Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 457
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cereb Cortex ; 34(1)2024 01 14.
Article in English | MEDLINE | ID: mdl-37948668

ABSTRACT

Attention typically reduces power in the alpha (8-12 Hz) band and increases power in gamma (>30 Hz) band in brain signals, as reported in macaque local field potential (LFP) and human electro/magneto-encephalogram (EEG/MEG) studies. In addition, EEG studies often use flickering stimuli that produce a specific measure called steady-state-visually-evoked-potential (SSVEP), whose power also increases with attention. However, effectiveness of these neural measures in capturing attentional modulation is unknown since stimuli and task paradigms vary widely across studies. In a recent macaque study, attentional modulation was more salient in the gamma band of the LFP, compared to alpha or SSVEP. To compare this with human EEG, we designed an orientation change detection task where we presented both static and counterphasing stimuli of matched difficulty levels to 26 subjects and compared attentional modulation of various measures under similar conditions. We report two main results. First, attentional modulation was comparable for SSVEP and alpha. Second, non-foveal stimuli produced weak gamma despite various stimulus optimizations and showed negligible attentional modulation although full-screen gratings showed robust gamma activity. Our results are useful for brain-machine-interfacing studies where suitable features are used for decoding attention, and also provide clues about spatial scales of neural mechanisms underlying attention.


Subject(s)
Electroencephalography , Evoked Potentials , Animals , Humans , Electroencephalography/methods , Attention , Brain , Macaca , Photic Stimulation/methods , Evoked Potentials, Visual
2.
Cereb Cortex ; 34(2)2024 01 31.
Article in English | MEDLINE | ID: mdl-38425214

ABSTRACT

Volitional control of local field potential oscillations in low gamma band via brain machine interface can not only uncover the relationship between low gamma oscillation and neural synchrony but also suggest a therapeutic potential to reverse abnormal local field potential oscillation in neurocognitive disorders. In nonhuman primates, the volitional control of low gamma oscillations has been demonstrated by brain machine interface techniques in the primary motor and visual cortex. However, it is not clear whether this holds in other brain regions and other species, for which gamma rhythms might involve in highly different neural processes. Here, we established a closed-loop brain-machine interface and succeeded in training mice to volitionally elevate low gamma power of local field potential in the primary motor and visual cortex. We found that the mice accomplished the task in a goal-directed manner and spiking activity exhibited phase-locking to the oscillation in local field potential in both areas. Moreover, long-term training made the power enhancement specific to direct and adjacent channel, and increased the transcriptional levels of NMDA receptors as well as that of hypoxia-inducible factor relevant to metabolism. Our results suggest that volitionally generated low gamma rhythms in different brain regions share similar mechanisms and pave the way for employing brain machine interface in therapy of neurocognitive disorders.


Subject(s)
Gamma Rhythm , Visual Cortex , Mice , Animals , Brain
3.
Annu Rev Biomed Eng ; 25: 51-76, 2023 06 08.
Article in English | MEDLINE | ID: mdl-36854262

ABSTRACT

Brain-machine interfaces (BMIs) aim to treat sensorimotor neurological disorders by creating artificial motor and/or sensory pathways. Introducing artificial pathways creates new relationships between sensory input and motor output, which the brain must learn to gain dexterous control. This review highlights the role of learning in BMIs to restore movement and sensation, and discusses how BMI design may influence neural plasticity and performance. The close integration of plasticity in sensory and motor function influences the design of both artificial pathways and will be an essential consideration for bidirectional devices that restore both sensory and motor function.


Subject(s)
Brain-Computer Interfaces , Humans , Brain , Learning , Movement , Neuronal Plasticity
4.
Article in English | MEDLINE | ID: mdl-38579958

