Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.827
Filter
Add more filters

Publication year range
1.
Mass Spectrom Rev ; 43(4): 713-722, 2024.
Article in English | MEDLINE | ID: mdl-38149478

ABSTRACT

The analysis of exhaled breath condensate (EBC) demonstrates a promising avenue of minimally invasive biopsies for diagnostics. EBC is obtained by cooling exhaled air and collecting the condensation to be utilized for downstream analysis using various analytical methods. The aqueous phase of breath contains a large variety of miscible small compounds including polar electrolytes, amino acids, cytokines, chemokines, peptides, small proteins, metabolites, nucleic acids, and lipids/eicosanoids-however, these analytes are typically present at minuscule levels in EBC, posing a considerable technical challenge. Along with recent improvements in devices for breath collection, the sensitivity and resolution of liquid chromatography coupled to online mass spectrometry-based proteomics has attained subfemtomole sensitivity, vastly enhancing the quality of EBC sample analysis. As a result, proteomics analysis of EBC has been expanding the field of breath biomarker research. We present an au courant overview of the achievements in proteomics of EBC, the advancement of EBC collection devices, and the current and future applications for EBC biomarker analysis.


Subject(s)
Biomarkers , Breath Tests , Exhalation , Mass Spectrometry , Proteomics , Breath Tests/methods , Breath Tests/instrumentation , Humans , Proteomics/methods , Biomarkers/analysis , Mass Spectrometry/methods , Mass Spectrometry/instrumentation , Chromatography, Liquid/methods
2.
Article in English | MEDLINE | ID: mdl-38648186

ABSTRACT

RATIONALE: Early identification of children with poorly controlled asthma is imperative for optimizing treatment strategies. The analysis of exhaled volatile organic compounds (VOCs) is an emerging approach to identify prognostic and diagnostic biomarkers in pediatric asthma. OBJECTIVES: To assess the accuracy of gas chromatography-mass spectrometry based exhaled metabolite analysis to differentiate between controlled and uncontrolled pediatric asthma. METHODS: This study encompassed a discovery (SysPharmPediA) and validation phase (U-BIOPRED, PANDA). Firstly, exhaled VOCs that discriminated asthma control levels were identified. Subsequently, outcomes were validated in two independent cohorts. Patients were classified as controlled or uncontrolled, based on asthma control test scores and number of severe attacks in the past year. Additionally, potential of VOCs in predicting two or more future severe asthma attacks in SysPharmPediA was evaluated. MEASUREMENTS AND MAIN RESULTS: Complete data were available for 196 children (SysPharmPediA=100, U-BIOPRED=49, PANDA=47). In SysPharmPediA, after randomly splitting the population into training (n=51) and test sets (n=49), three compounds (acetophenone, ethylbenzene, and styrene) distinguished between uncontrolled and controlled asthmatics. The area under the receiver operating characteristic curve (AUROCC) for training and test sets were respectively: 0.83 (95% CI: 0.65-1.00) and 0.77 (95% CI: 0.58-0.96). Combinations of these VOCs resulted in AUROCCs of 0.74 ±0.06 (UBIOPRED) and 0.68 ±0.05 (PANDA). Attacks prediction tests, resulted in AUROCCs of 0.71 (95% CI 0.51-0.91) and 0.71 (95% CI 0.52-0.90) for training and test sets. CONCLUSIONS: Exhaled metabolites analysis might enable asthma control classification in children. This should stimulate further development of exhaled metabolites-based point-of-care tests in asthma.

3.
Article in English | MEDLINE | ID: mdl-38889337

ABSTRACT

The exhaled breath represents an ideal matrix for non-invasive biomarker discovery, and exhaled metabolomics have the potential to be clinically useful in the era of precision medicine. In this concise translational review we will specifically address volatile organic compounds in the breath, with a view towards fulfilling the promise of these as actionable biomarkers, in particular for lung diseases. We review the literature paying attention to seminal work linked to key milestones in breath research; discuss potential applications for breath biomarkers across disease areas and healthcare systems, including the perspectives of industry; and outline critical aspects of study design that will need to be considered for any pivotal research going forward, if breath analysis is to provide robust validated biomarkers that meet the requirements for future clinical implementation.

