Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
J Fluoresc ; 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38193954

ABSTRACT

This work describes the luminescent properties of the new compound ß-(hydroxyaryl)-butenolides recently discovered. The compounds were subjected to UV-Vis absorption and fluorescence analyzes when diluted in different solvents. Through the results, it was possible to observe that the ß-hydroxyarylutenolides have two absorption bands, one at 289-291 nm and the other with higher intensity at 328-354 nm. The emission band between 385-422 nm is observed under excitation at 324-327 nm. The compounds showed solvatochromism as a function of the analyzed solvent. In water, fluorescence quenching of all compounds occurs. Therefore, studies with compound containing the methylenedioxy group attached in phenyl ring were carried at different concentrations of water in DMSO. The decrease in the fluorescence intensity of this compound is linearly proportional to the increase in the amount of water in the DMSO, with a minimum detection volume of 0.028%. Quantum yields of three compounds were evaluated in different solvents, showing that the relationship between the structure of the compound and the solvent is essential for a high value. The fluorescence quantum yield was also measured by Thermal Lens Spectroscopy (TLS) using DMSO as the solvent, confirming the high value for the analyzed samples. Despite being preliminary, the studies revealed that these compounds have luminescent properties that could be applied in the development of chemical sensors for detecting water in DMSO.

2.
Molecules ; 29(6)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38542860

ABSTRACT

Two previously described Brønsted acidic ionic liquids, 3,3'-(1,6-hexanediyl)bis(1-methyl)-1H-imidazolium hydrogen sulfate (Cat1) and 1,1'-(1,6-hexanediyl)bis(pyridinium) hydrogen sulfate (Cat2), were used as catalysts for the preparation of spiro[furan-2,3'-indoline]-3-carboxylate derivatives via a three-component reaction of anilines, isatins (N-alkyl-indoline-2,3-diones), and diethyl acetylenedicarboxylate, in high yields. The use of ultrasonic (US) irradiation led to the targeted products (1a-15a) in high yields ranging from 80% to 98%. Under the same conditions, the use of sulfuric acid and acetic acid as a Brønstedt catalyst did not yield the desired benchmark product 1a.

3.
Chemistry ; 29(65): e202302044, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37652895

ABSTRACT

Alkyne-carbonyl metathesis is a type of carbon-carbon forming reaction involving the construction a carbon-carbon double bond and a carbonyl group in one transformation. Herein, a Au(I)-catalyzed ring-closing alkyne-carbonyl metathesis protocol has been developed to make densely substituted γ-butenolides from propargyl α-ketoesters. It features 100 % atom economy, excellent substrate flexibility and benign functional group tolerance. Mechanistic studies demonstrate that the coordinative interaction between the gold catalyst and the alkyne might initiate the transfer of an oxygen atom and the formation of the carbon-carbon double bond. By using this gold-catalyzed ring-closing alkyne-carbonyl metathesis as a key step reaction, four naturally occurring butenolide-type compounds including decumbic acid (45 % yield for 3 steps), deoxyisosporothric acid (32 % yield for 5 steps), lichesterinic acid (34 % yield for 5 steps) and isomuronic acid (6 % yield for 8 steps) have been synthesized starting from commercially available starting materials.

4.
Chem Biodivers ; 20(8): e202300950, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37477082

ABSTRACT

Two new pairs of enantiomeric butenolides, (+)- and (-)-suberiteslide A, (+)- and (-)-subertieslide B had been obtained from the marine sponge Suberties sp. The structures with absolute configurations of these compounds were unequivocally determined by spectroscopic analyses and ECD (Electronic Circular Dichroism) method. It was the first separation of butenolides from the marine sponges of genus Suberites. Additionally, the anti-inflammatory, antibacterial and cytotoxic activities of these compounds were evaluated. The result indicated that only (-)-subertieslide B showed weak anti-inflammatory activity with the IC50 value of 40.8 µM.