ABSTRACT

OBJECTIVE: To determine the efficacy of neural interface-based neurorehabilitation, including brain-computer interface, through conventional and individual patient data (IPD) meta-analysis and to assess clinical parameters associated with positive response to neural interface-based neurorehabilitation. DATA SOURCES: PubMed, EMBASE, and Cochrane Library databases up to February 2022 were reviewed. STUDY SELECTION: Studies using neural interface-controlled physical effectors (functional electrical stimulation and/or powered exoskeletons) and reported Fugl-Meyer Assessment-upper-extremity (FMA-UE) scores were identified. This meta-analysis was prospectively registered on PROSPERO (#CRD42022312428). PRISMA guidelines were followed. DATA EXTRACTION: Changes in FMA-UE scores were pooled to estimate the mean effect size. Subgroup analyses were performed on clinical parameters and neural interface parameters with both study-level variables and IPD. DATA SYNTHESIS: Forty-six studies containing 617 patients were included. Twenty-nine studies involving 214 patients reported IPD. FMA-UE scores increased by a mean of 5.23 (95% confidence interval [CI]: 3.85-6.61). Systems that used motor attempt resulted in greater FMA-UE gain than motor imagery, as did training lasting >4 vs ≤4 weeks. On IPD analysis, the mean time-to-improvement above minimal clinically important difference (MCID) was 12 weeks (95% CI: 7 to not reached). At 6 months, 58% improved above MCID (95% CI: 41%-70%). Patients with severe impairment (P=.042) and age >50 years (P=.0022) correlated with the failure to improve above the MCID on univariate log-rank tests. However, these factors were only borderline significant on multivariate Cox analysis (hazard ratio [HR] 0.15, P=.08 and HR 0.47, P=.06, respectively). CONCLUSION: Neural interface-based motor rehabilitation resulted in significant, although modest, reductions in poststroke impairment and should be considered for wider applications in stroke neurorehabilitation.

5.
J Neuroeng Rehabil ; 21(1): 48, 2024 04 05.
Article in English | MEDLINE | ID: mdl-38581031

ABSTRACT

BACKGROUND: This research focused on the development of a motor imagery (MI) based brain-machine interface (BMI) using deep learning algorithms to control a lower-limb robotic exoskeleton. The study aimed to overcome the limitations of traditional BMI approaches by leveraging the advantages of deep learning, such as automated feature extraction and transfer learning. The experimental protocol to evaluate the BMI was designed as asynchronous, allowing subjects to perform mental tasks at their own will. METHODS: A total of five healthy able-bodied subjects were enrolled in this study to participate in a series of experimental sessions. The brain signals from two of these sessions were used to develop a generic deep learning model through transfer learning. Subsequently, this model was fine-tuned during the remaining sessions and subjected to evaluation. Three distinct deep learning approaches were compared: one that did not undergo fine-tuning, another that fine-tuned all layers of the model, and a third one that fine-tuned only the last three layers. The evaluation phase involved the exclusive closed-loop control of the exoskeleton device by the participants' neural activity using the second deep learning approach for the decoding. RESULTS: The three deep learning approaches were assessed in comparison to an approach based on spatial features that was trained for each subject and experimental session, demonstrating their superior performance. Interestingly, the deep learning approach without fine-tuning achieved comparable performance to the features-based approach, indicating that a generic model trained on data from different individuals and previous sessions can yield similar efficacy. Among the three deep learning approaches compared, fine-tuning all layer weights demonstrated the highest performance. CONCLUSION: This research represents an initial stride toward future calibration-free methods. Despite the efforts to diminish calibration time by leveraging data from other subjects, complete elimination proved unattainable. The study's discoveries hold notable significance for advancing calibration-free approaches, offering the promise of minimizing the need for training trials. Furthermore, the experimental evaluation protocol employed in this study aimed to replicate real-life scenarios, granting participants a higher degree of autonomy in decision-making regarding actions such as walking or stopping gait.


Subject(s)
Brain-Computer Interfaces , Deep Learning , Exoskeleton Device , Humans , Algorithms , Lower Extremity , Electroencephalography/methods
6.
Sensors (Basel) ; 24(3)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38339635

ABSTRACT

This study presents a human-computer interaction combined with a brain-machine interface (BMI) and obstacle detection system for remote control of a wheeled robot through movement imagery, providing a potential solution for individuals facing challenges with conventional vehicle operation. The primary focus of this work is the classification of surface EEG signals related to mental activity when envisioning movement and deep relaxation states. Additionally, this work presents a system for obstacle detection based on image processing. The implemented system constitutes a complementary part of the interface. The main contributions of this work include the proposal of a modified 10-20-electrode setup suitable for motor imagery classification, the design of two convolutional neural network (CNNs) models employed to classify signals acquired from sixteen EEG channels, and the implementation of an obstacle detection system based on computer vision integrated with a brain-machine interface. The models developed in this study achieved an accuracy of 83% in classifying EEG signals. The resulting classification outcomes were subsequently utilized to control the movement of a mobile robot. Experimental trials conducted on a designated test track demonstrated real-time control of the robot. The findings indicate the feasibility of integration of the obstacle detection system for collision avoidance with the classification of motor imagery for the purpose of brain-machine interface control of vehicles. The elaborated solution could help paralyzed patients to safely control a wheelchair through EEG and effectively prevent unintended vehicle movements.