4.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Article in English | MEDLINE | ID: mdl-35165177

ABSTRACT

Hydrogen peroxide (H2O2) plays a key role in environmental chemistry, biology, and medicine. H2O2 concentrations typically are 6 to 10 orders of magnitude lower than that of water, making its quantitative detection challenging. We demonstrate that optimized NMR spectroscopy allows direct, interference-free, quantitative measurements of H2O2 down to submicromolar levels in a wide range of fluids, ranging from exhaled breath and air condensate to rain, blood, urine, and saliva. NMR measurements confirm the previously reported spontaneous generation of H2O2 in microdroplets that form when condensing water vapor on a hydrophobic surface, which can interfere with atmospheric H2O2 measurements. Its antimicrobial activity and strong seasonal variation speculatively could be linked to the seasonality of respiratory viral diseases.


Subject(s)
Hydrogen Peroxide/analysis , Magnetic Resonance Spectroscopy/methods , Air/analysis , Blood , Blood Chemical Analysis , Body Fluids/chemistry , Exhalation/physiology , Feces/chemistry , Humans , Rain/chemistry , Saliva/chemistry , Urine/chemistry
5.
Nano Lett ; 24(33): 10139-10147, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39109658

ABSTRACT

Surface-enhanced Raman scattering (SERS) offers a promising, cost-effective alternative for the rapid, sensitive, and quantitative analysis of potential biomarkers in exhaled gases, which is crucial for early disease diagnosis. However, a major challenge in SERS is the effective detection of gaseous analytes, primarily due to difficulties in enriching and capturing them within the substrate's "hotspot" regions. This study introduces an advanced gas sensor combining mesoporous gold (MesoAu) and metal-organic frameworks (MOFs), exhibiting high sensitivity and rapid detection capabilities. The MesoAu provides abundant active sites and interconnected mesopores, facilitating the diffusion of analytes for detection. A ZIF-8 shell enveloping MesoAu further enriches target molecules, significantly enhancing sensitivity. A proof-of-concept experiment demonstrated a detection limit of 0.32 ppb for gaseous benzaldehyde, indicating promising prospects for the rapid diagnosis of early stage lung cancer. This research also pioneers a novel approach for constructing hierarchical plasmonic nanostructures with immense potential in gas sensing.


Subject(s)
Breath Tests , Gases , Gold , Metal-Organic Frameworks , Spectrum Analysis, Raman , Metal-Organic Frameworks/chemistry , Breath Tests/methods , Gold/chemistry , Gases/analysis , Gases/chemistry , Humans , Spectrum Analysis, Raman/methods , Porosity , Nanostructures/chemistry , Benzaldehydes/chemistry , Limit of Detection , Metal Nanoparticles/chemistry
6.
J Infect Dis ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38885291

ABSTRACT

BACKGROUND: Many insect-borne pathogens appear to manipulate the odors of their hosts in ways that influence vector behaviors. In our prior work, we identified characteristic changes in volatile emissions of cultured Plasmodium falciparum parasites in vitro and during natural human falciparum malaria. In the current study, we prospectively evaluate the reproducibility of these findings in an independent cohort of children in Blantyre, Malawi. METHODS: We enrolled febrile children under evaluation for malaria and collected breath from children with and without malaria, as well as healthy controls. Using gas-chromatography/mass spectrometry, we characterized breath volatiles associated with malaria. By repeated sampling of children with malaria before and after antimalarial use, we determined how breath profiles respond to treatment. In addition, we investigated the stage-specificity of biomarkers through correlation with asexual and sexual stage parasitemia. RESULTS: Our data provide robust evidence that P. falciparum infection leads to specific, reproducible changes in breath compounds. While no individual compound served as adequate classifier in isolation, selected volatiles together yielded high sensitivity for diagnosis of malaria. Overall, the results of our predictive models suggest the presence of volatile signatures that reproducibly predict malaria infection status and determine response to therapy, even in cases of low parasitemia.

