signaling pathways associated with APA fathers. This data also reveals that embryos derived from APA fathers do not appear to be compromised for initial implantation potential with no significant pathway signaling disruption in trophectoderm transcription. Collectively, our work provides insights into the complex molecular mechanisms that occur upon paternal aging during the first lineage differentiation in the preimplantation embryo. Early expression and epigenetic markers of APA-derived preimplantation embryos highlight the susceptibility of the future fetus to adverse health outcomes.


Subject(s)
Autism Spectrum Disorder , Humans , Male , Aging , Blastocyst/metabolism , Epigenesis, Genetic , Fathers , Middle Aged , Female
17.
FASEB J ; 38(1): e23372, 2024 01.
Article in English | MEDLINE | ID: mdl-38102977

ABSTRACT

Embryo vitrification is a standard procedure in assisted reproductive technology. Previous studies have shown that frozen embryo transfer is associated with an elevated risk of adverse maternal and neonatal outcomes. This study aimed to explore the effects of mouse blastocyst vitrification on the phenotype of vitrified-warmed blastocysts, their intrauterine and postnatal development, and the long-term metabolic health of the derived offspring. The vitrified-warmed blastocysts (IVF + VT group) exhibited reduced mitochondrial activity, increased apoptotic levels, and decreased cell numbers when compared to the fresh blastocysts (IVF group). Implantation rates, live pup rates, and crown-rump length at E18.5 were not different between the two groups. However, there was a significant decrease in fetal weight and fetal/placental weight ratio in the IVF + VT group. Furthermore, the offspring of the IVF + VT group at an age of 36 weeks had reduced whole energy consumption, impaired glucose and lipid metabolism when compared with the IVF group. Notably, RNA-seq results unveiled disturbed hepatic gene expression in the offspring from vitrified-warmed blastocysts. This study revealed the short-term negative impacts of vitrification on embryo and fetal development and the long-term influence on glucose and lipid metabolism that persist from the prenatal stage into adulthood in mice.


Subject(s)
Cryopreservation , Vitrification , Pregnancy , Female , Animals , Mice , Cryopreservation/methods , Placenta , Embryonic Development , Blastocyst , Glucose , Retrospective Studies
18.
Cell Mol Life Sci ; 81(1): 297, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992309

ABSTRACT

Muse cells, identified as cells positive for the pluripotent surface marker SSEA-3, are pluripotent-like endogenous stem cells located in the bone marrow (BM), peripheral blood, and organ connective tissues. The detailed characteristics of SSEA-3(+) cells in extraembryonic tissue, however, are unknown. Here, we demonstrated that similar to human-adult tissue-Muse cells collected from the BM, adipose tissue, and dermis as SSEA-3(+), human-umbilical cord (UC)-SSEA-3(+) cells express pluripotency markers, differentiate into triploblastic-lineage cells at a single cell level, migrate to damaged tissue, and exhibit low telomerase activity and non-tumorigenicity. Notably, ~ 20% of human-UC-SSEA-3(+) cells were negative for X-inactive specific transcript (XIST), a naïve pluripotent stem cell characteristic, whereas all human adult tissue-Muse cells are XIST-positive. Single-cell RNA sequencing revealed that the gene expression profile of human-UC-SSEA-3(+) cells was more similar to that of human post-implantation blastocysts than human-adult tissue-Muse cells. The DNA methylation level showed the same trend, and notably, the methylation levels in genes particularly related to differentiation were lower in human-UC-SSEA-3(+) cells than in human-adult tissue-Muse cells. Furthermore, human-UC-SSEA-3(+) cells newly express markers specific to extraembryonic-, germline-, and hematopoietic-lineages after differentiation induction in vitro whereas human-adult tissue-Muse cells respond only partially to the induction. Among various stem/progenitor cells in living bodies, those that exhibit properties similar to post-implantation blastocysts in a naïve state have not yet been found in humans. Easily accessible human-UC-SSEA-3(+) cells may be a valuable tool for studying early-stage human development and human reproductive medicine.


Subject(s)
Blastocyst , Cell Differentiation , Stage-Specific Embryonic Antigens , Umbilical Cord , Humans , Stage-Specific Embryonic Antigens/metabolism , Umbilical Cord/cytology , Blastocyst/cytology , Blastocyst/metabolism , Antigens, Tumor-Associated, Carbohydrate/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Single-Cell Analysis , Telomerase/metabolism , Telomerase/genetics , Female
19.
Am J Respir Crit Care Med ; 210(2): 167-177, 2024 07 15.
Article in English | MEDLINE | ID: mdl-38507610

ABSTRACT

Rationale: Recent efforts in bioengineering and embryonic stem cell (ESC) technology allowed the generation of ESC-derived mouse lung tissues in transgenic mice that were missing critical morphogenetic genes. Epithelial cell lineages were efficiently generated from ESC, but other cell types were mosaic. A complete contribution of donor ESCs to lung tissue has never been achieved. The mouse lung has never been generated in a rat. Objective: We sought to generate the mouse lung in a rat. Methods: Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 genome editing was used to disrupt the Nkx2-1 gene in rat one-cell zygotes. Interspecies mouse-rat chimeras were produced by injection of wild-type mouse ESCs into Nkx2-1-deficient rat embryos with lung agenesis. The contribution of mouse ESCs to the lung tissue was examined by immunostaining, flow cytometry, and single-cell RNA sequencing. Measurements and Main Results: Peripheral pulmonary and thyroid tissues were absent in rat embryos after CRISPR-Cas9-mediated disruption of the Nkx2-1 gene. Complementation of rat Nkx2-1-/- blastocysts with mouse ESCs restored pulmonary and thyroid structures in mouse-rat chimeras, leading to a near-99% contribution of ESCs to all respiratory cell lineages. Epithelial, endothelial, hematopoietic, and stromal cells in ESC-derived lungs were highly differentiated and exhibited lineage-specific gene signatures similar to those of respiratory cells from the normal mouse lung. Analysis of receptor-ligand interactions revealed normal signaling networks between mouse ESC-derived respiratory cells differentiated in a rat. Conclusions: A combination of CRISPR-Cas9 genome editing and blastocyst complementation was used to produce mouse lungs in rats, making an important step toward future generations of human lungs using large animals as "bioreactors."


Subject(s)
CRISPR-Cas Systems , Gene Editing , Lung , Animals , Rats , Gene Editing/methods , Lung/embryology , Mice , Thyroid Nuclear Factor 1/genetics , Embryonic Stem Cells
20.
Proc Natl Acad Sci U S A ; 119(12): e2122708119, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35298333

ABSTRACT

SignificanceHatching from the zona pellucida is a prerequisite for embryo implantation and is less likely to occur in vitro for reasons unknown. Extracellular vesicles (EVs) are secreted by the embryo into the culture medium. Yet the role that embryonic EVs and their cargo microRNAs (miRNAs) play in blastocyst hatching has not been elucidated, partially due to the difficulties of isolating them from low amounts of culture medium. Here, we optimized EV-miRNA isolation from medium conditioned by individually cultured bovine embryos and subsequently showed that miR-378a-3p, which was up-regulated in EVs secreted by blastocysts, plays a crucial role in promoting blastocyst hatching. This demonstrates the regulatory effect of miR-378-3p on hatching, which is an established embryo quality parameter linked with implantation.


Subject(s)
Extracellular Vesicles , MicroRNAs , Animals , Blastocyst , Cattle , Culture Media , Embryo Culture Techniques , Embryo, Mammalian , Extracellular Vesicles/genetics , MicroRNAs/genetics
SELECTION OF CITATIONS
SEARCH DETAIL