Subject(s)
Brain-Computer Interfaces , Wheelchairs , Humans , Electroencephalography/methods , Neural Networks, Computer , Imagery, Psychotherapy , Movement , Algorithms
7.
Sensors (Basel) ; 24(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38931769

ABSTRACT

The complexity of information processing in the brain requires the development of technologies that can provide spatial and temporal resolution by means of dense electrode arrays paired with high-channel-count signal acquisition electronics. In this work, we present an ultra-low noise modular 512-channel neural recording circuit that is scalable to up to 4096 simultaneously recording channels. The neural readout application-specific integrated circuit (ASIC) uses a dense 8.2 mm × 6.8 mm 2D layout to enable high-channel count, creating an ultra-light 350 mg flexible module. The module can be deployed on headstages for small animals like rodents and songbirds, and it can be integrated with a variety of electrode arrays. The chip was fabricated in a TSMC 0.18 µm 1.8 V CMOS technology and dissipates a total of 125 mW. Each DC-coupled channel features a gain and bandwidth programmable analog front-end along with 14 b analog-to-digital conversion at speeds up to 30 kS/s. Additionally, each front-end includes programmable electrode plating and electrode impedance measurement capability. We present both standalone and in vivo measurements results, demonstrating the readout of spikes and field potentials that are modulated by a sensory input.


Subject(s)
Signal Processing, Computer-Assisted , Animals , Electrophysiology/methods , Electrophysiology/instrumentation , Neurons/physiology , Electrophysiological Phenomena , Electrodes , Equipment Design
8.
Neuromodulation ; 27(3): 500-508, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38099883

ABSTRACT

OBJECTIVES: The reliability of long-term neural recordings as therapeutic interventions for motor and sensory disorders is hampered by the brain tissue response. Previous work showed that flickering light at gamma frequencies (ie, 20-50 Hz) causes enhanced microglial recruitment in the visual cortex. The effects of gamma stimulation on glial cells surrounding implanted neural electrodes are not well understood. We hypothesized that invasive stimulation in the gamma frequency band increases microglial recruitment in the short term and reduces astrogliosis at the tissue-electrode interface. MATERIALS AND METHODS: Male Long Evans rats were implanted with dual-shank silicon microelectrode arrays into the motor cortex. After implantation, rats received one hour of 40-Hz stimulation at a constant current of 10 µA using charge-balanced, biphasic pulses on one shank, and the other shank served as the nonstimulated control. Postmortem, tissue sections were stained with ectodermal dysplasia 1 (ED1) for activated microglia, glial fibrillary acidic protein (GFAP) for astrocytes, and 4',6-diamidino-2-phenylindole (DAPI) for nonspecific nuclei. Fluorescent intensity and cell number as a function of distance from the tissue-electrode interface were used to quantify all stained sections. RESULTS: Fluorescent intensity for ED1 was nearly 40% lower for control than for stimulated sites (0-500 µm away from the implant), indicating increased microglial recruitment to the stimulated site (p < 0.05). Fluorescent intensity for GFAP was >67% higher for control than for stimulated sites (0-500 µm away from the implant), indicating reduced astrogliosis at the stimulated site (p < 0.05). No differences were observed in DAPI-stained sections between conditions. CONCLUSIONS: These results suggest that short-term gamma stimulation modulates glial recruitment in the immediate vicinity of the microelectrode. Future studies will investigate the long-term effects of gamma stimulation on glial recruitment at the tissue-electrode interface as a strategy to improve long-term recording reliability.