7.
Neuroimage ; 285: 120492, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38070840

ABSTRACT

BOLD fMRI signal has been used in conjunction with vasodilatory stimulation as a marker of cerebrovascular reactivity (CVR): the relative change in cerebral blood flow (CBF) arising from a unit change in the vasodilatory stimulus. Using numerical simulations, we demonstrate that the variability in the relative BOLD signal change induced by vasodilation is strongly influenced by the variability in deoxyhemoglobin-containing cerebral blood volume (CBV), as this source of variability is likely to be more prominent than that of CVR. It may, therefore, be more appropriate to describe the relative BOLD signal change induced by an isometabolic vasodilation as a proxy of deoxygenated CBV (CBVdHb) rather than CVR. With this in mind, a new method was implemented to map a marker of CBVdHb, termed BOLD-CBV, based on the normalization of voxel-wise BOLD signal variation by an estimate of the intravascular venous BOLD signal from voxels filled with venous blood. The intravascular venous BOLD signal variation, recorded during repeated breath-holding, was extracted from the superior sagittal sinus in a cohort of 27 healthy volunteers and used as a regressor across the whole brain, yielding maps of BOLD-CBV. In the same cohort, we demonstrated the potential use of BOLD-CBV for the normalization of stimulus-evoked BOLD fMRI by comparing group-level BOLD fMRI responses to a visuomotor learning task with and without the inclusion of voxel-wise vascular covariates of BOLD-CBV and the BOLD signal change per mmHg variation in end-tidal carbon dioxide (BOLD-CVR). The empirical measure of BOLD-CBV accounted for more between-subject variability in the motor task-induced BOLD responses than BOLD-CVR estimated from end-tidal carbon dioxide recordings. The new method can potentially increase the power of group fMRI studies by including a measure of vascular characteristics and has the strong practical advantage of not requiring experimental measurement of end-tidal carbon dioxide, unlike traditional methods to estimate BOLD-CVR. It also more closely represents a specific physiological characteristic of brain vasculature than BOLD-CVR, namely blood volume.


Subject(s)
Carbon Dioxide , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Cerebral Blood Volume , Brain/physiology , Brain Mapping/methods , Cerebrovascular Circulation/physiology , Oxygen
8.
Int J Cancer ; 155(7): 1203-1211, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38712628

ABSTRACT

The relationship between Helicobacter pylori (H. pylori) infection and upper gastrointestinal (UGI) cancers is complex. This multicenter, population-based cohort study conducted in seven areas in China aimed to assess the correlation between current H. pylori infection and the severity of UGI lesions, as well as its association with the risk of gastric cancer (GC) and esophageal cancer (EC). From 2015 to 2017, 27,085 participants (aged 40-69) completed a standardized questionnaire, and underwent a 13C-urea breath test. Then a subset underwent UGI endoscopy to assess the UGI lesion detection rates. All individuals were followed up until December 2021 to calculate the hazard ratios (HRs) for UGI cancers. H. pylori infection prevalence was 45.9%, and among endoscopy participants, 22.2% had gastric lesions, 19.2% had esophageal lesions. Higher detection rates of gastric lesions were noted in the H. pylori-positive population across all lesion severity levels. Over a median follow-up of 6.3 years, 104 EC and 179 GC cases were observed, including 103 non-cardia gastric cancer (NCGC) cases and 76 cardia gastric cancer (CGC) cases. H. pylori-infected individuals exhibited a 1.78-fold increased risk of GC (HR 1.78, 95% confidence interval [CI] 1.32-2.40) but no significant increase in EC risk (HR 1.07, 95% CI 0.73-1.57). Notably, there was a higher risk for both NCGC and CGC in H. pylori-infected individuals. This population-based cohort study provides valuable evidence supporting the association between current H. pylori infection and the risk of both NCGC and CGC. These findings contribute to the empirical basis for risk stratification and recommendations for UGI cancer screening.