Subject(s)
Porifera , Animals , Porifera/microbiology , 4-Butyrolactone/chemistry , Anti-Bacterial Agents/pharmacology , Circular Dichroism , Molecular Structure
5.
J Med Virol ; 94(9): 4393-4405, 2022 09.
Article in English | MEDLINE | ID: mdl-35560068

ABSTRACT

A new series of butene lactone derivatives were designed according to an influenza neuraminidase target and their antiviral activities against H1N1 infection of Madin-Darby canine kidney cells were evaluated. Among them, a compound that was given the name M355 was identified as the most potent against H1N1 (EC50 = 14.7 µM) with low toxicity (CC50 = 538.13 µM). It also visibly reduced the virus-induced cytopathic effect. Time-of-addition analysis indicated that H1N1 was mostly suppressed by M355 at the late stage of its infectious cycle. M355 inhibited neuraminidase in a dose-dependent fashion to a similar extent as oseltamivir, which was also indicated by a computer modeling experiment. In a mouse model, lung lesions and virus load were reduced and the expression of nucleoprotein was moderated by M355. The enzyme-linked immunosorbent assay and quantitative real-time polymerase chain reaction analyses revealed that the levels of interferon-γ, interferon regulatory factor-3, Toll-like receptor-3, tumor necrosis factor-α, interleukin (IL)-1ß, IL-6, and IL-8 were downregulated in the M355-treated groups, whereas the levels of IL-10 and IL-13 were upregulated. Similarly, IgG was found to be increased in infected mice plasma. These results demonstrate that M355 inhibit the expression of H1N1 in both cellular and animal models. Thus, M355 has the potential to be effective in the treatment of influenza A virus infection.


Subject(s)
Alkenes , Antiviral Agents , Influenza A Virus, H1N1 Subtype , Lactones , Orthomyxoviridae Infections , Alkenes/pharmacology , Animals , Antiviral Agents/pharmacology , Dogs , Influenza A Virus, H1N1 Subtype/drug effects , Lactones/pharmacology , Madin Darby Canine Kidney Cells , Mice , Neuraminidase , Orthomyxoviridae Infections/drug therapy
6.
Mar Drugs ; 20(3)2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35323485

ABSTRACT

The biological screening of 44 marine sponge extracts for the research of bioactive molecules, with potential application in the treatment of age-related diseases (cancer and Alzheimer's disease) and skin aging, resulted in the selection of Scopalina hapalia extract for chemical study. As no reports of secondary metabolites of S. hapalia were found in the literature, we undertook this research to further extend current knowledge of Scopalina chemistry. The investigation of this species led to the discovery of four new compounds: two butenolides sinularone J (1) and sinularone K (2), one phospholipid 1-O-octadecyl-2-pentanoyl-sn-glycero-3-phosphocholine (3) and one lysophospholipid 1-O-(3-methoxy-tetradecanoyl)-sn-glycero-3-phosphocholine (4) alongside with known lysophospholipids (5 and 6), alkylglycerols (7-10), epidioxysterols (11 and 12) and diketopiperazines (13 and 14). The structure elucidation of the new metabolites (1-4) was determined by detailed spectroscopic analysis, including 1D and 2D NMR as well as mass spectrometry. Molecular networking was also explored to complement classical investigation and unravel the chemical classes within this species. GNPS analysis provided further information on potential metabolites with additional bioactive natural compounds predicted.