Subject(s)
Motor Cortex , Neuroinflammatory Diseases , Rats , Male , Animals , Gliosis , Reproducibility of Results , Rats, Long-Evans , Electrodes, Implanted , Microelectrodes
9.
J Neurophysiol ; 129(4): 749-750, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36883755

ABSTRACT

De novo motor learning is a form of motor learning characterized by the development of an entirely new and distinct motor controller to accommodate a novel motor demand. Inversely, adaptation is a form of motor learning characterized by rapid, unconscious modifications in a previously established motor controller to accommodate small deviations in task demands. As most of the motor learning involves the adaptation of previously established motor controllers, de novo learning can be challenging to isolate and observe. The recent publication from Haith et al. (Haith AM, Yang CS, Pakpoor J, Kita K. J Neurophysiol 128: 982-993, 2022.) details a novel method to investigate de novo learning using a complex bimanual cursor control task. This research is especially important in the context of future brain-machine interface devices that will present users with an entirely novel motor learning demand, requiring de novo learning.


Subject(s)
Brain-Computer Interfaces , Learning , Adaptation, Physiological
10.
Cereb Cortex ; 32(24): 5544-5554, 2022 12 08.
Article in English | MEDLINE | ID: mdl-35169837

ABSTRACT

Decoding the inner representation of a word meaning from human cortical activity is a substantial challenge in the development of speech brain-machine interfaces (BMIs). The semantic aspect of speech is a novel target of speech decoding that may enable versatile communication platforms for individuals with impaired speech ability; however, there is a paucity of electrocorticography studies in this field. We decoded the semantic representation of a word from single-trial cortical activity during an imageability-based property identification task that required participants to discriminate between the abstract and concrete words. Using high gamma activity in the language-dominant hemisphere, a support vector machine classifier could discriminate the 2-word categories with significantly high accuracy (73.1 ± 7.5%). Activities in specific time components from two brain regions were identified as significant predictors of abstract and concrete dichotomy. Classification using these feature components revealed that comparable prediction accuracy could be obtained based on a spatiotemporally targeted decoding approach. Our study demonstrated that mental representations of abstract and concrete word processing could be decoded from cortical high gamma activities, and the coverage of implanted electrodes and time window of analysis could be successfully minimized. Our findings lay the foundation for the future development of semantic-based speech BMIs.


Subject(s)
Semantics , Speech , Humans , Language , Electrocorticography/methods , Brain
11.
Annu Rev Psychol ; 73: 131-158, 2022 01 04.
Article in English | MEDLINE | ID: mdl-34982594

ABSTRACT

Traditional brain-machine interfaces decode cortical motor commands to control external devices. These commands are the product of higher-level cognitive processes, occurring across a network of brain areas, that integrate sensory information, plan upcoming motor actions, and monitor ongoing movements. We review cognitive signals recently discovered in the human posterior parietal cortex during neuroprosthetic clinical trials. These signals are consistent with small regions of cortex having a diverse role in cognitive aspects of movement control and body monitoring, including sensorimotor integration, planning, trajectory representation, somatosensation, action semantics, learning, and decision making. These variables are encoded within the same population of cells using structured representations that bind related sensory and motor variables, an architecture termed partially mixed selectivity. Diverse cognitive signals provide complementary information to traditional motor commands to enable more natural and intuitive control of external devices.


Subject(s)
Brain-Computer Interfaces , Brain , Cerebral Cortex , Cognition , Humans , Parietal Lobe
12.
IEEE J Solid-State Circuits ; 58(4): 949-960, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37840542

ABSTRACT

The current demand for high-channel-count neural-recording interfaces calls for more area- and power-efficient readout architectures that do not compromise other electrical performances. In this paper, we present a miniature 128-channel neural recording integrated circuit (NRIC) for the simultaneous acquisition of local field potentials (LFPs) and action potentials (APs), which can achieve a very good compromise between area, power, noise, input range and electrode DC offset cancellation. An AC-coupled 1st-order digitally-intensive Δ-ΔΣ architecture is proposed to achieve this compromise and to leverage the advantages of a highly-scaled technology node. A prototype NRIC, including 128 channels, a newly-proposed area-efficient bulk-regulated voltage reference, biasing circuits and a digital control, has been fabricated in 22-nm FDSOI CMOS and fully characterized. Our proposed architecture achieves a total area per channel of 0.005 mm2, a total power per channel of 12.57 µW, and an input-referred noise of 7.7 ± 0.4 µVrms in the AP band and 11.9 ± 1.1 µVrms in the LFP band. A very good channel-to-channel uniformity is demonstrated by our measurements. The chip has been validated in vivo, demonstrating its capability to successfully record full-band neural signals.