Subject(s)
Esophageal Neoplasms , Helicobacter Infections , Helicobacter pylori , Stomach Neoplasms , Humans , Helicobacter Infections/complications , Helicobacter Infections/epidemiology , Middle Aged , Male , Female , Helicobacter pylori/isolation & purification , Adult , Stomach Neoplasms/microbiology , Stomach Neoplasms/epidemiology , Stomach Neoplasms/etiology , Stomach Neoplasms/pathology , Aged , Esophageal Neoplasms/epidemiology , Esophageal Neoplasms/microbiology , Esophageal Neoplasms/etiology , China/epidemiology , Cohort Studies , Risk Factors , Prevalence , Gastrointestinal Neoplasms/microbiology , Gastrointestinal Neoplasms/epidemiology , Gastrointestinal Neoplasms/etiology , Upper Gastrointestinal Tract/pathology , Upper Gastrointestinal Tract/microbiology
9.
Article in English | MEDLINE | ID: mdl-39147218

ABSTRACT

BACKGROUND & AIMS: Archaea constitute one of the main 3 domains of the tree of life, distinct from eukaryotes and bacteria. Excessive luminal loads of methanogenic archaea (intestinal methanogen overgrowth [IMO]) have been implicated in the pathophysiology of various diseases, including constipation. To elucidate the phenotypical presentation of IMO, we performed a systematic review and meta-analysis of the prevalence and severity of gastrointestinal symptoms in subjects with IMO as compared with subjects without IMO. METHODS: Electronic databases, including OVID MEDLINE and Cochrane Database from inception until September 2023, were systematically searched. Prevalence rates, odds ratios (ORs), standardized mean difference (SMD), and 95% confidence intervals (CIs) of symptoms were calculated. RESULTS: Nineteen studies were included (1293 patients with IMO and 3208 controls). Patients with IMO exhibited various gastrointestinal symptoms, including bloating (78%), constipation (51%), diarrhea (33%), abdominal pain (65%), nausea (30%), and flatulence (56%). Patients with IMO had a significantly higher prevalence of constipation as compared with controls (47% vs 38%; OR, 2.04; 95% CI, 1.48-2.83; P < .0001) along with lower prevalence of diarrhea (37% vs 52%; OR, 0.58; 95% CI, 0.37-0.90; P = .01) and nausea (32% vs 45%; OR, 0.75; 95% CI, 0.60-0.94; P = .01). Patients with IMO had higher severity of constipation (SMD, 0.77; 95% CI, 0.11-1.43; P = .02) and lower severity of diarrhea (SMD, -0.71; 95% CI, -1.39 to -0.03; P = .04). Significant heterogeneity was detected. CONCLUSION: Patients with IMO exhibit a higher rate and severity of constipation along with lower rate and severity of diarrhea. The distinct phenotype of patients with IMO should be incorporated in patient-reported outcome measures and further correlated with mechanistic microbiome studies.

10.
Hum Brain Mapp ; 45(1): e26515, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38183372

ABSTRACT

Functional magnetic resonance imaging (fMRI) has been widely used to understand the neurodevelopmental changes that occur in cognition and behavior across childhood. The blood-oxygen-level-dependent (BOLD) signal obtained from fMRI is understood to be comprised of both neuronal and vascular information. However, it is unclear whether the vascular response is altered across age in studies investigating development in children. Since the breath-hold (BH) task is commonly used to understand cerebrovascular reactivity (CVR) in fMRI studies, it can be used to account for developmental differences in vascular response. This study examines how the cerebrovascular response changes over age in a longitudinal children's BH data set from the Nathan Kline Institute (NKI) Rockland Sample (aged 6-18 years old at enrollment). A general linear model approach was applied to derive CVR from BH data. To model both the longitudinal and cross-sectional effects of age on BH response, we used mixed-effects modeling with the following terms: linear, quadratic, logarithmic, and quadratic-logarithmic, to find the best-fitting model. We observed increased BH BOLD signals in multiple networks across age, in which linear and logarithmic mixed-effects models provided the best fit with the lowest Akaike information criterion scores. This shows that the cerebrovascular response increases across development in a brain network-specific manner. Therefore, fMRI studies investigating the developmental period should account for cerebrovascular changes that occur with age.