Subject(s)
4-Butyrolactone/analogs & derivatives , Biological Products , Phospholipids , Piperazines , Porifera/chemistry , 4-Butyrolactone/chemistry , 4-Butyrolactone/isolation & purification , Animals , Bays , Biological Products/chemistry , Biological Products/isolation & purification , Comoros , Magnetic Resonance Spectroscopy , Molecular Structure , Phospholipids/chemistry , Phospholipids/isolation & purification , Piperazines/chemistry , Piperazines/isolation & purification , Porifera/metabolism
7.
Mar Drugs ; 20(3)2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35323511

ABSTRACT

Five undescribed butenolides including two pairs of enantiomers, (+)-asperteretal G (1a), (-)-asperteretal G (1b), (+)-asperteretal H (2a), (-)-asperteretal H (2b), asperteretal I (3), and para-hydroxybenzaldehyde derivative, (S)-3-(2,3-dihydroxy-3-methylbutyl)-4-hydroxybenzaldehyde (14), were isolated together with ten previously reported butenolides 4-13, from the coral-derived fungus Aspergillus terreus SCSIO41404. Enantiomers 1a/1b and 2a/2b were successfully purified by high performance liquid chromatography (HPLC) using a chiral column, and the enantiomers 1a and 1b were new natural products. Structures of the unreported compounds, including the absolute configurations, were elucidated by NMR and MS data, optical rotation, experimental and calculated electronic circular dichroism, induced circular dichroism, and X-ray crystal data. The isolated butenolides were evaluated for antibacterial, cytotoxic, and enzyme inhibitory activities. Compounds 7 and 12 displayed weak antibacterial activity, against Enterococcus faecalis (IC50 = 25 µg/mL) and Klebsiella pneumoniae (IC50 = 50 µg/mL), respectively, whereas 6 showed weak inhibitory effect on acetylcholinesterase. Nevertheless, most of the butenolides showed inhibition against pancreatic lipase (PL) with an inhibition rate of 21.2-73.0% at a concentration of 50 µg/mL.


Subject(s)
4-Butyrolactone/analogs & derivatives , Anthozoa/microbiology , Anti-Bacterial Agents , Aspergillus/chemistry , Biological Products , Cholinesterase Inhibitors , Lipase/antagonists & inhibitors , 4-Butyrolactone/chemistry , 4-Butyrolactone/isolation & purification , 4-Butyrolactone/pharmacology , Acetylcholinesterase/metabolism , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/toxicity , Bacteria/drug effects , Bacteria/growth & development , Biological Products/chemistry , Biological Products/isolation & purification , Biological Products/pharmacology , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/isolation & purification , Cholinesterase Inhibitors/pharmacology , Molecular Structure , Stereoisomerism
8.
Chem Biodivers ; 19(4): e202100843, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35213767

ABSTRACT

In our continuous screening for bioactive microbial natural products, the culture extracts of a terrestrial Actinomycetes sp. GSCW-51 yielded two new metabolites, i. e., 5-hydroxymethyl-3-(1-hydroxy-6-methyl-7-oxooctyl)dihydrofuran-2(3H)-one (1), 5-hydroxymethyl-3-(1,7-dihydroxy-6-methyloctyl)dihydrofuran-2(3H)-one (2), and two known compounds; 5'-methylthioinosine (3), and 5'-methylthioinosine sulfoxide (4), which are isolated first time from any natural source, along with four known compounds (5-8). The structures of the new compounds were deduced by HR-ESI-MS, 1D and 2D NMR data, and in comparison with related compounds from the literature. Additionally, owing to the current COVID-19 pandemic situation, we also computationally explored the therapeutic potential of our isolated compounds against SARS-CoV-2. Compound 4 showed the best binding energies of -6.2 and -6.6 kcal/mol for Mpro and spike proteins, respectively. The intermolecular interactions were also studied using 2-D and 3-D imagery, which also supported the binding energies as well as put several insights under the spotlight. Furthermore, Lipinski's rule of 5 was used to predict the drug likeness of compounds 1-4, which indicated all compounds obey Lipinski's rule of 5. The study of bioavailability radars of the compounds 1-4 also confirmed their drug likeness properties where all the five crucial drug likeness parameters are in color area, which is safe to be used as drugs. Our isolation and computational findings highly encourage the scientific community to do further in vitro and in vivo studies of compounds 1-4.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Actinomyces , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Pandemics , Thioinosine
9.
Chem Biodivers ; 19(6): e202200208, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35567462