13.
J Neuroeng Rehabil ; 20(1): 61, 2023 05 06.
Article in English | MEDLINE | ID: mdl-37149621

ABSTRACT

BACKGROUND: The aging of the population and the progressive increase of life expectancy in developed countries is leading to a high incidence of age-related cerebrovascular diseases, which affect people's motor and cognitive capabilities and might result in the loss of arm and hand functions. Such conditions have a detrimental impact on people's quality of life. Assistive robots have been developed to help people with motor or cognitive disabilities to perform activities of daily living (ADLs) independently. Most of the robotic systems for assisting on ADLs proposed in the state of the art are mainly external manipulators and exoskeletal devices. The main objective of this study is to compare the performance of an hybrid EEG/EOG interface to perform ADLs when the user is controlling an exoskeleton rather than using an external manipulator. METHODS: Ten impaired participants (5 males and 5 females, mean age 52 ± 16 years) were instructed to use both systems to perform a drinking task and a pouring task comprising multiple subtasks. For each device, two modes of operation were studied: synchronous mode (the user received a visual cue indicating the sub-tasks to be performed at each time) and asynchronous mode (the user started and finished each of the sub-tasks independently). Fluent control was assumed when the time for successful initializations ranged below 3 s and a reliable control in case it remained below 5 s. NASA-TLX questionnaire was used to evaluate the task workload. For the trials involving the use of the exoskeleton, a custom Likert-Scale questionnaire was used to evaluate the user's experience in terms of perceived comfort, safety, and reliability. RESULTS: All participants were able to control both systems fluently and reliably. However, results suggest better performances of the exoskeleton over the external manipulator (75% successful initializations remain below 3 s in case of the exoskeleton and bellow 5s in case of the external manipulator). CONCLUSIONS: Although the results of our study in terms of fluency and reliability of EEG control suggest better performances of the exoskeleton over the external manipulator, such results cannot be considered conclusive, due to the heterogeneity of the population under test and the relatively limited number of participants.


Subject(s)
Activities of Daily Living , Exoskeleton Device , Male , Female , Humans , Adult , Middle Aged , Aged , Quality of Life , Reproducibility of Results , Brain
14.
J Neurosci ; 41(10): 2177-2185, 2021 03 10.
Article in English | MEDLINE | ID: mdl-33483431

ABSTRACT

Intracortical microstimulation (ICMS) in human primary somatosensory cortex (S1) has been used to successfully evoke naturalistic sensations. However, the neurophysiological mechanisms underlying the evoked sensations remain unknown. To understand how specific stimulation parameters elicit certain sensations we must first understand the representation of those sensations in the brain. In this study we record from intracortical microelectrode arrays implanted in S1, premotor cortex, and posterior parietal cortex of a male human participant performing a somatosensory imagery task. The sensations imagined were those previously elicited by ICMS of S1, in the same array of the same participant. In both spike and local field potential recordings, features of the neural signal can be used to classify different imagined sensations. These features are shown to be stable over time. The sensorimotor cortices only encode the imagined sensation during the imagery task, while posterior parietal cortex encodes the sensations starting with cue presentation. These findings demonstrate that different aspects of the sensory experience can be individually decoded from intracortically recorded human neural signals across the cortical sensory network. Activity underlying these unique sensory representations may inform the stimulation parameters for precisely eliciting specific sensations via ICMS in future work.SIGNIFICANCE STATEMENT Electrical stimulation of human cortex is increasingly more common for providing feedback in neural devices. Understanding the relationship between naturally evoked and artificially evoked neurophysiology for the same sensations will be important in advancing such devices. Here, we investigate the neural activity in human primary somatosensory, premotor, and parietal cortices during somatosensory imagery. The sensations imagined were those previously elicited during intracortical microstimulation (ICMS) of the same somatosensory electrode array. We elucidate the neural features during somatosensory imagery that significantly encode different aspects of individual sensations and demonstrate feature stability over almost a year. The correspondence between neurophysiology elicited with or without stimulation for the same sensations will inform methods to deliver more precise feedback through stimulation in the future.