Subject(s)
Cerebrovascular Circulation , Magnetic Resonance Imaging , Child , Humans , Adolescent , Magnetic Resonance Imaging/methods , Cross-Sectional Studies , Cerebrovascular Circulation/physiology , Oxygen , Brain/physiology
11.
Small ; 20(31): e2308963, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38461524

ABSTRACT

The precise and reversible detection of hydrogen sulfide (H2S) at high humidity condition, a malodorous and harmful volatile sulfur compound, is essential for the self-assessment of oral diseases, halitosis, and asthma. However, the selective and reversible detection of trace concentrations of H2S (≈0.1 ppm) in high humidity conditions (exhaled breath) is challenging because of irreversible H2S adsorption/desorption at the surface of chemiresistors. The study reports the synthesis of Fe-doped CuO hollow spheres as H2S gas-sensing materials via spray pyrolysis. 4 at.% of Fe-doped CuO hollow spheres exhibit high selectivity (response ratio ≥ 34.4) over interference gas (ethanol, 1 ppm) and reversible sensing characteristics (100% recovery) to 0.1 ppm of H2S under high humidity (relative humidity 80%) at 175 °C. The effect of multi-valent transition metal ion doping into CuO on sensor reversibility is confirmed through the enhancement of recovery kinetics by doping 4 at.% of Ti- or Nb ions into CuO sensors. Mechanistic details of these excellent H2S sensing characteristics are also investigated by analyzing the redox reactions and the catalytic activity change of the Fe-doped CuO sensing materials. The selective and reversible detection of H2S using the Fe-doped CuO sensor suggested in this work opens a new possibility for halitosis self-monitoring.

12.
J Clin Microbiol ; 62(2): e0073223, 2024 02 14.
Article in English | MEDLINE | ID: mdl-38193664

ABSTRACT

Antimicrobial resistance in Helicobacter pylori has reached alarming levels and is compromising traditional empiric treatment of H. pylori. Antimicrobial susceptibility testing is routinely performed for infectious diseases when there is a risk of resistance and is now recommended to guide therapy for H. pylori. This mini-review overviews the current diagnostics for H. pylori with a focus on tests that enable susceptibility-guided treatment, including molecular tests performed directly on stool and endoscopically collected specimens.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Humans , Helicobacter pylori/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Helicobacter Infections/diagnosis , Helicobacter Infections/drug therapy , Drug Resistance, Bacterial , Breath Tests
13.
J Transl Med ; 22(1): 496, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796441

ABSTRACT

BACKGROUND: Small intestinal bacterial overgrowth (SIBO) is the presence of an abnormally excessive amount of bacterial colonization in the small bowel. Hydrogen and methane breath test has been widely applied as a non-invasive method for SIBO. However, the positive breath test representative of bacterial overgrowth could also be detected in asymptomatic individuals. METHODS: To explore the relationship between clinical symptoms and gut dysbiosis, and find potential fecal biomarkers for SIBO, we compared the microbial profiles between SIBO subjects with positive breath test but without abdominal symptoms (PBT) and healthy controls (HC) using 16S rRNA amplicon sequencing. RESULTS: Fecal samples were collected from 63 SIBO who complained of diarrhea, distension, constipation, or abdominal pain, 36 PBT, and 55 HC. For alpha diversity, the Shannon index of community diversity on the genus level showed a tendency for a slight increase in SIBO, while the Shannon index on the predicted function was significantly decreased in SIBO. On the genus level, significantly decreased Bacteroides, increased Coprococcus_2, and unique Butyrivibrio were observed in SIBO. There was a significant positive correlation between saccharolytic Coprococcus_2 and the severity of abdominal symptoms. Differently, the unique Veillonella in the PBT group was related to amino acid fermentation. Interestingly, the co-occurrence network density of PBT was larger than SIBO, which indicates a complicated interaction of genera. Coprococcus_2 showed one of the largest betweenness centrality in both SIBO and PBT microbiota networks. Pathway analysis based on the Kyoto Encyclopedia of Genes and Genome (KEGG) database reflected that one carbon pool by folate and multiple amino acid metabolism were significantly down in SIBO. CONCLUSIONS: This study provides valuable insights into the fecal microbiota composition and predicted metabolic functional changes in patients with SIBO. Butyrivibrio and Coprococcus_2, both renowned for their role in carbohydrate fermenters and gas production, contributed significantly to the symptoms of the patients. Coprococcus's abundance hints at its use as a SIBO marker. Asymptomatic PBT individuals show a different microbiome, rich in Veillonella. PBT's complex microbial interactions might stabilize the intestinal ecosystem, but further study is needed due to the core microbiota similarities with SIBO. Predicted folate and amino acid metabolism reductions in SIBO merit additional validation.