ABSTRACT

γ-Aromatic butenolides (γ-AB) are an important type of structures found in many bioactive microbial secondary metabolites (SMs). γ-AB refer to a group of natural products (NPs) containing five-membered (unsaturated) lactones with 3-phenyl and 4-benzyl substituents. Their wide-range biological activities have inspired pharmaceutical chemists to explore its biosynthesis mechanisms and design strategies to construct the γ-AB skeleton. Recently, there are a great deal of interesting research progress on the structures, biological activities and biosynthesis of γ-AB. This review will focus on these aspects and summarize the important achievements of γ-AB from 1975 to 2021.


Subject(s)
4-Butyrolactone , Biological Products , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/chemistry , 4-Butyrolactone/pharmacology , Biological Products/pharmacology , Lactones/chemistry
10.
Inflammopharmacology ; 30(6): 2489-2504, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35867292

ABSTRACT

The effects of Piper malacophyllum (C. Pesl) C. DC extracts and its isolated compounds were analysed in a mouse model of primary dysmenorrhoea (PD). Female Swiss mice (6-8 weeks old) on proestrus were intraperitoneally treated with estradiol benzoate for 3 days, to induce PD. Twenty-four hours later, animals were treated 24 h later with vehicle, plant extract, gibbilimbol B, 4,6-dimethoxy-5-E-phenylbutenolide, mixture of 4,6-dimethoxy-5-E-phenylbutenolide and 4,6-dimethoxy-5-Z-phenylbutenolide, or ibuprofen. One hour later, oxytocin was injected and the numbers of abdominal writhing were counted. Then, mice were euthanized and uteri were collected for morphometrical and histological analyses. The effects of P. malacophyllum in inflammation were investigated in mouse peritoneal neutrophils culture stimulated with LPS or fMLP (chemotaxis and mediator release). Finally, uterus contractile and relaxing responses were assessed. Similar to ibuprofen, P. malacophyllum extract and isolated compounds reduced abdominal writhing in mice with PD. Histology indicated a marked neutrophil and mast cell infiltrate in the uterus of PD animals which was attenuated by the extract. The compounds and the extract reduced neutrophil chemotaxis and inflammatory mediator release by these cells. Reduced TNF levels were also observed in uteri of PD mice treated with P. malacophyllum. The extract did not affect spontaneous uterine contractions nor those induced by carbachol or KCl. However, it caused relaxation of oxytocin-induced uterine contraction, an effect blunted by H1 receptor antagonist. Overall the results indicate that P. malacophyllum may represent interesting natural tools for reliving PD symptoms, reducing the triad of pain, inflammation and spasmodic uterus behaviour.


Subject(s)
Dysmenorrhea , Piper , Plant Extracts , Animals , Female , Mice , Disease Models, Animal , Dysmenorrhea/drug therapy , Ibuprofen , Inflammation , Mast Cells , Neutrophils , Oxytocin/pharmacology , Piper/chemistry , Plant Extracts/pharmacology
11.
Beilstein J Org Chem ; 18: 549-554, 2022.
Article in English | MEDLINE | ID: mdl-35651698

ABSTRACT

The only known sulfur-containing karrikin, 3-methyl-2H-thiopyrano[3,4-b]furan-2-one, has been recently identified as an extremely efficient neuroprotective butenolide. Herein, we report the targeted synthesis of this compound as well as new synthetic protocols toward a class of compounds derived from 2H-furo[2,3-c]pyran-2-ones (karrikins) via bioisosteric exchange of oxygen with sulfur. In particular, we present synthetic procedures toward bioisosteres of karrikins with one or two sulfur heteroatoms incorporated into the core backbone together with evaluation of their biological activity in inhibition of acetylcholinesterase.