Subject(s)
Electric Stimulation/methods , Imagination/physiology , Motor Cortex/physiology , Parietal Lobe/physiology , Somatosensory Cortex/physiology , Adult , Electrocorticography , Humans , Male , Neurophysiology/methods , Spinal Cord Injuries/physiopathology
15.
Biol Cybern ; 116(1): 23-32, 2022 02.
Article in English | MEDLINE | ID: mdl-34605976

ABSTRACT

Brain-machine interface (BMI) can realize information interaction between the brain and external devices, and yet the control accuracy is limited by the change of electroencephalogram signals. The introduction of auxiliary controller can overcome the above problems, but the performance of different auxiliary controllers is quite different. Hence, in this paper, we comprehensively compare and analyze the performance of different auxiliary controllers to provide a theoretical basis for designing BMI system. The main work includes: (1) designing four kinds of auxiliary controllers based on simultaneous perturbation stochastic approximation-function approximator (SPSA-FA), iterative feedback tuning-PID (IFT-PID), model predictive control (MPC) and model-free control (MFC); (2) based on the model of improved single-joint information transmission, constructing the closed-loop BMI systems with the decoder-based Wiener filter; and (3) comparing their performance in the constructed closed-loop BMI systems for dynamic motion restoration. The results show that the order of tracking accuracy is MPC, IFT-PID, SPSA-FA, MFC, and the order of time consumed is opposite. A good control effectiveness is achieved at the expense of time, so a suitable auxiliary controller should be selected according to the actual requirements.


Subject(s)
Brain-Computer Interfaces , Brain , Feedback
16.
IEEE J Solid-State Circuits ; 57(4): 1061-1074, 2022 Apr.
Article in English | MEDLINE | ID: mdl-36186085

ABSTRACT

Miniaturized and wireless near-infrared (NIR) based neural recorders with optical powering and data telemetry have been introduced as a promising approach for safe long-term monitoring with the smallest physical dimension among state-of-the-art standalone recorders. However, a main challenge for the NIR based neural recording ICs is to maintain robust operation in the presence of light-induced parasitic short circuit current from junction diodes. This is especially true when the signal currents are kept small to reduce power consumption. In this work, we present a light-tolerant and low-power neural recording IC for motor prediction that can fully function in up to 300 µW/mm2 of light exposure. It achieves best-in-class power consumption of 0.57 µW at 38° C with a 4.1 NEF pseudo-resistorless amplifier, an on-chip neural feature extractor, and individual mote level gain control. Applying the 20-channel pre-recorded neural signals of a monkey, the IC predicts finger position and velocity with correlation coefficient up to 0.870 and 0.569, respectively, with individual mote level gain control enabled. In addition, wireless measurement is demonstrated through optical power and data telemetry using a custom PV/LED GaAs chip wire bonded to the proposed IC.

17.
Proc Natl Acad Sci U S A ; 116(43): 21821-21827, 2019 10 22.
Article in English | MEDLINE | ID: mdl-31591224

ABSTRACT

Intracortical microstimulation (ICMS) of the primary somatosensory cortex (S1) can produce percepts that mimic somatic sensation and, thus, has potential as an approach to sensorize prosthetic limbs. However, it is not known whether ICMS could recreate active texture exploration-the ability to infer information about object texture by using one's fingertips to scan a surface. Here, we show that ICMS of S1 can convey information about the spatial frequencies of invisible virtual gratings through a process of active tactile exploration. Two rhesus monkeys scanned pairs of visually identical screen objects with the fingertip of a hand avatar-controlled first via a joystick and later via a brain-machine interface-to find the object with denser virtual gratings. The gratings consisted of evenly spaced ridges that were signaled through individual ICMS pulses generated whenever the avatar's fingertip crossed a ridge. The monkeys learned to interpret these ICMS patterns, evoked by the interplay of their voluntary movements and the virtual textures of each object, to perform a sensory discrimination task. Discrimination accuracy followed Weber's law of just-noticeable differences (JND) across a range of grating densities; a finding that matches normal cutaneous sensation. Moreover, 1 monkey developed an active scanning strategy where avatar velocity was integrated with the ICMS pulses to interpret the texture information. We propose that this approach could equip upper-limb neuroprostheses with direct access to texture features acquired during active exploration of natural objects.