Subject(s)
Feces , Intestine, Small , Humans , Feces/microbiology , Female , Male , Intestine, Small/microbiology , Middle Aged , Adult , Breath Tests , Case-Control Studies , Gastrointestinal Microbiome , RNA, Ribosomal, 16S/genetics
14.
Magn Reson Med ; 92(3): 1064-1078, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38726772

ABSTRACT

PURPOSE: This study aims to develop and evaluate a novel cardiovascular MR sequence, MyoFold, designed for the simultaneous quantifications of myocardial tissue composition and wall motion. METHODS: MyoFold is designed as a 2D single breathing-holding sequence, integrating joint T1/T2 mapping and cine imaging. The sequence uses a 2-fold accelerated balanced SSFP (bSSFP) for data readout and incorporates electrocardiogram synchronization to align with the cardiac cycle. MyoFold initially acquires six single-shot inversion-recovery images, completed during the diastole of six successive heartbeats. T2 preparation (T2-prep) is applied to introduce T2 weightings for the last three images. Subsequently, over the following six heartbeats, segmented bSSFP is performed for the movie of the entire cardiac cycle, synchronized with an electrocardiogram. A neural network trained using numerical simulations of MyoFold is used for T1 and T2 calculations. MyoFold was validated through phantom and in vivo experiments, with comparisons made against MOLLI, SASHA, T2-prep bSSFP, and the conventional cine. RESULTS: In phantom studies, MyoFold exhibited a 10% overestimation in T1 measurements, whereas T2 measurements demonstrated high accuracy. In vivo experiments revealed that MyoFold T1 had comparable accuracy to SASHA and precision similar to MOLLI. MyoFold demonstrated good agreement with T2-prep bSSFP in myocardial T2 measurements. No significant differences were observed in the quantification of left-ventricle wall thickness and function between MyoFold and the conventional cine. CONCLUSION: MyoFold presents as a rapid, simple, and multitasking approach for quantitative cardiovascular MR examinations, offering simultaneous assessment of tissue composition and wall motion. The sequence's multitasking capabilities make it a promising tool for comprehensive cardiac evaluations in clinical settings.


Subject(s)
Heart , Magnetic Resonance Imaging, Cine , Phantoms, Imaging , Adult , Female , Humans , Male , Algorithms , Electrocardiography , Heart/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging, Cine/methods , Myocardium , Reproducibility of Results
15.
Article in English | MEDLINE | ID: mdl-39241005

ABSTRACT

While existing literature covers significant detail on the physiology of human freediving, the lack of standardized protocols has hindered comparisons due to confounding variables such as exercise and depth. By accounting for these variables, direct depth-dependent impacts on cardiovascular and blood oxygen regulation can be investigated. In this study, depth-dependent effects on 1) cerebral hemodynamic and oxygenation changes, 2) arterial oxygen saturation (SpO2), and 3) heart rate during breath-hold diving without confounding effects of exercise were investigated. Six freedivers (51.0 ± 12.6 years; mean ± s.d.), instrumented with continuous-wave near-infrared spectroscopy for monitoring cerebral hemodynamic and oxygenation measurements, heart rate and SpO2, performed sled-assisted breath-hold dives to 15 m and 42 m. Arterial blood gas tensions were validated through cross-sectional periodic blood sampling. Cerebral hemodynamic changes were characteristic of breath-hold diving, with changes during ascent from both depths likely driven by decreasing SpO2 due to lung expansion. While SpO2 was significantly lower following 42 m dives (t(5) = -4.183, p < 0.05), mean cerebral arterial-venous blood oxygen saturation remained at 74% following dives to both depths. Cerebral oxygenation during ascent from 42 m may have been maintained through increased arterial delivery. Heart rate was variable with no significant difference in minimum heart rate between both depths (t(5) = -1.017, p > 0.05). This study presents a standardized methodology, which could provide a basis for future research on human freediving physiology and uncover ways in which freedivers can reduce potential risks of the sport.