12.
Chemistry ; 27(12): 4009-4015, 2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33378093

ABSTRACT

Design and development of a domino cyclative approach for the synthesis of new polycyclic γ-butenolides from ß-aryl-Z-enoate propargylic alcohols, through the interception of an intermediate of the Z-enoate-assisted Meyer-Schuster rearrangement, has been reported. A systematic NMR analysis of various derivatives of this class revealed and supported the potential atropisomerism associated with them. These molecules represent first examples of butenolide ring-based atropisomeric compounds in organic chemistry. The synthetic process involves a synchronous construction of both rings with concurrent creation of the potential stereogenic rotational axis.

13.
Molecules ; 26(11)2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34199488

ABSTRACT

In December 2020, the U.K. authorities reported to the World Health Organization (WHO) that a new COVID-19 variant, considered to be a variant under investigation from December 2020 (VUI-202012/01), was identified through viral genomic sequencing. Although several other mutants were previously reported, VUI-202012/01 proved to be about 70% more transmissible. Hence, the usefulness and effectiveness of the newly U.S. Food and Drug Administration (FDA)-approved COVID-19 vaccines against these new variants are doubtfully questioned. As a result of these unexpected mutants from COVID-19 and due to lack of time, much research interest is directed toward assessing secondary metabolites as potential candidates for developing lead pharmaceuticals. In this study, a marine-derived fungus Aspergillus terreus was investigated, affording two butenolide derivatives, butyrolactones I (1) and III (2), a meroterpenoid, terretonin (3), and 4-hydroxy-3-(3-methylbut-2-enyl)benzaldehyde (4). Chemical structures were unambiguously determined based on mass spectrometry and extensive 1D/2D NMR analyses experiments. Compounds (1-4) were assessed for their in vitro anti-inflammatory, antiallergic, and in silico COVID-19 main protease (Mpro) and elastase inhibitory activities. Among the tested compounds, only 1 revealed significant activities comparable to or even more potent than respective standard drugs, which makes butyrolactone I (1) a potential lead entity for developing a new remedy to treat and/or control the currently devastating and deadly effects of COVID-19 pandemic and elastase-related inflammatory complications.


Subject(s)
4-Butyrolactone/analogs & derivatives , Anti-Allergic Agents/chemistry , Anti-Inflammatory Agents/chemistry , Aspergillus/chemistry , SARS-CoV-2/enzymology , Viral Matrix Proteins/antagonists & inhibitors , 4-Butyrolactone/chemistry , 4-Butyrolactone/isolation & purification , 4-Butyrolactone/metabolism , Anti-Allergic Agents/metabolism , Anti-Inflammatory Agents/metabolism , Aspergillus/growth & development , Aspergillus/metabolism , Binding Sites , COVID-19/pathology , COVID-19/virology , Catalytic Domain , Humans , Leukocyte Elastase/antagonists & inhibitors , Leukocyte Elastase/metabolism , Magnetic Resonance Spectroscopy , Molecular Conformation , Molecular Docking Simulation , Neutrophils/enzymology , SARS-CoV-2/isolation & purification , Seawater/microbiology , Viral Matrix Proteins/metabolism
14.
Molecules ; 26(14)2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34299595

ABSTRACT

Biologically important, chiral natural products of butenolides, (-)-blastmycinolactol, (+)-blastmycinone, (-)-NFX-2, (+)-antimycinone, lipid metabolites, (+)-ancepsenolide, (+)-homoancepsenolide, mosquito larvicidal butenolide and their analogues were synthesized in very good yields in a sequential one-pot manner by using an organocatalytic reductive coupling and palladium-mediated reductive deoxygenation or organocatalytic reductive coupling and silica-mediated reductive deamination as the key steps.