Subject(s)
Brain-Computer Interfaces , Feedback, Sensory/physiology , Pattern Recognition, Physiological/physiology , Touch/physiology , Animals , Electric Stimulation , Macaca mulatta , Prostheses and Implants , Somatosensory Cortex/physiology
18.
Proc Natl Acad Sci U S A ; 116(52): 26274-26279, 2019 Dec 26.
Article in English | MEDLINE | ID: mdl-31871144

ABSTRACT

A dramatic example of translational monkey research is the development of neural prosthetics for assisting paralyzed patients. A neuroprosthesis consists of implanted electrodes that can record the intended movement of a paralyzed part of the body, a computer algorithm that decodes the intended movement, and an assistive device such as a robot limb or computer that is controlled by these intended movement signals. This type of neuroprosthetic system is also referred to as a brain-machine interface (BMI) since it interfaces the brain with an external machine. In this review, we will concentrate on BMIs in which microelectrode recording arrays are implanted in the posterior parietal cortex (PPC), a high-level cortical area in both humans and monkeys that represents intentions to move. This review will first discuss the basic science research performed in healthy monkeys that established PPC as a good source of intention signals. Next, it will describe the first PPC implants in human patients with tetraplegia from spinal cord injury. From these patients the goals of movements could be quickly decoded, and the rich number of action variables found in PPC indicates that it is an appropriate BMI site for a very wide range of neuroprosthetic applications. We will discuss research on learning to use BMIs in monkeys and humans and the advances that are still needed, requiring both monkey and human research to enable BMIs to be readily available in the clinic.

19.
Sensors (Basel) ; 22(15)2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35957360

ABSTRACT

Electroencephalogram (EEG)-based brain-computer interfaces (BCIs) provide a novel approach for controlling external devices. BCI technologies can be important enabling technologies for people with severe mobility impairment. Endogenous paradigms, which depend on user-generated commands and do not need external stimuli, can provide intuitive control of external devices. This paper discusses BCIs to control various physical devices such as exoskeletons, wheelchairs, mobile robots, and robotic arms. These technologies must be able to navigate complex environments or execute fine motor movements. Brain control of these devices presents an intricate research problem that merges signal processing and classification techniques with control theory. In particular, obtaining strong classification performance for endogenous BCIs is challenging, and EEG decoder output signals can be unstable. These issues present myriad research questions that are discussed in this review paper. This review covers papers published until the end of 2021 that presented BCI-controlled dynamic devices. It discusses the devices controlled, EEG paradigms, shared control, stabilization of the EEG signal, traditional machine learning and deep learning techniques, and user experience. The paper concludes with a discussion of open questions and avenues for future work.


Subject(s)
Brain-Computer Interfaces , Algorithms , Electroencephalography/methods , Humans , Machine Learning , Signal Processing, Computer-Assisted
20.
Sensors (Basel) ; 22(12)2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35746109

ABSTRACT

An end-fire radiating implantable antenna with a small footprint and broadband operation at the frequency range of 3-5 GHz is proposed for high-data-rate wireless communication in a brain-machine interface. The proposed Vivaldi antenna was implanted vertically along the height of the skull to avoid deformation in the radiation pattern and to compensate for a gain-loss caused by surrounding lossy brain tissues. It was shown that the vertically implanted end-fire antenna had a 3 dB higher antenna gain than a horizontally implanted broadside radiating antenna discussed in recent literature. Additionally, comb-shaped slot arrays imprinted on the Vivaldi antenna lowered the resonant frequency by approximately 2 GHz and improved the antenna gain by more than 2 dB compared to an ordinary Vivaldi antenna. An antenna prototype was fabricated and then tested for verification inside a seven-layered semi-solid brain phantom where each layer had similar electromagnetic material properties as actual brain tissues. The measured data showed that the antenna radiated toward the end-fire direction with an average gain of -15.7 dBi under the frequency of interest, 3-5 GHz. A link budget analysis shows that reliable wireless communication can be achieved over a distance of 10.8 cm despite the electromagnetically harsh environment.


Subject(s)
Brain-Computer Interfaces , Wireless Technology , Brain , Equipment Design , Prostheses and Implants
SELECTION OF CITATIONS
SEARCH DETAIL