16.
Mass Spectrom Rev ; 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37565588

ABSTRACT

The molecular composition of exhaled human breath can reflect various physiological and pathological conditions. Considerable progress has been achieved over the past decade in real-time analysis of exhaled human breath using direct mass spectrometry methods, including selected ion flow tube mass spectrometry, proton transfer reaction mass spectrometry, extractive electrospray ionization mass spectrometry, secondary electrospray ionization mass spectrometry, acetone-assisted negative photoionization mass spectrometry, atmospheric pressure photoionization mass spectrometry, and low-pressure photoionization mass spectrometry. Here, recent developments in direct mass spectrometry analysis of exhaled human breath are reviewed with regard to analytical performance (chemical sensitivity, selectivity, quantitative capabilities) and applications of the developed methods in disease diagnosis, targeted molecular detection, and real-time metabolic monitoring.

17.
Electrophoresis ; 45(15-16): 1418-1427, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38191956

ABSTRACT

Biological thiols spontaneously form a stable Au-S dative bond with gold nanoparticles (AuNP) that might be used for their selective extraction and enrichment in biological samples. In this work, interactions of selected biological thiols (glutathione, cysteine, homocysteine [Hcys], cysteamine [CA], and N-acetylcysteine) with AuNP stabilized by different capping agents (citrate, Tween 20, Brij 35, CTAB, SDS) were investigated by UV-Vis spectroscopy and capillary electrophoresis with laser-induced fluorescence. Spectrophotometric measurements showed aggregation of Hcys and CA with AuNP. In contrast, it was confirmed by CE-LIF that biological thiols were adsorbed to all types of AuNP. Citrate-capped AuNP were selected for AuNP-based extraction of biological thiols from exhaled breath condensate (EBC). Dithiothreitol was utilized for desorption of biological thiols from the AuNP surface, which was followed by derivatization with eosin-5-maleimide and CE-LIF analysis. AuNP-based extraction increased the sensitivity of CE-LIF analysis; however, further optimization of methodology is necessary for accurate quantification of biological thiols in EBC.


Subject(s)
Electrophoresis, Capillary , Gold , Metal Nanoparticles , Sulfhydryl Compounds , Electrophoresis, Capillary/methods , Gold/chemistry , Sulfhydryl Compounds/analysis , Sulfhydryl Compounds/chemistry , Metal Nanoparticles/chemistry , Humans , Breath Tests/methods , Spectrometry, Fluorescence/methods
18.
J Vasc Surg ; 79(2): 436-447, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37619916

ABSTRACT

OBJECTIVE: Substantial controversy exists regarding asymptomatic carotid stenosis (ACS) and its potential role in the pathophysiology of cognitive impairment. If proven, this hypothesis may suggest an additional definition for symptomatic carotid disease that would alter current management. This study aimed to synthesize the literature evaluating the relationship between impaired cerebral hemodynamics and cognition in patients with ACS. METHODS: A literature search was performed using MEDLINE, Embase, and EBM Reviews through May 2022. We included prospective case-control studies that used validated, objective measure(s) of either global cognition or one or more domains of cognitive function and assessed cerebrovascular reserve (CVR). RESULTS: Five studies were included, comprising a total of 782 patients with moderate (50%-69%) to severe (70%-99%) ACS. Patients with ACS and impaired ipsilateral CVR demonstrated significant cognitive impairment compared with controls. Patients with unilateral or bilateral ACS and normal CVR had cognitive scores similar to controls. Those with bilateral CVR impairment demonstrated the lowest cognitive scores. CONCLUSIONS: This review lends support to the claim that cognitive impairment, likely the result of impaired cerebral hemodynamics, is an under-recognized morbidity in patients with ACS. CVR may serve as an additional tool to determine whether patients are in fact symptomatic from their carotid stenosis and warrant consideration for intervention.