15.
Chem Biodivers ; 17(5): e2000022, 2020 May.
Article in English | MEDLINE | ID: mdl-32166904

ABSTRACT

Three new butenolides, caulerpalide A and a pair of enantiomers, (+)-caulerpalide B and (-)-caulerpalide B, together with seven known compounds, have been isolated from the green alga Caulerpa racemosa var. turbinata. All these structures were determined by spectroscopic techniques. The absolute configurations of caulerpalide A, (+)-caulerpalide B and (-)-caulerpalide B were elucidated by the method of ECD calculation. This is the first separation of butenolides from the algae of genus Caulerpa. Additionally, the antibacterial activities of the nine isolated compounds were also evaluated.


Subject(s)
4-Butyrolactone/analogs & derivatives , Anti-Bacterial Agents/pharmacology , Caulerpa/chemistry , 4-Butyrolactone/chemistry , 4-Butyrolactone/isolation & purification , 4-Butyrolactone/pharmacology , Acinetobacter baumannii/drug effects , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Dose-Response Relationship, Drug , Enterococcus faecalis/drug effects , Escherichia coli/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Molecular Conformation , Pseudomonas aeruginosa/drug effects , Structure-Activity Relationship
16.
Angew Chem Int Ed Engl ; 59(14): 5607-5610, 2020 03 27.
Article in English | MEDLINE | ID: mdl-31880848

ABSTRACT

Butenolides are well-known signaling molecules in Gram-positive bacteria. Here, we describe a novel class of butenolides isolated from a Gram-negative Pseudomonas strain, the styrolides. Structure elucidation was aided by the total synthesis of styrolide A. Transposon mutagenesis enabled us to identify the styrolide biosynthetic gene cluster, and by using a homology search, we discovered the related and previously unknown acaterin biosynthetic gene cluster in another Pseudomonas species. Mutagenesis, heterologous expression, and identification of key shunt and intermediate products were crucial to propose a biosynthetic pathway for both Pseudomonas-derived butenolides. Comparative transcriptomics suggests a link between styrolide formation and the regulatory networks of the bacterium.


Subject(s)
4-Butyrolactone/analogs & derivatives , Pseudomonas/chemistry , 4-Butyrolactone/biosynthesis , 4-Butyrolactone/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , DNA Transposable Elements/genetics , Multigene Family , Mutagenesis , Pseudomonas/genetics , Pseudomonas/isolation & purification , Soil Microbiology
17.
Molecules ; 24(18)2019 Sep 13.
Article in English | MEDLINE | ID: mdl-31540241

ABSTRACT

Phytochemical investigation of the whole plant of Tradescantia albiflora Kunth led to the isolation and characterization of a butanolide, rosmarinosin B (1), that was isolated from natural sources for the first time, a new butenolide, 5-O-acetyl bracteanolide A (2), and a new apocarotenoid, 2ß-hydroxyisololiolide (11), together with 25 known compounds (compounds 3-10 and 12-28). The structures of the new compounds were elucidated by analysis of their spectroscopic data, including MS, 1D, and 2D NMR experiments, and comparison with literature data of known compounds. Furthermore, four butenolides 4a-4d were synthesized as novel derivatives of bracteanolide A. The isolates and the synthesized derivatives were evaluated for their preliminary anti-inflammatory activity against lipopolysaccharide (LPS)-stimulated nitric oxide (NO) production in RAW 264.7 cells. Among them, the synthesized butenolide derivative n-butyl bracteanolide A (4d) showed enhanced NO inhibitory activity compared to the original compound, with an IC50 value of 4.32 ± 0.09 µg/mL.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Furans/pharmacology , Lipopolysaccharides/adverse effects , Tradescantia/chemistry , 4-Butyrolactone/analogs & derivatives , Animals , Anti-Inflammatory Agents/chemistry , Furans/chemistry , Inhibitory Concentration 50 , Mice , Molecular Structure , Nitric Oxide/metabolism , Phytochemicals/chemistry , Phytochemicals/pharmacology , RAW 264.7 Cells
18.
Molecules ; 24(14)2019 Jul 21.
Article in English | MEDLINE | ID: mdl-31330867

ABSTRACT

Three new γ-hydroxyl butenolides (1-3), a pair of new enantiomeric spiro-butenolides (4a and 4b), a pair of enantiomeric cyclopentenones (5a new and 5b new natural), and six known compounds (6-11), were isolated from Aspergillus sclerotiorum. Their structures were established by spectroscopic data and electronic circular dichroism (ECD) spectra. Two pairs of enantiomers [(+)/(-)-6c and (+)/(-)-6d] obtained from the reaction of 6 with acetyl chloride (AcCl) confirmed that 6 was a mixture of two pairs of enantiomers. In addition, the X-ray data confirmed that 7 was also a racemate. The new metabolites (1-5) were evaluated for their inhibitory activity against cancer and non-cancer cell lines. As a result, compound 1 exhibited moderate cytotoxicity to HL60 and A549 with IC50 values of 6.5 and 8.9 µM, respectively, and weak potency to HL-7702 with IC50 values of 17.6 µM. Furthermore, compounds 1-9 were screened for their antimicrobial activity using the micro-broth dilution method. MIC values of 200 µg/mL were obtained for compounds 2 and 3 towards Staphylococcus aureus and Escherichia coli, while compound 8 exhibited a MIC of 50 µ/mL towards Candida albicans.


Subject(s)
4-Butyrolactone/analogs & derivatives , Aspergillus/chemistry , Cyclopentanes/chemistry , Soil Microbiology , Soil/chemistry , 4-Butyrolactone/chemistry , 4-Butyrolactone/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclopentanes/pharmacology , Humans , Microbial Sensitivity Tests , Molecular Structure , Spectrum Analysis , Structure-Activity Relationship
19.
Molecules ; 24(7)2019 Apr 03.
Article in English | MEDLINE | ID: mdl-30987115

ABSTRACT

A series of novel 3-aryl-4-hydroxy-2(5H) furanone-acrylate hybrids were designed and synthesized based on the natural butenolides and acrylates scaffolds. The structures of the prepared compounds were characterized by ¹H-NMR, 13C-NMR and electrospray ionization mass spectrometry (ESI-MS), and the bioactivity of the target compounds against twelve phytopathogenic fungi was investigated. The preliminary in vitro antifungal activity screening showed that most of the target compounds had moderate inhibition on various pathogenic fungi at the concentration of 100 mg·L-1, and presented broad-spectrum antifungal activities. Further studies also indicated that compounds 7e and 7k still showed some inhibitory activity against Pestallozzia theae, Sclerotinia sclerotiorum and Gibberella zeae on rape plants at lower concentrations, which could be optimized as a secondary lead for further research.


Subject(s)
4-Butyrolactone/analogs & derivatives , Acrylates/chemical synthesis , Acrylates/pharmacology , 4-Butyrolactone/chemical synthesis , 4-Butyrolactone/chemistry , 4-Butyrolactone/pharmacology , Acrylates/chemistry , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Biological Products/chemical synthesis , Biological Products/chemistry , Biological Products/pharmacology , Molecular Structure , Structure-Activity Relationship
20.
Chemistry ; 24(62): 16543-16547, 2018 Nov 07.
Article in English | MEDLINE | ID: mdl-30215885

ABSTRACT

A novel organocatalytic approach to γ,γ-disubstituted butenolides is described. It is based on a fully site-selective functionalization of 5-alkylidenefuran-2(5H)-ones via trienamine-mediated [4+2]-cycloaddition with α,ß,γ,δ-diunsaturated aldehydes. The developed methodology proceeds with excellent stereocontrol and constitutes a unique example of trienamine chemistry with vinylogous dienophiles. Importantly, the reaction has very broad scope and allows for the introduction of substituents also in the α- or the ß-position of the butenolide ring. Usefulness of the products obtained has been confirmed in the intramolecular Stetter reaction leading to polycyclic product.

SELECTION OF CITATIONS
SEARCH DETAIL