Subject(s)
Carotid Stenosis , Humans , Carotid Stenosis/complications , Carotid Stenosis/diagnostic imaging , Ultrasonography, Doppler, Transcranial , Cerebrovascular Circulation , Hemodynamics/physiology , Cognition
19.
Metabolomics ; 20(4): 72, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977623

ABSTRACT

BACKGROUND: The multitude of metabolites generated by physiological processes in the body can serve as valuable biomarkers for many clinical purposes. They can provide a window into relevant metabolic pathways for health and disease, as well as be candidate therapeutic targets. A subset of these metabolites generated in the human body are volatile, known as volatile organic compounds (VOCs), which can be detected in exhaled breath. These can diffuse from their point of origin throughout the body into the bloodstream and exchange into the air in the lungs. For this reason, breath VOC analysis has become a focus of biomedical research hoping to translate new useful biomarkers by taking advantage of the non-invasive nature of breath sampling, as well as the rapid rate of collection over short periods of time that can occur. Despite the promise of breath analysis as an additional platform for metabolomic analysis, no VOC breath biomarkers have successfully been implemented into a clinical setting as of the time of this review. AIM OF REVIEW: This review aims to summarize the progress made to address the major methodological challenges, including standardization, that have historically limited the translation of breath VOC biomarkers into the clinic. We highlight what steps can be taken to improve these issues within new and ongoing breath research to promote the successful development of the VOCs in breath as a robust source of candidate biomarkers. We also highlight key recent papers across select fields, critically reviewing the progress made in the past few years to advance breath research. KEY SCIENTIFIC CONCEPTS OF REVIEW: VOCs are a set of metabolites that can be sampled in exhaled breath to act as advantageous biomarkers in a variety of clinical contexts.


Subject(s)
Biomarkers , Breath Tests , Exhalation , Metabolomics , Volatile Organic Compounds , Humans , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism , Breath Tests/methods , Biomarkers/metabolism , Biomarkers/analysis , Metabolomics/methods
20.
Metabolomics ; 20(4): 79, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39046579

ABSTRACT

INTRODUCTION: This study employs Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) to analyze exhaled breath profiles of 504 healthy adults, focusing on nine common volatile organic compounds (VOCs): acetone, acetaldehyde, acetonitrile, ethanol, isoprene, methanol, propanol, phenol, and toluene. PTR-MS offers real-time VOC measurement, crucial for understanding breath biomarkers and their applications in health assessment. OBJECTIVES: The study aims to investigate how demographic factors-gender, age, and smoking history-affect VOC concentrations in exhaled breath. The objective is to enhance our understanding of breath biomarkers and their potential for health monitoring and clinical diagnosis. METHODS: Exhaled breath samples were collected using PTR-MS, measuring concentrations of nine VOCs. The data were analyzed to discern distribution patterns across demographic groups. RESULTS: Males showed higher average VOC levels for certain compounds. Propanol and methanol concentrations significantly increased with age. Smoking history influenced VOC levels, with differences among non-smokers, current smokers, and ex-smokers. CONCLUSION: This research provides valuable insights into demographic influences on exhaled VOC profiles, emphasizing the potential of breath analysis for health assessment. PTR-MS's real-time measurement capabilities are crucial for capturing dynamic VOC changes, offering advantages over conventional methods. These findings lay a foundation for advancements in non-invasive disease detection, highlighting the importance of considering demographics in breath biomarker research.


Subject(s)
Breath Tests , Healthy Volunteers , Mass Spectrometry , Volatile Organic Compounds , Humans , Male , Breath Tests/methods , Female , Volatile Organic Compounds/analysis , Adult , Middle Aged , Mass Spectrometry/methods , Young Adult , Aged , Exhalation , Biomarkers/analysis , Adolescent , Smoking/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL